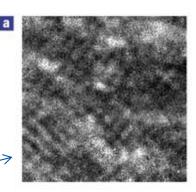
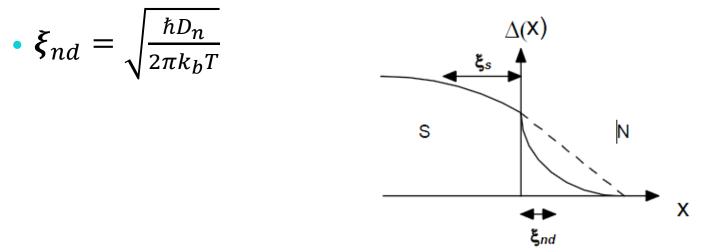

Supercurrents in the pseudogap regime of LSCO in YBCO/LSCO/YBCO junctions

> Tal Kirzhner DIP meeting, Technion, March 19, 2013


The Pseudogap

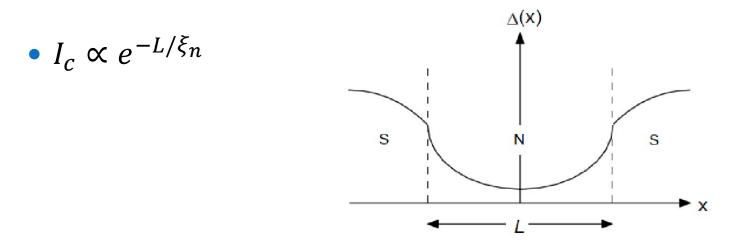
- Depletion of low-energy density of states of electrons below T*
- Experimental evidence:
 - Energy gaps in ARPES and STM.
 - Change of scattering rate in transport processes.
 - Drop in spin-lattice relaxation rate 1/TT¹ in NMR.
 - Drop in heat capacity

Origin of the Pseudogap


- Competing order:
 - SDW, spin stripes
 - CDW, charge stripes, checkerboard-
 - Nematic order (breaking of rotational symmetry without breaking translation symmetry)
- Fluctuating superconductivity
 - Gaussian fluctuations (Amplitude and phase)
 - Finite life time of Cooper pairs
 - Only one transition temperature
 - Phase fluctuations
 - Emergy & Kivelson 1995
 - Two transition temperatures (T* & Tc)
 - High-T_c Cuprates

Proximity Effect

- Cooper pairs penetrate the metal via the Andreev reflection process.
- In the metal electrons lose coherence on a length scale of ξ_n In the clean limit : ($\xi_n \ll l_n$)


•
$$\xi_{nc} = \frac{\hbar v_n}{2\pi k_b T}$$

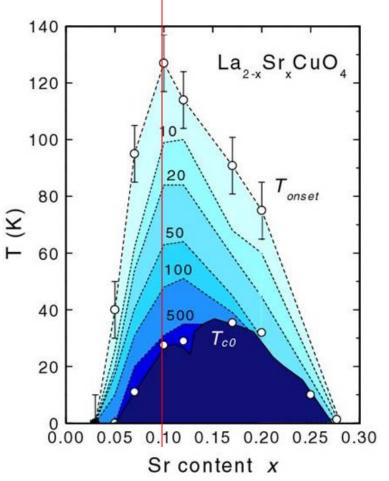
In the dirty limit : $(\xi_n \gg l_n)$

SNS Junction

- Proximity effect from both superconductor sides leads to a supercurrent.
- Critical current in SNS junctions (DeGennes):

•
$$J_c = \frac{\pi}{2e\rho_n\xi_n} \frac{|\Delta_0|^2}{k_bT_c} (1 - \frac{T}{T_c})^2 e^{-L/\xi_n} \ (L \gg \xi_n)$$

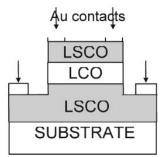
Previous experiments 1

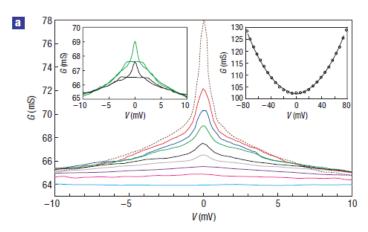

The vortex Nernst effect

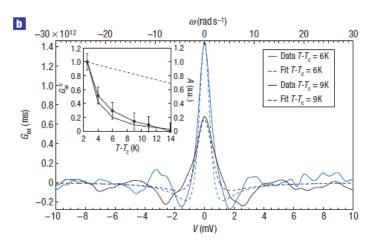
$$2eV_{J} = \hbar \phi = 2\pi\hbar n$$
$$E_{J} = \mathbf{B} \times \mathbf{v}$$
$$e_{y} = \frac{E_{y}}{|\nabla T|}$$

• The Nernst signal is very small in normal metals

-VT


- Overdoped regime
 - Gaussian fluctuations
- Underdoped regime
 - Strong phase fluctuations



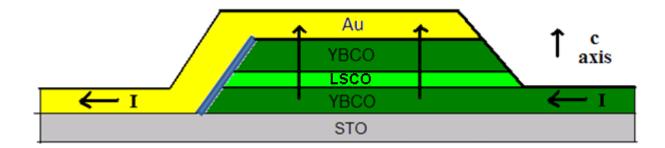

Wang & Ong, PRB 73, 24510 (2006)

Previous experiments 2

- Josephson Effect & ZBCP
 - Giant Proximity Effect in LCO
 Bozovic et al. 2004
 Sizable supercurrent in 20nm barriers L=20nm >> ξ_c = 0.5 - 1nm
 - Excess Current (ZBCP) in OP-N-UD junctions
 N. Bergeal et al. 2008 up to 15K above Tc of the UD layer Gaussian Fluctuations

Motivation for the present study

- Detect superconducting fluctuations above T_c using the Josephson effect.
 - Superconductor fluctuations should preserve the coherence of the Cooper pairs (in the PG state)
 - High critical currents
 - High normal metal coherence length above Tc
 - Josephson junction cross section:



• Up to this day – no systematic measurements of the normal coherence lengths and critical currents as a function of the barrier thickness & doping

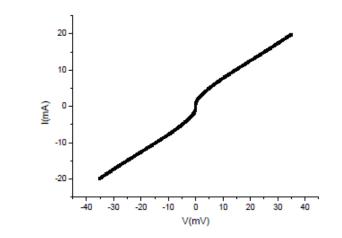
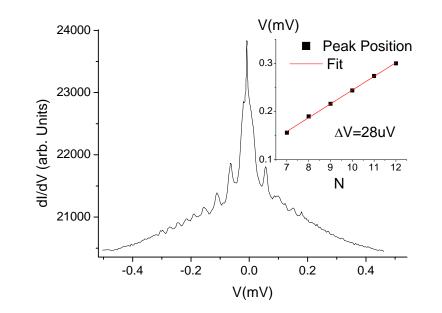
The present experiment

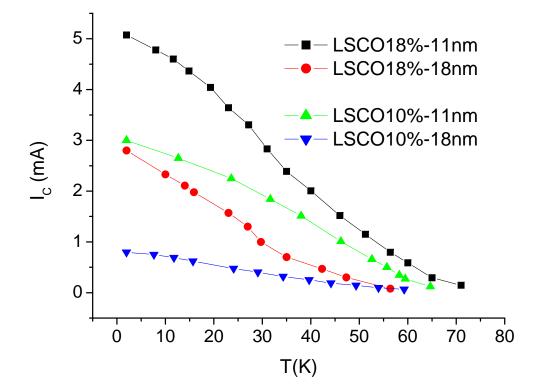
- A tri-layer of c-axis Josephson junction
 - In situ deposition of the layers
 - High quality interfaces
- (100nm YBCO cover) / (10-20nm LSCO) / (200nm YBCO base) junction
 - LSCO with various doping
 - 5 µm x 5 µm Area
- We measured the I-V curves as function of temperature below $T_c(YBCO) \sim 90K$

• Then extract the critical current

Results 1

- IV curves
 - Not RSJ like
 - Flux flow behavior
 - Trapping of vortices in the junction

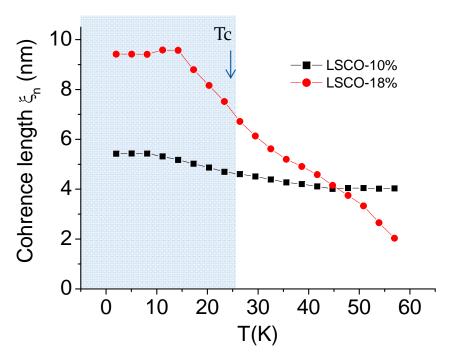

FIGURE 4.3: IV measurement of an SNS junction of Fig. 4.2 with a barrier of 15nm at a temperature of 68K.

- Microwave irradiation
 - AC Josephson Effect
 - Shapiro steps
 - $\nu = 2eV/\hbar$
 - 10.7Ghz \rightarrow 22 μ V

Results 2

- Barriers of JJ's
 - LSCO10%
 - $T_c \cong 25K$, $T^* \sim 150 K$
 - UD
 - LSCO18%
 - $T_c \cong 25K$
 - OD
 - Barrier thickness of
 - 18nm
 - 11nm

Critical current as function of temperature for LSCO 10% & 18% and barrier thicknesses of 11 nm & 18 nm


Results 3

- Extract ξ_n from the critical current dependence on the barrier length.
 - $I_c \propto e^{-L/\xi_n}$
- LSCO is a dirty superconductor (esp. in the c-axis direction)
 - From theory:

•
$$\xi_n \propto \sqrt{D_n} \propto \sqrt{1/\rho}$$

•
$$\frac{\xi_{n(LSCO18\%)}}{\xi_{n(LSCO10\%)}} = \sqrt{\frac{\rho_{(LSCO10\%)}}{\rho_{(LSCO18\%)}}} \sim 2$$

- Experimental results show that:
 - At 60 K $\xi_{n(LSCO10\%)} > \xi_{n(LSCO18\%)}$ which is not as predicted
 - But this can be explained by phase fluctuations in the PG state of the LSCO10%.

Coherence length as function of temperature of LSCO10% and LSCO18%

Conclusions

- We have measured the normal coherence length of an underdoped and overdoped LSCO above T_c using the Josephson effect.
- At high temperatures (>50K) the normal coherence length of underdoped LSCO is higher than that of overdoped LSCO.
 - It is in contrast to the theory of the proximity effect where the coherence length is proportional to the square root of the diffusion constant.
 - The results can be explained by the phase fluctuations scenario (pre-formed pairs in the pseudogap regime)