DIP Workshop – Technion (19/03/2013)

Yosi Yeshurun

Topics studied in the framework of the DIP project

1. Superconductivity in HTS nano wires

<u>Student in charge</u>: Daniel Levi <u>Collaboration</u>: Gad Koren

2. Quantum effects in HTS/LTS nano-loops

<u>Student in charge:</u> Omri Sharon <u>Collaboration:</u> Elke Scheer Ivan Bozovic'

Magnetoresistance anomalies in ultra-thin granular YBa₂Cu₃O_{7-δ} wires

Why high-T_c SC? Why granular? D-wave pairing symmetry Josephson π-junctions

Why ultra-thin? Why nano? Confinement

Minimizing the available conduction channels

Summary of results

- 1. Magnetoresistance oscillations
- 2. Negative magnetoresistance at low fields
- 3. Negative magnetoresistance slope in the Tesla regime

ALL PHENOMENA IN THE SAME SAMPLE

<u>Origin</u>

Granularity Confinement D-wave symmetry

Laser ablated $\sim 10 \text{ nm}$ thick film AFM image (1µm x 1µm)

Bridges (L = 400-700 nm, w= 80 – 500 nm) were patterned

R vs. T --- YBCO wires

- Resistive transition broadening
- R(T) curves cut at low temperature

(7)

R vs. H (500 nm) MAGNETORESISTANCE BACKGROUND

a). Strong dependence on H at low fields / Weak dependence at high fields

- b). T-independent characteristic field ['matching' field]
- c). dR/dT < 0 at low T

Previous observations of dR/dH<0

A. *c*-axis conductivity in high-T_c crystals

c-axis conductivity in a d-wave SC is a parallel, two-channel tunneling process between neighboring layers:

9

(a) Tunneling of **Cooper pairs**

(σ ↓ H).
(b) Tunneling of quasiparticles in gapless regions
(σ ↑ H + c due to increase in the QP DOS).

Previous observations of dR/dH<0

B. Low-T_c SC -- confined geometries

3/ Amorphous Pb ultrathin films

(Gardner, Xiong, et al., Nature Physics (2011))

4/ Tungsten-based nanowire

and TiN networks

(Córdoba, Baturina, Vinokur *et al* Nature Commun (2013))

Surface SC is behind dR/dT < 0 (shunting the resistive part at the middle of the sample).

Magnetoresistance background is attributed to three different mechanisms

- Low fields: Thermally activated phase slips in weak links ('soft' component – responsible for low H behavior)
- High fields: Thermally activated phase slips in grains ('hard' component - responsible for high H behavior)

Magnetoresistance at different temperatures (derived from Tinkham's model)

- Flat at "R_n"
- As T decreases onset is pushed to larger fields

Fits to Tinkham's model have been unsuccessful

Data imply TWO contributions: Weak links / grains ('soft' / 'hard' components)

Illustration of Tinkham's model for MR from soft and hard components

MR log scale

MAGNETORESISTANCE BACKGROUND: <u>dR/dT < 0</u>

<u>ORIGIN</u>: Quasiparticles tunneling. (High H: vortices \rightarrow increased DOS $\rightarrow \sigma_{qp}$ H

Mechanism revealed at low T where R_{hard} = 0 and dR_{soft}/dT small

Magnetoresistance background

- Low fields: Thermally activated phase slips in weak links
- High fields: Thermally activated phase slips in grains
- Low temperatures High fields : Quasiparticles tunneling (High H: vortices → increased DOS → σ_{qp} ↑ H

Mechanism revealed when $R_{hard} = 0$ and dR_{soft}/dT small

Oscillations and negative magnetoresistance (500 nm)

Oscillations

Negative magnetoresistance

Magnetoresistance oscillations

Herzog, Xiong, Dynes, PRB (1998)

Weakly coupled grains form 2D-array of Josephson junctions

As T decreases, phase coherence is established in multiply connected SC, inducing LP-like oscillations: $H_{period} = \Phi_0/L^2$ (L² ~ grain area)

(After Tinkham, Abraham, Lobb, PRB **28**, 6578 (1983))

Explanations proposed for the negative magnetoresistance in low- T_c SC

Pair scattering rate from <u>magnetic impurities</u> is reduced due to spin polarization in the presence of the field (Simons *et al.* PRB (2012)). [Origin of magnetic impurities???]

Disorder → <u>Random distribution</u> of negative and positive Josephson critical currents (Spivak and Kivelson, PRB (1991)) [Relevant near SIT)

..........

.

All models concern the initial slope ($dR/dH_{H=0}$)

All models (proposed for the negative MR observed in low-T_c SC concern the initial slope (dR/dH $_{H=0}$)

YBCO nano wires: The **negative magnetoresistance** is part of the **periodic** behavior

24]

YBCO nano wire: PERIODIC negative magnetoresistance (Negative MR is part of the oscillatory behavior)

YBCO nano wires: The **negative magnetoresistance** is part of the **periodic** behavior

<u>Origin</u>

π -junctions included in phase coherent loops induce a π phase shift

Origin for both negative magnetoresistance and oscillations

Origin of negative MR : π -junctions

'Geometric' Josephson junctions

Reflected particles at the constriction suffer a sign change of the pairing potential, leading to a π shift.

After Gumann, Iniotakis and Schopohl, APL 91 (2007) 192502.

Model: Zero and π -SQUIDs in series

(Negative MR and oscillations have same origin)

- The presence of a SQUID is necessary in order to produce the periodic negative magnetoresistance.
- The two main field-periods (~ 2200 and ~ 6600 Oe) suggests that two SQUIDs with areas differing by a factor of ~ 3 play a role.
- The geometrical constraints of the wires (ratio of the wire width to the grain size of order 1) force these SQUIDs to be connected in series.

Voltage across 0-SQUID and π -SQUID connected in series

$$V = (R_1/2)\sqrt{I^2 - \left(2I_{c1}\cos\frac{\pi SH}{\Phi_0}\right)^2} + (R_2/2)\sqrt{I^2 - \left(2I_{c2}\sin\frac{\pi (3S)H}{\Phi_0}\right)^2}$$

Summary

Phenomenon C

Origin

1. Background

High T low fields MR High T high fields MR Phase slips -weak links Phase slips - grains

Low T – negative slope dR/dT QP tunneling

2. Oscillations

Low fields – phase coherent loops High fields – matching

3. <u>Negative MR</u>

Phase coherent loops Loops include π- junctions

