

Nov. 21, 2010 Observation of two Andreev-like energy scales in LSCO S-N and S-N-S junctions

G. Koren Department of Physics Technion - Israel Institute of Technology Haifa, Israel

Outline

- Andreev spectroscopy: background and previous conductance results
- Ramp-type junctions: LSCOx-LSCO35 (0.10<x<0.18) SN and SNS junctions
- Conductance results & Phase diagram
- Possible origin of the Δ_2 Andreev-like energy scale

Transport in SN junctions below the gap is via the Andreev scattering effect

Point contact spectroscopy on LSCO single crystals

Conductance at 4.2K

Deutscher, Achsaf, Goldschmidt & Revcolevschi Physica C, **282**, 140 (1997)

Gonneli et al. Eur. Phys. J. B**22**, 411 (2001)

Ramp-type junction cross-section

- Base LSCOx; Barrier LSCO35; Cover LSCOx Note: can't be done vs x with YBCO unless doped barrier
- All epitaxial structure (Laser ablation deposition, deep UV photolithography, and ion beam milling) avoids GBJ, and preserves structural orientation.
- *a-b* plane coupling
 with the longer coherence length ξ~4nm

AFM of a ramp type junction

Base electrode:insulator (55 nm STO)/77nm LSCOx - SCover electrode:gold/77nm LSCOx/33nm barrier LSCO35 - N

Resistance vs. Temperature of LSCO10-LSCO35-LSCO10 junction

Conductance spectra of LSCO10-LSCO35-LSCO10 junctions

Conductance spectra of LSCO10-LSCO35-LSCO10 junctions versus field H (& T)

 Δ_2 is suppressed with H faster than Δ_1 (will show better data later)

Conductance spectrum of LSCO18 – LSCO35 – LSCO18 junction

Main contribution from Δ_1 – very transparent! Δ_2 - tunneling

Conductance spectra of LSCO18 – LSCO35 – LSCO18 junction versus temperature

 $\Delta_1 \& \Delta_2$ behave like energy gaps

$$\Delta_2(T) = \Delta_2(0) \sqrt{(T_c - T) / T_c} \quad fit$$

Conductance spectra of LSCO15 – LSCO35 – LSCO15 junction

Conductance spectra of LSCO15 – LSCO35 – LSCO15 versus H

The phase diagram of LSCO

STM – Yuli et al., ARPES – Yohsida et al., Shi et al., Terashima et al.

1 - What is the origin of Δ_2 ?

 Δ_2 roughly follows the T_c dome – so that it should be related to superconductivity

• Can be due to a background "step down" at

 $eV = \hbar \omega - \Delta_1$ where $\hbar \omega$ is any excitation such as phonons, bosons, holons etc. If $\Delta_2 = eV$ the excitation $\hbar \omega$ can not be constant versus doping (?) [Kirtley, inelastic transport, PRB **47**,11379 (1993)]

Achsaf & Deutscher Coherence in HTSC 1996 (LSCO12, 4.2K) – attributed high V peaks to Phonons emission thresholds

2- What is the origin of Δ_2 ?

Another possibility is that Δ₂ is connected with the Van Hove singularity (VHS) of 2D LSCO.
Using a tt'J model for a d-wave SC for SIS junctions, Fedro & Koelling, PRB 47, 14342 (1993) got:

Symmetric spectrum (But tt't"J gives an asymmetric result)

Also, theory predicts that the gap vs doping is monotonous – unlike our results

3 - What is the origin of Δ_2 ?

PHYSICAL REVIEW B 73, 024510 (2006)

Y. Wang & N. P. Ong PRB **73**, 24510 (2006)→

- Similarity to the Nernst effect at T > T_c
- Possibly the same origin: 2K + current = breaking pairs correlations, equivalent to T > T_c
- Hence origin in SCfluctuations or preformed pairs, but scaling is with SC dome, not the pseudogap

FIG. 20. The phase diagram of LSCO showing the Nernst region between T_c and T_{onset} (numbers on the contour curves indicate the value of the Nernst coefficient ν in nV/KT). The curve of T_{onset} vs x has end points at x=0.03 and x=0.26 and peaks conspicuously near 0.10. The dashed line is T^* estimated from heat-capacity measurements.

4 - What is the origin of Δ_2 ?

- And finally, why shouldn't Δ_2 be an Andreev gap?
- All the BTK fits for a d-wave SC look OK.
- But this implies the existence of pairs with a large condensation energy of Δ_2
- -If so, theory of Δ_2 should account for the

fact that
$$\frac{\Delta_1(x=0.15)}{\Delta_1(x=0.10)} \approx 1$$
 while $\frac{\Delta_2(x=0.15)}{\Delta_2(x=0.10)} \approx 2$

- Well, theoretical modeling is certainly needed here.

Some S-N results of LSCO10-35 RJ #1

and more S-N results of LSCO10-35 RJ #2

Large "gap" values due to lead resistance thus needs to subtract it

Cover electrode mask – leads resistance in S-N RJ

Calibrated S-N results of LSCO10-35 RJ #1

This should be compared with $2\Delta_i$ of 2, 24-30 & 70-88 mV (SNS)

Conclusions

- For reliable energy scales, have to use S-N-S rather than S-N junctions
- Both $\Delta_1 \& \Delta_2$ mimic the SC dome vs doping
- Δ_1 is the superconducting energy gap
- Δ_2 can be a new Andreev-like energy scale
- Theoretical modeling of Δ_2 is needed