Observation of quantum vortex tunneling in a 2D superconductor at low T or Vortex variable range hopping in YBa₂Cu₃O_{7- δ} thin films

> G. Koren and Y. Mor Physics Department Technion - Israel Institute of Technology Haifa, 32000, ISRAEL

In collaboration with A. Auerbach and E. Polturak

Motivation: to look for Tunneling magnetoresistance in a 2D superconductor

Flux flow resistance ($R_{\rm ff}$) and magneto-resistance (MR) develop when an external current leads to the motion of vortices. Then:

$$\Rightarrow V_{induced} = -\frac{d\phi}{dt}$$

This yields

$$R_{ff} = \frac{V_{induced}}{I}$$

Note that $MR \equiv R(H) - R(0)$

Pinning site
Vortex

The pinning landscape in a superconductor:

Specifically, one can distinguish between two regimes

1. At high temperatures the pinning energy U_0 is much weaker than thermal activation \implies flux flow or flux creep

$$R_{ff} \propto \exp\left(-\frac{U_0}{k_B T}\right)$$

2. At low temperatures the pinning energy U_0 is much stronger than thermal activation \Rightarrow vortex motion via quantum tunneling

A . Auerbach, D. P. Arovas and S. Ghosh [Phys. Rev. B 74, 064511 (2006)], had found tunneling MR

$$\rho = \left(\frac{h}{2e}\right)^2 \gamma_0 \left[n_v(B)\right] e^{\left(-\frac{T_0}{T}\right)^{\frac{1}{3}}}$$

where γ_0 is the vortex conductivity, n_v is the vortex density and T_0 is given by:

$$T_0(film) = K\delta\overline{V} \left(\frac{\pi n_s}{n_{pin}N_{layers}}\right)^2$$

Where $K \sim 1$, δV is the average pinning energy variation, n_s is the pairs density, n_{pin} is the pinning sites density and N_{layers} is the number of CuO₂ planes in the film

- The 1/3 exponent indicates VRH in 2D
- For 3D VRH this power would be 1/4

In order to test Auerbach, Arovas and Gosh prediction we used a 1m long YBCO Meander line Why should one use a long

meander line?

In a short microbridge under magnetic field of several Tesla, the induced voltage is very small and critical current develops already at about 10-20 K below T_c .

 \Rightarrow The R_{ff} resistance can't be measured at low T

In contrast, in a long meander line the induced voltage is large, and the resistance can be measured down to very low T.

The meanderline sample

Comparison to the vortex glass model

We limited the measurements of $R_{\rm ff}$ only to the linear, low-bias, regime where V is linear in I

Transport results of R versus T

Metallic, underdoped, above Tc~60K

Typical broadening with field of the transition near Tc

• The activation energy at 2 T can be extracted from R_{ff}: $R_{ff} \propto \exp\left(-\frac{U_0}{k_BT}\right)$ and this yields: $U_0 \sim 550K$

To test the Vortex - VRH prediction:

- The linear behavior indicates vortex-VRH in 2D at ~2-10 K
- T₀ can be obtained from the slopes of these lines on a In scale

• The larger T range for observing the 1/T^{1/3} behavior indicates that we actually observe vortex VRH (or vortex tunneling)

Extraction of T₀ from our data

• This T₀ is varying only slowly with H

Now we check the dependence of MR on H

- At T<5K, a constant terminal vortex velocity yields a linear dependence of the MR vs. H
- At T>7.5 K, nonlinearities develop due to the weak-links

Estimate the pinning sites density from our data

- The activation energy at H=2 T just below T_c is $U_0 \sim 550$ K.
- For films with T_c = 60 K, the doping per copper in a CuO₂ plane is p =1/8 and thus for pairs, $n_s \sim p/2 = 1/16$.
- Assuming $\delta \overline{V} \approx 0.1U_0$, and noting that the measured $T_0 \sim 55$ K, one gets: $\delta \overline{V} \approx T_0$

• N_{layers} is ~170 here, thus the average distance $\langle d \rangle$ between pining sites in a CuO plane is 117Å.

And visually it looks like this:

In a single plane the distance between pinning sites is much larger than ξ

Conclusions

- Vortex VRH was observed in YBCO thin films in MR measurements versus temperature
- From our data we extracted the VRH "constant" T₀ which enabled us to estimate the pinning sites density n_{pin} & the average distance between pinning sites <d>
- T₀ was also found to be slightly field dependent
- Further experiments at lower temperatures are needed