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1.  Superconductivity in HTS nano wires 

     Student in charge:  Daniel Levi 

       Collaboration:  Gad Koren 

 
              

 

            

 

2.  Quantum effects in HTS/LTS nano-loops 

     Student in charge:  Omri Sharon 

       Collaboration:  Elke Scheer 
                                   Ivan Bozovic’ 
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Magnetoresistance anomalies in ultra-thin  
granular YBa2Cu3O7-δ wires 

Why high-Tc  SC? 
Why granular? 
 

D-wave pairing symmetry  
 Josephson π-junctions 
 

Confinement 

Minimizing the available 
conduction channels 

Why ultra-thin? 
Why nano? 
 
 



Summary of results 

1. Magnetoresistance oscillations 
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    2. Negative magnetoresistance at low fields 

3. Negative magnetoresistance slope in the Tesla regime 

ALL PHENOMENA IN THE SAME SAMPLE 

Origin  
Granularity 

Confinement 
D-wave symmetry 
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Laser  ablated   ~10 nm thick film 
AFM image (1μm x 1μm) 
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Bridges (L = 400-700 nm, w= 80 – 500 nm) were patterned  
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R  vs.  T   --- YBCO wires 

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000

 film

 500

 500_b

 200

 180

 160

 80

 100 short

 80 short

R
[

]

T[K]

w[nm]



6 6 

50 100 150 200 250 300
0

2500

5000

7500

10000

12500

R
[

]

T[K]

500 nm

80 nm

 Similar Tonset = Tc  (~ 89 K) for all samples 
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R vs. T (500 nm) 

• R(T) curves cut at low temperature 
 

• Resistive transition broadening 

 



8 8 8 

R vs. H (500 nm) 

MAGNETORESISTANCE BACKGROUND 
 

  a). Strong dependence on H at low fields / Weak dependence at high fields 
  
  
 

c).  dR/dT < 0 at low T 

b). T-independent characteristic field  *‘matching’ field+ 
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Previous observations of dR/dH< 0 
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1/ Bi2Sr2CaCu2O8+d  
    Morozov, Krusin-Elbaum,  

       Bulaevskii et al. PRL (2000). 

 
 

c-axis conductivity in a d-wave SC is a parallel, two-channel 
tunneling process between neighboring layers:  
(a) Tunneling of Cooper pairs  
      (σ ↓ H). 
(b) Tunneling of quasiparticles in gapless regions  
      (σ ↑ H + c  due to increase in the QP DOS). 
 
 

2/ (LaSe)1.14(NbSe2)  
    Szabó et al. PRL (2001).  

 

A.     c-axis conductivity in high-Tc crystals 
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Previous observations of dR/dH< 0 
 

B.      Low-Tc   SC  --  confined   geometries 

 

4/ Tungsten-based nanowire  
    and TiN networks  

     (Córdoba, Baturina, Vinokur et al.,  

       Nature Commun (2013)) 

 

 

 

10 Surface SC is behind dR/dT < 0 
(shunting the resistive part at  
the middle of the sample). 
 

3/  Amorphous Pb ultrathin films  
      (Gardner, Xiong, et al., Nature Physics (2011)) 
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Magnetoresistance background is attributed to 
three different mechanisms 

• Low fields: Thermally activated phase slips in weak links 

       (‘soft’  component – responsible for low H behavior) 

 

• High fields: Thermally activated phase slips in grains 

       (‘hard’  component - responsible for high H behavior) 
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Magnetoresistance due to phase slips 
Tinkham, PRL (1988); Ambegaokar/Halperin, PRL (1969) 
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Magnetoresistance at different temperatures 
(derived from Tinkham’s model) 

• Flat at “Rn” 
• As T decreases onset is pushed to larger fields 
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Fits to Tinkham’s model have been unsuccessful 

Data imply TWO contributions: 
Weak links / grains (‘soft’ / ‘hard’ components)  
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Illustration of Tinkham’s model for MR from soft 
and hard components 
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Onset of  
matching-field effect 

Low T:  
Rhard = 0                                     

dRsoft/dH ~ 0 
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MR log scale 
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MAGNETORESISTANCE BACKGROUND:  dR/dT < 0 

 

                       dR/dH < 0 at low temperatures 
 
ORIGIN: Quasiparticles tunneling.  
(High H: vortices  increased DOS  σqp    H 

 
Mechanism revealed at low T where Rhard = 0 and dRsoft/dT small 
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Magnetoresistance background 

• Low fields: Thermally activated phase slips in weak links 

 

• High fields: Thermally activated phase slips in grains 

        

• Low temperatures - High fields : Quasiparticles tunneling 
(High H: vortices  increased DOS  σqp    H 
 
Mechanism revealed when Rhard  = 0 and dRsoft/dT small 
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Oscillations and negative magnetoresistance 
(500 nm) 
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Oscillations 

Negative magnetoresistance 
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Magnetoresistance oscillations 
 
 
Weakly coupled grains form 
2D-array of Josephson 
junctions 
 

As T decreases, phase 
coherence is established in 
multiply connected SC, 
inducing LP-like oscillations: 
Hperiod = Φ0/L2 (L2 ~ grain area) 

 
(After Tinkham, Abraham, Lobb, PRB 28, 6578 

(1983))  
 

AFM image 
Superconducting 

grains 

     Herzog, Xiong, Dynes, PRB (1998) 
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Explanations proposed for the  
negative magnetoresistance in low-Tc SC 

Pair scattering rate from magnetic impurities is reduced due to  
spin polarization in the presence of the field 

(Simons et al. PRB (2012)). 
[Origin of magnetic impurities???] 

 

Disorder  Random distribution of negative and positive 
Josephson critical currents  
(Spivak and Kivelson, PRB (1991)) 

[Relevant near SIT) 

………………. 

……………… 

……………… 

22 All models concern the initial slope (dR/dH H=0) 
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YBCO nano wires: 
The negative magnetoresistance is part of the 

periodic behavior 
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All models (proposed for the negative MR observed 
in low-Tc SC concern the initial slope (dR/dH H=0) 
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YBCO nano wire:   PERIODIC    negative magnetoresistance 
(Negative MR is part of the oscillatory behavior) 



 
 
 
 
 

YBCO nano wires: 
The negative magnetoresistance is part of the 

periodic behavior 

Origin  

π-junctions included in phase coherent loops 
induce a π phase shift 
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Origin for both negative magnetoresistance and oscillations     
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Origin of negative MR : π-junctions 
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Origin of the π-junction: d-wave pairing symmetry 

‘Geometric’ Josephson junctions 
Reflected particles at the constriction suffer a sign change of 
the pairing potential, leading to a π shift. 
 
After Gumann, Iniotakis and Schopohl, APL 91 (2007) 192502.  
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Model: Zero and  π-SQUIDs in series 
(Negative MR and oscillations have same origin) 

 

• The presence of a  SQUID is necessary in order to 
produce the periodic negative magnetoresistance.  

 

• The two main field-periods (~ 2200 and ~ 6600 Oe) 
suggests that two SQUIDs with areas differing by a 
factor of ~ 3 play a role.  

 

• The geometrical constraints of the wires (ratio of the 
wire width to the grain size of order 1) force these 
SQUIDs to be connected in series.  
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Voltage across 0-SQUID and -SQUID 
connected in series  

2 2

2 2

1 1 2 2

0 0

(3 )
( / 2) 2 cos ( / 2) 2 sinc c

SH S H
V R I I R I I

    
      

    



30 30 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

540

550

560

570
R

[
]

H[T]

65K



Summary 

 Phenomenon                                  Origin 

1. Background 

High T low fields MR                Phase slips -weak links 

High T high fields MR               Phase slips - grains 
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  Low T – negative slope dR/dT        QP tunneling 

2. Oscillations 
                              Low fields – phase coherent loops 
                              High fields – matching 

3.   Negative MR  
                                   Phase coherent loops 
                                   Loops include π- junctions 
                               
     


