Anisotropy of the : (i) upper critical fields and the (ii) paramagnetic Meissner effect (PME)

in La_{1.85}Sr_{0.15}CuO₄ single Crystals

I. Felner and M.I. Tsindlekht, G. Drachuck and A. Keren

J. Phys.: Cond. Matter 25 065702 (2013)

Israel's Leading University

Racah Institute of Physics

Introduction

(i) Surface superconducting state (SSS)

The nucleation field of a **thin SC sheet** at the surface (H_{c3}) is higher than the nucleation field of a **bulk** SC (H_{c2}) $H_{c2} < H_{c3}$

with the thickness of the order of the Ginzburg-Landau coherence length

For conventional single band superconductor

Saint-James and De Gennes in 1963

Israel's Leading University

(ii) PME (Wohlleben effect)

At <u>low</u> *H* only, in some HTSC materials **positive** magnetization signals appear via the FC procedure.

The paramagnetic Meissner effect (PME)

Hand waiving models

(1) PME originates from flux capture of impurities (such as oxygen vacancies) or surplus oxygen atoms) or by in-homogeneous regions in HTSC

(2) <u>Surface pinning effect are at the root of PME. (Nb</u>)

Israel's Leading University

Relatively <u>large</u> a and c doped LSCO single crystals has been grown (by Amit) in an <u>image furnace</u>.

Big crystals The od c-crystal (long axis parallel to c) 1.7*2.0*3.2 mm (70 mg) The ud a-crystal (long axis parallel to ab) 1.8*2.3*8.5 mm (240 mg)

Anisotropy in La 1.85 Sr 0.15 CuO₄

1) The same zero resistance is observed in the two crystals but $M_c = 36.5 \text{ K} > M_a = 35 \text{ K}$ 2) A knee which appears in the c-crystal only for H<10 Oe.

Two T_c values, due to stripes or to disorder along the c-axis

Amit et. al. PRB 85, 184518 (2012)

The motivation

To construct (for the first time) the phase diagram of, H_{C2}(T) and H_{C3}(T) in LSCO along the ab planes and the c axis

For LSCO (In contrast to YBCO) a limited number of publications have been reported on $H_{C2}(T)$ in the two orientations. No report on $H_{C3}(T)$.

 $H_{C2}^{a} > H_{C2}^{c}$ $H_{C2}^{a} / H_{C2}^{c} = 5.4$

 $H_{C2}^{c} = \Phi_{0}/2\pi\xi_{ab}^{2}, \quad H_{C2}^{a} = \Phi_{0}/2\pi\xi_{ab}\xi_{c}, \quad \xi_{ab} > \xi_{c}, \quad \frac{H_{c2,\parallel}}{H_{c2,\perp}} = \frac{\xi_{GL,ab}}{\xi_{GL,c}}.$

- *H_{c2}*(T) was determined by <u>dc</u> magnetization studies (SQUID)
- H_{C3} (T) was determined by <u>ac</u> susceptibility studies (in the SQUID)

La _{1.85}Sr _{0.15}CuO₄

The crystals are not homogeneous in **both** orientations.

ac magnetization studies for H_{C3}

 $h_0=0.05$ Oe at various frequencies up to $\omega/2\pi = 1465$ Hz.

dc and ac magnetization studies

The first phase diagram!!!

1)
$$H_{C2}^{a} / H_{C2}^{c} = 2.8$$

2) $\gamma^{c} = H_{C3} / H_{C2} \sim 1.8(2)$
3) $\gamma^{ab} = H_{C3} / H_{C2} \sim 4.0(2)$!!!

a-crystal La _{1.85}Sr _{0.15}CuO₄ H par a

A crystal

PME occurs only for H par to a

Under-doped 7% LSCO PME occurs for H par to ab

Summary of the results

(1) The first phase diagram of H_{C2} (T) and H_{C3} (T) for both **ab** and **c** directions $\gamma^{c} = H_{C3}/H_{C2} = 1.8(2)$ $\gamma^{a} = H_{C3}/H_{C2} = 4.0(2) !!!$

(2) PME is observed only for H parallel to the **ab** planes

We claim that the two phenomena are an intrinsic property of LSCO Are they connected to each other ? For both crystals, the same criteria were employed for determination of the upper critical fields. (big crystals, 3.2 and 8.5 mm long)

The anisotropy observed, is **not a result of** inhomogeneity of the crystals due to the spread in stoichiometry.

Because inhomogeneity, should affect simultaneously the a and c crystals in the two different orientations.

Thanks for your kind attention