DIP meeting report – Technion , March 2013

Oded Millo

Racah Institute of Physics, The Hebrew University of Jerusalem

Yoav Kalcheim (HU)

Gad Koren, Tal Kirzhner (Technion)

Jason Robinson, Mehmet Eglimez (Cambridge)

Clean limit: Order parameter ~ $\sin(d/\xi_F)/(d/\xi_F)$; $\xi_F = \hbar v_F/2E_{ex}$

Dirty limit: Order parameter ~ exp(-d/ ξ_F)cos(d/ ξ_F); $\zeta_F = (\hbar D/2E_{ex})^{1/2}$

 $\xi_{\rm F}$ ~ nm (typically)

Oscillations and decay of SC properties observed in many cases

Long-ranged PE in S-F bilayers: 1. Crossed Andreev reflections at DWs? 2. Proximity induced triplet pairing.

Proximity induced triplet-pairing at F-S interfaces

Magnetic inhomogeneity may cause triplet pairing (e.g., DWs).

A. F. Volkov and K. B. Efetov, Phys. Rev. Lett. 102 (2009)

Long Range PE

Superconductor

Spin active interface + interface magnetization different than in the bulk.

M. Eschrig et al., Phys. Rev. Lett. 90, 137003 (2003)

Triplet pairing:

The symmetry of the induced triplet order parameter

Odd-frequency triplet: *s***- or** *d***-wave**

Even-frequency triplet: *p***-wave**

Note:

Anisotropic order parameters are sensitive to disorder.

– domain wall

Long Range PE

Superconductor

La_{2/3}Ca_{1/3}MnO₃ (LCMO)/(100)YBCO bilayers

LCMO:

Domain walls of ~20nm at 4.2K (>> ξ_s ~2nm in YBCO). \rightarrow CARE suppressed.

Good lattice matching between LCMO and YBCO high interface transparency.

<u>Our samples:</u> Epitaxially grown (15-50nm) LCMO layers on 135nm (100)YBCO.

Y. Kalcheim, et al., Phys. Rev. B 83, 064510 (2011)

Overview of spectral features Non superconducting: a) metallic-like spectra. b) insulator-like wide gaps.

S. Chen et al., APL. 82, 1242 (2003).

Induced superconductivity:

c) proximity induced superconducting gap.

d) and e) - zero bias conductance peaks hallmark of a sign changing order parameter.

Penetration depth much larger than the expected $\zeta_{\rm F} = (\hbar D/2E_{ex})^{1/2}$

[a-d] - 17nm LCMO, [e] - 30nm LCMO

Localized gaps – domain walls?

On few occasions gaps appeared along well defined lines of a width on the order of the LCMO domain walls.

 CARE cannot account for gaps in regions 20 times larger than YBCO's coherence length.

Triplet SC via Efetov & Volkov?

Non-localized SC-like spectral features

Not confined to DWs - evidence for Eschrig's model.
 ZBCPs - evidence for *p*- or *d*-wave order parameter.

Zero bias conductance peaks

ZBCPs were commonly found embedded within gaps. ZBCP splitting was also observed. No correlation with topography.

Y. Kalcheim, et al., Phys. Rev. B 83, 064510 (2011)

ZBCP splitting

 $d_{x^2-y^2} + i d_{xy}$ or d + i s

G. Annunziata, M. Cuoco, C. Noce, A. Sudbo, and J. Linder, arXiv:1009.3014 (2010).

Sharoni et al., Phys. Rev. B, 65, 134526 (2002)

Do the ZBCP features reflect the underlying dwave symmetry of the YBCO or do they reflect the genuine symmetry of the induced order parameter?

Is the induced order parameter intrinsically anisotropic (*d*-wave or *p*-wave)?

Study bilayers with the e-doped $Pr_{1.85}Ce_{0.15}CuO_4$ (PCCO) HTSC (d-wave SC that does not show ZBCPs)

Spectrum measured on the bare PCCO film

- Only gaps, $\Delta \sim 3$ meV.
- No ZBCPs observed ; not on top of crystallites nor on facets

Fits to tunneling model into a *d*-wave SC

- Only gaps, $\Delta \sim 3$ meV.
- No ZBCPs observed ; not on top of crystallites nor on facets

Correlation between spectra and surface morphology (*C***-axis) YBCO**

A. Sharoni et. al., Europhys. Lett., 54, 675 (2001).

STS on 15 nm LCMO on PCCO bilayer

- Most typically: gapped regions within metallic regions.
- Gaps found up to LCMO thicknesses of 25 nm.

Y. Kalcheim, J. Robinson, M. Eglimez, O. Millo, PRB 85, 104504 (2012)

Observation of zero bias conductance peaks

Y. Kalcheim, J. Robinson, M. Eglimez, O. Millo, PRB 85, 104504 (2012)

So far:

• Localized long-range proximity effects in LCMO/YBCO and LCMO/PCCO bilayres.

• Results on the LCMO/YBCO and LCMO/PCCO bilayres may be explained by the induction of triplet pairing in the LCMO.

• ZBCPs imply that the proximity induced order-parameter has anisotropic orbital symmetry, *p*-wave or *d*-wave, and even a complex OP (p + ip).

Y. Kalcheim, T. Kirzhner, G. Koren, O. Millo, Phys. Rev. B 83, 064510 (2011)

Y. Kalcheim, J. Robinson, M. Eglimez, O. Millo, PRB 85, 104504 (2012)

Q?: What is the mechanism leading to triplet-pairing?

- Look at the effect of magnetic-field application:

Volkov-Efetov: Proximity effect (triplet-pairing) along DWs – suppressed Eschrig: Proximity effect (triplet-pairing) – enhanced.

Gray colors – before magnetic field application "warm" colors – after B = 60 mT Blue-green colors – after B = 150 mT > B_{sat}

• Application of magnetic field enhances initially (B=O) small gaps, but does not affect much initially large gaps.

• Some ZBCPs appeared, but in this case it seems like that their magnitude and abundance was not affected by the field.

17 LCMO on YBCO

Non-monotonic dependence of the (somewhat shifted) ZBPC on magnetic field. Enhancement up to about the saturation filed and then suppression.

"anomalous" tunneling spectra varying with time under B

'cold' colors – before application of magnetic field 'warm' colors – after application of B = 180 mT

It appears that magnetic field (even after ramping down back to zero) enhances the PE-induced spectral features, both gaps and ZBCPs.

12 nm LCMO and PCCO

Again, magnetic field enhances gaps and in this case maybe also ZBCPs

Black-blue curve – before B application "warm colored" curves – after B = 150 mT

In regions where the gaps are well developed before B applications, turning on the magnetic field does not change much.

Effect of magnetic field application:

- In general, well developed (large and deep) gaps are not affected much.
- Small gaps usually become more pronounced by the application of magnetic field.
 - this effect increases up to the saturation field, after which the gaps may somewhat reduce.
 - this was observed also for ZBCPs, but we have less data.
- Variations of spectra with time (non-monotonic) under magnetic field. Changes in local magnetization structure?

Outlook

- Investigate induced triplet pairing in the SC.
 - PCCO may be better: ZBCPs will provide more direct (less ambiguous) evidence for induced triplet pairing.

Increased T_C of Nb films upon chemical linking Au dots

¹Yossi Paltiel, ¹Eran Kazir, ²Yoav Kalcheim, ²Oded Millo

¹Department of Applied Physics, ²Racah Institute of Physics, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem

The Hebrew University Center for Nanoscience & Nanotechnology

ISF - Center of Excellence program ISF - BIKURA DIP , DARPA

Au nanoparticles attached to Au by di-Silane molecules

Small but reproducible enhancement of T_c

Small but reproducible enhancement of T_c

• Relative enhancement increases as the Nb film thickness reduces.

- Chemical linking \Rightarrow ability for charge transfer is essential
- Not a Coulomb screening effect

Effect of Au nanoparticles removal

- Tc enhancement effect reduces as NP density reduces.
- Effect much smaller under application of matching magnetic (inset). - effect of flux-creep eliminated after linking (inset, red curve).

Scanning tunneling spectroscopy - linked dots

- Enhanced zero-bias conductance on Au dots when T_c increases.
- Far away from Au dots, a reduced Nb SC gap observed.

Scanning tunneling spectroscopy - linked dots

• Proximity-gaps appeared on Au dots when T_c reduced (MPS only).

Andreev reflections through the linker molecules.

Scanning tunneling spectroscopy – unlinked dots

• Coulomb-blocked observed.

 \Rightarrow Here the tunnel-barrier between the Au-dot an Au-substrate is high.

Effect of illumination wavelength on T_c

• Plasmon excitation effect on T_c ?

Co nanoparticles linked to Nb film.

Linking process:

- * Cleaning the surface for 10 min in plasma Argon
- * di-Silane molecule adsorption.
- * Co adsorption from Toluene solution: two dips process, each dip for 2 hours, washing with Toluene between the 2 dips.

Co nanoparticles linked to Nb film.

For poor quality of Nb

Co nanoparticles linked to Nb film.

High quality Nb film

Summary

- T_C enhancement of Nb films upon chemically linking Au NPs.
- Not a Coulomb screening effect chemical linking essential.
- Origin not yet understood.
- DOS on the Au-NPs is modified. Either a ZBCP developed, when T_C is enhanced, or induced mini-gap when T_C reduces.
- Small enhancement also upon attaching ferromagnetic Co NPs.