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Competing orders

- Tal's contribution to this field



Some background on the HTSC

..... Or a crash course on the HTSC

« The HTSC are oxide superconductors (the cuprates for
instance, with their CuO, planes)

i a e
» Their "parent” compound is 70,7 Lo
insulating [for example La,CuO, — < ] 4t 8 La0
whereLa is 3 valent] : “...,‘ . | cwos
o . - A 9 La0
By "doping” them with some other 4| =10
o ¢ LaQ
atoms they can become S R S S
superconducting [in our example, Voo )
doping by Sr where Sr is 2 valent, 185
yields La,_,Sr,CuO, whichisa bﬁaﬁ >
a-=Ja.

superconductor,
(x is the "hole"” doping level)]



A generic phase diagram of the HTSC

Atlow T,
With increased doping x
AF insulator = metal-> SC

At the critical temperature
T. the resistance—=>0
& shielding of H,, .,

T* is the temperature of
the pseudogap transition

T* and T are found in
experiments — see next
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Tc & T* from R vs. T measurements

Ando & Segawa, 16 1 | , :
PRL, 88, 167005 (2002)
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And more T* results using different

* Ry - Hall meas.
* p - resistivity
* xo - Susceptibility

« SK - Knight shift
(NMR)

e +- IR relaxations

Timusk & Statt

Rep. Prog. Phys. 62, 61 (1999)
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measurement techniques
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What is the energy-gap APG of The pseudogap7

Experimental data of
Scanning Tunneling Spectra in
Bi,Sr,CaCu,04 4
[Renner et al. PRL 80, 149
(1998)]

In all SC, a superconducting

energy-gap As. exists belowT, 2y % :
* There is also a Ap; (pseudo)gap — 19 M}%‘QE
‘W\\\\m 175.0K

below T and above T, in the %

182.0K
HTSC > 10 194.8K
5 202.2K
% T=83.0K 293.2K
. | IFEPEErIN AT AT S S AT EPET S B ST ErEE BTETATET A BUET AT B AT AT A B A |
Both A are characterized by 0300 _100 0 100 200
a depletion of low-energy Ve MV]
ample

density of states of electrons
at eV<A > Do > Ao,



A & T from Angular Resolved Photoemission
(ARPES) data

A* (or Apg)
behaves like T*

Yoshida et al.
PRL 103, 37004 (2009)

(Agrees with 2A*=4.3KgT*
Close to BCS: 2A,=3.5K;T()
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Modeling of T* & T, versus x in the cuprates

 Every superconductor has a macroscopic wave function
(or a complex order parameter) that describes its’ pairs

w(r) = ¢, (r)exp[-i6(r)]

* @,(r) is related to the pairing gap o pairing temperature T,
(Tp ~ Ap/2)

 0(r) is the condensate phase « phase ordering temperature.

For a 2D system, T, «« ng where ng is the pairs' density
(Ty = hengéd2/4nm*)

« In conventional SC, such as the elements, both pairing
and phase-coherence occur simultaneously at T,

* Inthe HTSC where x is low, pairing can occur at T>T, but
without phase-coherence. In this case, T, is determined by:
Te~min (Tp:T,)



Precursor or pre-formed pairs model
for the pseudogap regime

« There are uncorrelated
pairs in the PG regime
that become phase-
coherent at T,

Temperature

Anierromagnetic

La, Sr CuQ, |

Emery and Kivelson (Nature 1995)

T~ min (T, :Te)

« Strong phase-
fluctuations
in the PG regime
* Or low phase-
o| . |  stiffness, like in

Sr content x gr'anLIlar' maTer'iGl
Wang, Li, Ong. (PRB 06)




Competing orders

« SDW - spin density wave, spin stripes,
« CDW - charge density wave, charge stripes,
“"Checkerboard” (STM conductance, 10mV) uamz

Wise et al., NP 4, 696 (2008) \

« Magnetic order (found using
neutron scattering)

« Gyrotropic order (breaking C, . RN
rotation & mirror symmetries) 303i-2201’, ~60 mod.

Terahertz spectroscopy T=32 K, T=35K

- bir'efr'i ngence O Positive Rotation YBCO-UD52K

\ l
oG 08 10 1.2 14
Lubashevsky, Pan, Tal Kirzhner, Frequency [THz]

Koren & Armitage,
arXiv:1310.2265




The origin of the pseudogap is still a puzzle

|
Nature 2001
I n M. Buchannan

the pseudogap

Physicists are still searching for a convincing theory of high-temperature
Superconductivity...

search and discovery Aaug. 2013

p|1 S|CS
ay Among the biggest puzzles is the origin

of the pseudogap state...

« And still in Jan. 2014, Patrick Lee of MIT starts his recent arXiv:1401.0519
paper by:

Since the early days of cuprate superconductivity research, the pseudogap phase

has been identified as a central piece of the high Tc puzzle.



Supercurrents in the pseudogap
regime of LSCO in YBCO/LSCO/YBCO
junctions

Tal Kirzhner
DIP meeting, Technion, March 19, 2013

http://physics.technion.ac.il/~gkoren/DIP_Tal



“SNS Junctions

* Proximity effect in SNS junctions leads to a supercurrent
(Pairs’ current at zero bias, via Andreev reflections).

* The critical current in SNS junctions (DeGennes):

—_m 8l® g Ty2,-L/8, ~L/&n
° J. = 2ot KT, (1 Tc) e or [(Xe

e Weak
.. Superconductor Normal metal Superconductor
superconductivity

in the metal barrier
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The junctions in the present experiment

* Tri-layer, c-axis Josephson junctions of the SNS type were prepared.

* (10onm YBCO cover) / (10-2onm LSCO) / (20onm YBCO base)
junction

e LSCO with various doping
e 5 um x 5 pm Area
* The I-V curves were measured as function of temperature,
below T, of YBCO (90K) and above T, of LSCO-x (<25K)
in the PG regime of LSCO-x & then the critical current was extracted.
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Results of Tal’s last work - arXiv:1311.2250

e Pairing and the phase diagram of the normal coherence length
$n(T; x) above Te of La, Sr,CuQ, thin films probed by the
Josephson effect

500 - =7
* Rvs T of ajunction with
a 20 nm thick barrier 400 -
of LSCO-o0.07
300 |-
« Shows mostly of the S
YBCO base response, © 200}

Tcis~90o K j |
100 | i BN |

* The junction resistance sl -
(before it becomes SC) O el } i}

is about1 Q S S T I T TR
0 50 100 150 200 250 300

T(K)



" Results — 2

[-V curve at 10 K of a typical

junction with a 20 nm thick
LSCO-o0.07 barrier.

[c ~0.7 mA

The inset shows dI/dV at
40K under 10.7 GHz
microwave irradiation.

The “Shapiro steps’,
showing the AC Josephson
effect, appear as peaks at
spacing's of:

hv

AV =—=20 1V
2e

| (mA)

dl/dV (arb. units)

N 1/op 1 | 1 | VI ' _

1 2 3 4



~Results — 3

* Extract &y from I oc exp[-L/ &y |

 Iovs T [~(T-T.)? near T, ] for junctions with L=12 & 20 nm
& then plot §vs T

* [ decays slowly vs T for x=0.1,
—leads to crossing at 55 K

* Larger I with

thinner barrier
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“Results — 4

» All data of &y(T,x) for x=0.07, 0.1, 0.18 & 0.24 on a co'or map

* T of bulk LSCO vs x

 All data in the PG regime 50
* Long range proximity effect
&ny~4-5nm vs expected 0.1-0.2nm  55-

* Enhanced & atx=0.1
compared to x=0.18 above

55 K (see dashed line) =
Enhanced SC correlations -
Supports the pre-formed pairs

451

scenario in the PG regime, but
at T<<T* (see dotted line)
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- & these are Tal’s Conclusions

* We have measured the normal coherence length of an
underdoped and overdoped LSCO above T, using the
Josephson effect.

* Atx>o.1and T > 55 K the normal coherence length of
underdoped LSCO is higher than that of overdoped
LSCO.

e It is in contrast to the conventional theory of the
proximity effect where the opposite behavior is
expected.

e The results can be explained by the phase fluctuations
scenario, and the presence of pre-formed pairs in the
pseudogap regime.



