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Previous studies on YBCO/SRO/YBCO ramp junctions

• Many papers by the Conductus and Stanford groups, 
1993-1996,  (Char, Antognazza, Geballe…)
- large interface resistance
- ZBCP – zero bias conductance peak
- decreasing ZBCP versus magnetic field

• A study by the Juelich group, 1995 (Doemel, Braginski…)
- Also observed large interface resistance
- resonant tunneling via one or two localized states

At the time, research was more oriented towards obtaining 
good Josephson junctions (with large IcRN etc.), and not 
specifically in the magnetic properties of the junctions



The basic transport process
for E-EF< ∆ in SN junctions is the



Two cases of local and non-local transport 
in NSN and FSF junctions for E-EF<∆:

1. Non magnetic
metal electrodes
(all Andreev channels 
are possible) 

Byers & Platte, PRL 1995
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2.    Fully spin
polarized FM electrodes 
(only the CARE channel 
is possible)

Deutscher & Feinberg, APL 2000

CARE was observed in Al junctions with Fe nano-leads 
by Beckmann et al.,  PRL 93, 197003 (2004) [Karlsruhe]



The basic idea of the present study is:
To look for a CARE process in SNS junctions with a 
ferromagnetic barrier (F). This effect should occur at 
the intersection of the domain walls with the interfaces

As a FM material for this purpose, we chose SrRuO3 (SRO) 
since its domain wall width (~3nm) is of the same order of 
magnitude as the superconducting ξ (~2nm) 
[This is a basic requirement for the CARE process to occur]
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Ramp junction cross-section
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• a-b plane coupling
with the longer coherence length ξ~2nm

• All epitaxial structure 
avoids GBJ, and preserves orientation info.



AFM of a ramp type junction

Base electrode:     Inuslator (50 nm STO)/80nm YBCO
Cover electrode:   gold/80nm YBCO/10-20nm barrier



The ramp morphology of the base electrode (the interface)
the roughness is less than a coherence length
ξ≈2nm (90K phase) or 3nm (60K phase) 

G. Koren & N. Levy, Europhys. Lett. 59, 121 (2002)



First, in order to check 
the quality of our 
fabrication process, we 
prepared “shorts” –
junctions with no barrier
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We obtained Jc(77K) of 
about one million A/cm2.
This is considered  
satisfactory, in view of 
the complexity of the 
multi-step fabrication 
process



A SrRuO3 film (the barrier)

• Para- to ferromagnetic-transition at a Tc of about 150K
• Similar to the SRO films of Antognazza et al,  APL 63, 1005 (1993)
• The expected Ohmic RN(4K) of a typical junction ~0.01Ω only!

0 50 100 150 200 250 300
0

100

200

300

400

500

Laser ablated film of
SrRuO

3
 on (100) SrTiO

3

ρ 
(µ
Ω

 c
m

)

T (K)



Typical Resistance versus Temperature

The R(4K) values spread over 10-1000Ω -
and this can not be due to the Ohmic resistance of the barrier!
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• Scattering by magnetic states and pair breaking in the barrier

• Imperfection of the interfaces (defects, resist residues, etc.)

• Spread of the CARE resistances in different junctions due to a
different number of magnetic domains in the barrier

Possible explanations for the large spread and 
high values of normal resistance in our junctions
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SRO

Many domains – a low CARE resistance (low R)
A single domain – no Andreev transport (high R)



Spread in the conductance of 8 junctions on a wafer
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Conductance results with ZBCP and bound states
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Magnetic field shifting of  a bound state
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• Thus our junctions behave as classical SF junctions

• Shifting of the peaks and the asymmetry in SF junctions were 
predicted by P. Tedrow and R. Meservey [Phys. Rev. B 7, 318 (1973)]  



Magnetic field peak splitting 
in the conductance of SF junctions

P. Tedrow and R. Meservey. 
Phys. Rev. B 7, 318 (1973)

• The expected shift for ±H is     
2µH/∆ for SF junctions, and 
4µH/2∆ for SFS junctions. 

• We measured a shift of 
~1.2mV at ± 5T, where the 
4µH value is 1.28meV.
Thus for a bound state 
energy of ∆1 and 
4µH/2∆1=1.2mV one finds 
2∆1~1 in units of ∆. This
yields ∆1~0.5∆~10meV, 
in agreement with our data

• Thus our junctions behave as 
classical SF junctions
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The field dependence of the ZBCP and the G(V=0)

This data is 
consistent
with the 
CARE
mechanism

But not with 
the detailed 
results of the 
Anderson-
Appelbaum 
(AA) theory
of scattering
by magnetic
impurities
(PRB 5, 544 
1972)

AA 
theory



And more G vs V (H) and ZBCP height vs H 

The ZBCP
height for
ZFC is larger 
than after
field cycling
to 8T and 
back to 0T

There are
more 
domains at
ZFC, thus
a higher 
CARE
conductance

-15 -10 -5 0 5 10 15

1.00

1.05

1.10

1.15

1.20

1.25

0 2 4 6 8
0.05

0.10

0.15

0.20 0T
 1T
 2T
 3T
 4T
 5T
 6T
 7T
 8T
 0T

EJ769, 12 nm SRO
J8 at 4K

N
or

m
al

iz
ed

 d
I/d

V
 (

a.
u.

)

V (mV)

F

SS

F

SSZFC

Z
B

C
P

 h
ei

gh
t

H (T)



What is the expected field dependence of the ZBCP height 
[G(V=0)-GB(V=0)] due to CARE ? 

• No CARE calculation 
is presently available

• The closest we found 
is of the node ZBCP 
height by Tanaka et 
al. (simple Andreev in 
a d-wave HTSC, not 
specifically CARE)

•….and this behavior is very similar to our data in SFS junctions
maybe because both are due to Andreev scattering

• Atomic roughness of the interface can explain antinode ABS
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However, in SF (YBCO/SRO) junctions we find:

The decay vs. H 
of the ZBCP 
height is closer 
to the AA theory 
(Anderson-
Appelbaum) 
of magnetic 
scattering

This is possibly 
due to the larger 
SRO electrode, 
which has a 
higher magnetic 
order. As a result 
– more scattering 
events occur

-6 -4 -2 0 2 4 6 8

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

0 1 2 3 4 5 6

0.000

0.005

0.010

0.015
 0T
 0.1T
 0.5T
 1T
 2T
 4T
 6T
 0T

SF100, SF junction
J3 at 4K

N
or

m
al

iz
ed

 d
I/d

V
 (

a.
u.

)

V (mV)

ZFC

 AA theory
 Exponential

Z
B

C
P

 h
ei

gh
t

H (T)



And a note before the conclusions….
Flux flow effect in junctions with a critical current

Broader
I-V curves
versus H
due to FF

We did
not deal 
with this
kind of
Junctions 
here
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Conclusions

• In many of our SFS junctions a ZBCP was found
• The ZFC ZBCP is higher than the ZBCP after field cycling 

– indicating a CARE contribution to G
• The ZBCP height was found to decrease linearly with 

increasing magnetic fields – this is consistent with CARE 
but not with scattering by magnetic states in the barrier

• Bound states in our junctions were found to shift with 
magnetic field in agreement with the classical theory of 
SFS junctions.

*P. Aronov & G. Koren, Phys. Rev. B 72, 184515 (2005). 



Scanning tunneling spectroscopy in SF bilayers
SRO on a-axis YBCO

(Bilayers prepared at Technion and measured in HUJI)
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250 nm

• OP (mini-gaps) induced in F only along narrow elongated areas, a few nm wide.

• On other areas, no induced OP is detected (for SRO layers thicker than 8 nm).

SrRuO3/(100)YBCO  proximity bilayer films

300 nm

18 nm thick SRO
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• Constant and continuous gap along the line.

• Width of gapped area less than 8 nm.

• Outside this area – Ohmic characteristics.  
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What is the origin of the local long-range                
penetration depth or proximity effect?

We propose CARE again

SC

F

W < ξS

domain wall

•The distance between the local gaped regions (the lines in the STM 
image) corresponds to the magnetic domain structure of the SRO layer
• And this is consistent with CARE
• Asulin, Y. Ofer, G. Koren & O. Millo, 

Phys. Rev. B 74, 092501 (2006).



Flux flow resistivity anisotropy in the instability 
regime in the a-b plane of epitaxial YBCO thin films

• In the instability regime, flux pinning is negligible.
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• Larkin and Ovchinikov found that in this regime:

• Where I is the current, V is the voltage,
R1, and R2 are the flux flow resistances (FFR),
and V* is a critical voltage.

Due to the d-wave order parameter in the HTSC, the low ex. node
quasiparticles density on the FS is higher than that of the antinode.
Thus the FFR should also be anisotropic with larger node values.



0.12×12×100 µm3 microbridges on wafer & I-V curves
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The FFRs versus magnetic field
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And another one
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The node - antinode anisotropy
[ρ(node) - ρ(antinode)]/ [ρ(node) + ρ(antinode)]
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The critical vortex velocity derived from V* 
V* = |vϕϕϕϕ* ×××× B| L
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Conclusions

• A small anisotropy of ~10% is observed in the FFR 
and v*ϕ between the node and antinode orientations.

• A serious quantitative theoretical model is needed 
for the description of the observed effect.

• B. Kalisky, P. Aronov, G. Koren, A. Shaulov, Y. Yeshurun
and R. P. Huebener, Phys. Rev. Lett. 97 , 067003 (2006) 


