Anisotropy of the : (i) upper critical fields

and the
(ii) paramagnetic Meissner effect (PME)

in $\mathrm{La}_{1.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{4}$ single Crystals

I. Felner and M.I. Tsindlekht, G. Drachuck and A. Keren
J. Phys.: Cond. Matter $2 \underline{5} 065702$ (2013)

Israel's Leading University

Introduction

(i) Surface superconducting state (SSS)

The nucleation field of a thin SC sheet at the surface $\left(H_{C 3}\right)$ is higher than the nucleation field of a bulk SC ($H_{C 2}$)

$$
H_{C 2}<H_{C 3}
$$

(with the thickness of the order of the Ginzburg-Landau coherence length)

For conventional single band superconductor

$$
\boldsymbol{\nu}=H_{C 3} / H_{C 2} \approx 1.69
$$

(ii) PME (Wohlleben effect)

At low H only, in some HTSC materials positive magnetization signals appear via the FC procedure.

The paramagnetic Meissner effect (PME)

Hand waiving models

(1) PME originates from flux capture of impurities (such as oxygen vacancies) or surplus oxygen atoms) or by in-homogeneous regions in HTSC
(2) Surface pinning effect are at the root of PME. (Nb)

Relatively large a and c doped LSCO single crystals has been grown (by Amit) in an image furnace.
under doped $\mathrm{La}_{1.93} \mathrm{Sr}_{0.07} \mathrm{CuO}_{4}$,
optimally doped $\mathrm{La}_{1.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{4}$

$\mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4}$

Big crystals
The od c-crystal (long axis parallel to c) $1.7^{*} 2.0^{*} 3.2 \mathrm{~mm}(70 \mathrm{mg})$
The ud a-crystal (long axis parallel to $a b$) $1.8^{*} 2.3^{*} 8.5 \mathrm{~mm}$ (240 mg)

Anisotropy in $\mathrm{La}{ }_{1.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{4}$

Temperature [K]

1) The same zero resistance is observed in the two crystals but $M_{c}=36.5 \mathrm{~K}>\mathrm{M}_{\mathrm{a}}=35 \mathrm{~K}$
2) A knee which appears in the c-crystal only for $\mathrm{H}<10 \mathrm{Oe}$.

Two T_{C} values, due to stripes or to disorder along the c-axis

The motivation

To construct (for the first time) the phase diagram of, $H_{C 2}(T)$ and $H_{C 3}(T)$ in LSCO along the ab planes and the c axis

For LSCO (In contrast to YBCO) a limited number of publications have been reported on $H_{C 2}(T)$ in the two orientations.
No report on $H_{C 3}(T)$.

$$
\begin{gathered}
H_{\mathrm{C} 2}^{a}>H_{\mathrm{C} 2}^{c} \quad H_{\mathrm{C} 2}^{a} / H_{\mathrm{C} 2}^{c}=5.4 \\
H_{\mathrm{C} 2}^{c}=\Phi_{0} / 2 \pi \xi_{a b}^{2} . \quad H_{\mathrm{C} 2}^{a}=\Phi_{0} / 2 \pi \xi_{a b} \xi_{c} \quad \xi_{a b}>\xi_{c} \quad \frac{H_{a 1} 1}{H_{a, 1}}=\frac{\xi_{c o b a b}}{\xi_{a b e}} .
\end{gathered}
$$

- $\boldsymbol{H}_{C 2}(\mathrm{~T})$ was determined by dc magnetization studies (SQUID)
- $H_{C 3}(T)$ was determined by ac susceptibility studies (in the SQUID)

$\mathrm{La}_{1.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{4}$

Temperature [K]

The crystals are not homogeneous in both orientations.

dc magnetization studies for $\boldsymbol{H}_{\text {C2 }}$

ac magnetization studies for $\boldsymbol{H}_{\text {C3 }}$

$h_{0}=0.05 \mathrm{Oe}$ at various frequencies up to $\omega / 2 \pi=1465 \mathrm{~Hz}$.

dc and ac magnetization studies

The first phase diagram!!!

$$
\begin{aligned}
& \text { 1) } H_{C 2}{ }^{\mathrm{a}} / H_{C 2}{ }^{\mathrm{c}}=2.8 \\
& \text { 2) } \boldsymbol{\gamma}^{\mathrm{c}}=H_{c 3} / H_{C 2} \sim 1.8(2) \\
& \text { 3) } \nu^{\mathrm{ab}}=H_{c 3} / H_{C 2} \sim 4.0(2)!!!
\end{aligned}
$$

c-crystal La ${ }_{1.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{4}$ PME occurs for H par to ab

a-crystal $\mathrm{La}_{1.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{4}$
 H par a

A crystal

PME occurs only for H par to a

Under-doped 7\% LSCO PME occurs for H par to ab

Summary of the results
(1) The first phase diagram of $H_{c 2}(\mathrm{~T})$ and $H_{C 3}(\mathrm{~T})$ for both ab and c directions

$$
\gamma^{c}=H_{C 3} / H_{C 2}=1.8(2) \quad \gamma^{a}=H_{C 3} / H_{C 2}=4.0(2)!!!
$$

(2) PME is observed only for H parallel to the ab planes

We claim that the two phenomena are an intrinsic property of LSCO
Are they connected to each other ?

For both crystals, the same criteria were employed for determination of the upper critical fields.
(big crystals, 3.2 and 8.5 mm long)
The anisotropy observed, is not a result of inhomogeneity of the crystals due to the spread in stoichiometry.

Because inhomogeneity, should affect simultaneously the a and c crystals in the two different orientations.

