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Proximity Effects (PE) in thin-film hybrids of: 
FM-ferromagnet, TI-topological insulator, SC-superconductor

• Simple hybrids are:        bilayers                            & trilayers
• We have chosen:  The itinerant ferromagnet SrRuO3 as the FM layer,

Bi0.5Sb1.5Te3 or Bi2Se3 as the TI layer & UD YB2Cu3O6+x as the SC layer
• Results found:

- A strong proximity-induced ferromagnetism in the TI layer by the 
“weak” FM layer in the bilayers

- Strongly suppressed superconductive PE and ferromagnetism in
the TI layer of the trilayers

• In a trilayer network of weakly-connected grains under magnetic fields, 
the existence of Majorana fermions can be realized
 Possible applications in quantum computing 
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Transport properties of the bilayers R vs T     FM
TI
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reference layer

• FM transition
at 150K also 
in the bilayer

• Increasing ratio of
R(BL)/R(FM) below
TCurie similar to the 
magnetization
(see next slide)



MPE seen by the Temperature Coefficient of Resistance
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• Similarity  of 
the TCR to
magnetization

• TCR in BL, 
normalized
above TC to that 
of the reference 
FM layer, 
is suppressed

 Clear signature
of a magnetic 
PE (or MPE)



Magneto-Resistance (MR) loops of the bilayer
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• ZFC starts with
many  small
magnetic domains
 higher R(0T)

• Anti-localization
in the TI (BST) (#1)
See Ref. BST film

• Aligned domains
at 4T, reversed
only at coercive H
of about -1T (#6)

• Then symmetric
loops persist (#8-12) 



Measured MR vs calculated MR for 2 resistors in parallel
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• Measured MR of BL
taken from previous 
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• Reference MR of 
stand-alone FM film

• Calculated parallel 
resistors MR from 
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at 4T

 Suppressed HCoer for BL
vs HCoer of the parallel 
resistors model, indicates 
clear interaction between 
the layers via the MPE



Observed MR loops in meander lines 
of BL and Ref. FM film with a thicker FM layer
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• Meander lines patterning is used in order to increase sensitivity
• Left figure for in-situ prepared and patterned BL

• Right figure for ex-situ prepared and patterned Ref. FM film which was measured, 
Then this was followed by the TI layer deposition and patterning yielding the BL

MPE clearly shifts HCoer to lower values in the BL & narrows the coercive peak
as compared to those of the Reference FM film



Next we move to trilayers – proposed scenario (model)
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Visualization of weak-links network connecting SC grains: 
The current percolation paths are the network channels

• Image of stars in
a galaxy (beyond the
event horizon of two 
merging black holes)

• Brighter stars represent
stronger SC grains 
of the TC~60K phase

• Darker areas in-
between represent 
the weak-links

• Drawn are 2 representative
percolation paths or
channels between the 
SC grains forming the
network, via which the 
current flows



And in the actual trilayer:  Weak-links network between SC grains

A current percolation
path between grains 
of the trilayer is shown,
representing one 
channel in the network
of weak-links



Transport properties: R vs T & R vs H of FM/SC BL & TTL
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Ic data of an SC bridge under field: same under ZFC and FC 
& dI/dV of an insulating bridge (d): magnetic asymmetry  
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Magnetoresistance (MR) vs temperature (T) of 
a Reference TL (RTL) & a Topological TL (TTL)
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• RTL is needed in order
to clarify what is
the role of the TI layer

• Peaks in MR show
competition between
flux flow MR & pinning

• 2 peaks in RTL due to
2 transitions (SC & PE)

• MR in SC TTL (C7 of b)
is strongly suppressed 
and shows no PE peak

• In the insulating bridge
(C6 of b), see only MR 
leading-edge which still 
indicates SC (of grains)



RTL properties
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More RTL properties – coercive field at 3.8T
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Possible existence of Majorana zero modes in a high resistance bridge
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Majorana Bound State (MBS)

Top view of a 2D topological insulator, contacted at the edge by two superconducting 
electrodes separated by a magnetic tunnel junction. A pair of Majorana fermions is bound by 
the superconducting and magnetic gaps.

Beenakker, Annu. Rev. Condens. 
Matter Phys. 2013. 4:113–36

Alternatively:  Lu & Heikkila, arXiv:1905.11135 May 2019 

Large Spin-Orbit
Coupling in the
nanowire, 
similar to TI



Conclusions

• Magnetic Proximity Effect (MPE) in TI/FM bilayers was 
demonstrated

• TI/FM/SC trilayers are harder to analyze
• Nevertheless, signatures of the single layers in them were 

found (Anti-localization of the TI, magnetism of the FM & 
critical currents in the SC)

• With reduced number of channels in the current network, 
signature of Majorana fermions (MBS) was found, which could 
be used in practical applications in future quantum computers 


