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Abstract

This thesis concentrates on two di�erent areas of magnetism that have been of high pro�le in the past
few years: the kagom�e lattice, which belongs to a branch of magnetism known as frustrated magnets, and the
cuprates, which are a derivative of the research of superconductivity. Though several investigative techniques
are utilized in this work, the chief experimental method is the muon spin rotation/relaxation (�SR). I therefore
devote chapters 1 and 2 to �SR, using the �rst to review the experimental setup and traditional means of
interpreting the data, and the second to present my personal contribution to the understanding of muon spin
relaxation, based on three of my publications[1, 2, 3]. Equipped with the knowledge of the �SR technique, I
move on to present the experiments. In chapter 3 I discuss the physics of localized moments on the highly
degenerate kagom�e lattice, a fascinating subject from both a theoretical and experimental point of view. As
we shall see, this subject involves new physical concepts, and systems with kagom�e lattice structure show very
unusual behavior in a variety of measurements. Here I present data on SrCr8�xGa4+xO19 and KR3(OH)6(SO4)2
(R=Cr or Fe) and attempt to account for some of the observed behavior with new models. However, a complete
picture of this system requires further research. This chapter too is based on three published papers [4, 5, 6] as
well as a fourth one which is currently in preparation; my work on the kagom�e lattice was also orally presented
in the international �SR conference in Maui. Next I go on to present the subject of antiferromagnetism in the
two cuprates systems known as the\in�nite layers" (Ca0:86Sr0:14CuO2) and \in�nite chains" (R2CuO3 R=Ca
or Sr). The initial motivation for the investigation of these systems was the simplicity of their crystal structure
and their resemblance to the building blocks of high Tc superconductors. However, throughout the research it
became evident that the in�nite chains are interesting on their own merit. I therefore discuss these subjects in
two di�erent chapters, 4 and 5, and concentrate mainly on the inuence of dimensionality on their magnetic
properties. Again, these chapters are based on two published papers [7, 8] and the work on the \in�nite chain"
was also orally presented in the international conference on magnetism in Warsaw (ICM'94). As in the case of
the kagom�e lattice, the research on the in�nite chains is still in progress in my group, and both topics remain
exciting and active areas of research throughout the solid state community.
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1 The �SR Technique

The positive muon spin rotation/relaxation technique,
denoted here as �SR, is based on the direct measure-
ment of the time evolution of a positive muon (�+) spin
polarization P(t) in a sample. This evolution depends
on the magnetic �eld experienced by the �+ and thus
provides information on the magnetic environment in
the vicinity of the muon. This technique allows us to
detect static magnetic �elds as small as a fraction of
a Gauss and as large as several Tesla. We can also
detect uctuating �elds on a time scale between 10�3

and 10�6 sec. The biggest advantage of this technique
is that there is no need for a �ne tuning of the exper-
imental apparatus (as in techniques which depend on
resonance or scattering). The weakness of �SR is in
the lack of direct determination of the muon site in
the sample which limits the amount of information we
can obtain on the magnetic environment. This chapter
deals with both the experimental method and the infor-
mation we can obtain about the magnetic environment
using the �SR.

1.1 Experimental Setup

The measurement of the muon spin polarization is made
possible due to three properties of the muon particle:

(I) Muons produced from pion decay are polarized.
(II) The muon decay into a positron and two neu-

trinos, according to

�+ �! e+ + �e + ��

with the positrons emerging, for the most part, with
high enough energy to travel a substantial distance be-
fore annihilating.

(III) The distribution of decayed positrons is not
spherically symmetric, but rather depends on the muon
polarization. The angular distribution of the muon de-
cay probability with respect to the initial muon po-
larization is displayed in Fig. 1. In this �gure the ra-
dial distance represents the relative probability that a
positron is emitted in a given direction at some energy.
By measuring the change in the angular distribution of
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positrons as a function of time, the muon polarization
can be reconstructed.

The ways in which we produce the muons, handle
the sample and external �eld, detect the positron, and
reconstruct the polarization are described below. Nat-
urally, we emphasize the aspects of �SR relevant to the
experiments presented in subsequent chapters.

Figure 1: Angular distribution of positrons from muon
decay, integrated over energy.

1.1.1 Production of Polarized Muons

Our experiments were conducted at the TRIUMF �SR
facility (Vancouver B.C.). At the heart of this facil-
ity is a cyclotron, where protons are accelerated to
500 MeV and then made hit a production target (usu-
ally Graphite or Beryllium). At the target, pions are
produced through the reactions of the projectile proton
with the target's nuclei. Positive muons are produced
from the pions (with pion lifetime �� = 26 nsec) ac-
cording to

�+ �! �+ + �� :

Since only left handed neutrinos exist, and because pi-
ons have zero spin, the muons are created with their
spin polarized ( ~s� antiparallel to ~p�, as shown in the
inset of Fig. 2). However, the pion decay is isotropic,
and, in principle, if the pions decay in ight, the beam
can contain fast muons with down spin (emitted in the
direction of pion velocity), or slow muons with up spin
(emitted in the direction opposite to the pion veloc-
ity). If, on the other hand, the pions decay at rest, the
muons produced in the direction of the beam pipe are
fully polarized. Therefore, we select only those muons
produced by pions which decay at rest near the target
surface (~p� = 0). These muons are known as \surface
muons".

Figure 2 shows a schematic diagram of a muon
beamline. After the production of surface muons, dipole
magnets serve to guide the beam to the experiment
area and select the muon momentum. There are also
tens of quadrupole magnets on the line employed to fo-
cus the beam. A set of slits controls the rate at which

muons arrive into the experimental area. We usually
ensure that no more than 30000 muons per second ar-
rive at the apparatus, thus keeping the average time
between two muons 33 �sec (15��c). Near the experi-
mental area, a DC separator (crossed electric and mag-
netic �elds with E=B = v�) serves to reject positrons
which contaminate the beam. By applying a large mag-
netic �eld B, and scaling the electric �eld E appropri-
ately, we can also rotate the muon spin while selecting
the same muon velocity.

Figure 2: Production of polarized surface muon.

At the end of the beam pipe we place the refriger-
ator (cryostat) and surround it with positron counters
and coils (see Fig. 3). The refrigerator (cryostat) is
�tted with thin windows to allow the beam to access
the sample. The positron counters and magnetic �eld
are arranged in one of two possible con�gurations: lon-
gitudinal or transverse, depending on the information
we are trying to obtain from our measurements.

Figure 3: Top view of schematic layout of a �SR ap-
paratus.

1.1.2 The Longitudinal Field Con�guration

The Longitudinal Field (LF) [including the Zero Field
(ZF)] experimental con�guration is used to measure
the rate in which the muon loses its polarization in the
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sample as a function of a magnetic �eld applied along
the initial muon spin direction (HL). This setup is
based on the fact that at t = 0 positrons are preferen-
tially emitted in the forward direction, while at t!1,
when the muons have lost their polarization, there is
no di�erence between the forward and backward di-
rections. We therefore place two positron counters as
shown in Fig. 4a. The backward (B) counter has a
small hole in it which allows the incoming muons to
reach the sample (S). The foreword (F ) counter has
a larger hole in it which allows access to the cryogen-
ics. Between the B counter and the sample we place
a muon counter (M ) with a very thin (0.025 cm) scin-
tillator (in order not to stop the beam). This counter
starts the clock every time a muon enters the sample.

1.1.3 The Transverse Field Con�guration

The transverse �eld (TF) experimental con�guration is
used to measure both the frequency of muon precession
and the rate in which it loses phase coherence when the
�eld is applied perpendicularly to the initial muon spin
direction (HT ). There are two ways to create this con-
�guration. I) The counters are set up in the same way
as in the LF con�guration, but the �eld is applied in a
direction perpendicular to the beam. This con�gura-
tion is shown in Fig. 4b. II) The muon spin is rotated
by the separators and the �eld is applied parallel to
the beam. In the latter con�guration, the counters are
placed above (U) and below (D) (or on the left and
right sides) of the specimen as shown in Fig. 4c.

The signals from the counters are transferred to a
counting room where we place our electronic gates.

1.1.4 Electronics

In our measurements we are interested in the time evo-
lution of the muon polarization, rather than its equilib-
rium value. We therefore require our electronic system
to record the time in which a positron was detected. In
addition, we have to ensure that the positrons we de-
tect come from a muon that entered the sample at t =
0. This is the most common case, although sometimes
a di�erent order of event can take place: a bunch of
muons can arrive together giving rise to several positron
counts at di�erent times; a muon can decay in the area
between the separator and the experimental appara-
tus producing a stray positron that can be mistakenly
identi�ed with a muon which arrived earlier. We can
discriminate against these kind of events by opening a
data gate (Dg =\truth") for a time tg (tg � ��) with
the arrival of a muon, and then requiring that:

1. There is no other muon before a positron.

2. There are no two (or more) positrons within tg.

In practice we replace condition 1 with the more
restrictive demand:

Figure 4: (a) Longitudinal (and Zero) �eld geometry,
(b) and (c) are Transverse �eld geometries.

1. There are no two muons within tg .

These conditions are achieved by the following steps:

1. When a muon enters the sample, a Pile-up gate
(Pg) is set to \false", a Busy gate (Bg) is set to
\truth", and a Data gate (Dg) is set to \truth",
all for the next tg �sec.

2. If a second muon enters the sample within these
tg �sec, Pg is ipped and stays that way for the
rest of the time tg.

3. If Bg =\false", (only before a fresh muon enters
the sample), the clock is reset and the number of
positrons detected (n) in the computer is set to
zero.

4. A positron event (e =\truth") is accepted, namely,
its time recorded and n = n + 1, only if eg =
�PgDge =\truth".

5. The event is registered in a histogram provided
that only one positron is detected (n = 1) and
P =\false" when the clock is reset.
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Figure 5: Electronic chart

A diagram of the electronics is shown in Fig. 5.
In the histograms the information is kept in the

form of the number of counts per bin, where the time
each bin represents depends on the desired time res-
olution. The limitation on the time resolution comes
from the electronics dead time of 0.25 nsec, and by
the allowed computer memory per histogram (see also
discussion in section 2.1).

The rejection procedure described above leaves out
the possibility that a muon enters the sample, does not
decay within tg, and a stray positron (from a di�erent
source) is detected. This kind of event is considered a
background event. We evaluate the rate of background
events by imposing a delay time (td) on the positron
pulse (usually td = 250 nsec). Therefore, the time
it takes for a positron pulse to reach the electronics
is longer than the time it takes for the muon pulse.
Thus, a stray e+ arriving at most td before a �+, with
no other e+ detected after the �+ (within tg) will be
registered in the histograms at t < 0. These positrons
allow us to estimate the rate of background events. It is
easy to know where t = 0 is in the histogram, since the
number of positrons registered at t > 0 is dramatically
larger than at t < 0.

1.1.5 The Sample

The required sample size for a �SR experiment is deter-
mined by the stopping range of the muon in the mea-
sured compound. Typical surface-muon stopping range
in matter is � 170 mg/cm2, so 0.2 mm thick samples
are usually large enough. For comparison, this size is
smaller than that needed for neutron scattering mea-

surements, which require samples the size of a human
�nger, but larger than that needed for optical mea-
surements, which can be made on thin �lms. However,
the �SR technique is not inherently limited by sample
size: a muon could give a signal o� an object as mi-
nuscule as a single magnetic molecule. The problem
lies in our ability to attach the muon to such a small
object. This can only be achieved by slowing down the
muons (while keeping their polarization) before they
enter the sample. Currently no such slow muon beams
are available, and an e�ort to produce them is taking
place in all major �SR facilities in the world.

The desired cross section of the sample is deter-
mined by our ability to focus the beam. Usually a
cross section of 1 cm2 is large enough to have more
than 90% of the muons stop in the sample rather than
in the sample holder or the walls of the refrigerator.
Even so, some of the muons do not stop in the sample.
Therefore, we place the sample on a backing material
in which the muon behavior is in contrast to its ex-
pected behavior in the sample. For all the relaxation
experiments presented here we used aluminumbacking
since muons do not depolarize in this compound, and
for all the precession experiments we used rust since
the muons depolarize very quickly in this compound
and therefore have no precession signal.

1.1.6 Cryogenics

For measurements within the temperature range of 2 K
to 300 K, the samples are mounted in a gas ow cryo-
stat. In this cryostat liquid helium (at 4.2 K) is made
to expand through small holes (di�user) between an
area where it is in liquid phase at high pressure to an
area where it is in a gas phase at low pressure. The
expansion of the liquid into gas provides the cooling
power. The cooled gas blows on the sample thus pro-
viding a very uniform temperature.

The �ne temperature control is made with two heaters:
one wrapped around the di�user and one around the
sample holder. We try to generate as little heat as pos-
sible with the sample heater (by balancing the temper-
ature �rst with the di�user heater) in order to obtain
better temperature homogeneity on the sample.

The experiments below 2 K are done using a 3He/4He
Dilution Refrigerator (DR). In this refrigerator 3He is
evaporated from a mixture of 3He and 4He. Since the
concentration of 3He in the mixture is non-zero even
at T = 0+ the DR can, in principle, provide cooling
power even at zero temperature. The practical limi-
tation on the temperature comes from heat leaks and
vibrations of the refrigerator. The lowest temperature
we achieved with our DR is slightly above 20 mK. The
�ne temperature tuning in the dilution refrigerator is
also done with a heater. The cooling power is trans-
ferred to the sample by mechanical contact. This fact
could hinder us from achieving uniform temperature
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when we use samples with low heat conductivity or
powder samples. In the case of powder samples, the
heat conductivity can be improved by mixing the sam-
ple with a non-magnetic sticky grease (see chapter 3.3).

The temperature in both cases is measured with
calibrated carbon resistors, and its stability is main-
tained with an automatic temperature controller which
increases or decreases the amount of power going into
the heater according to the deviation of the real sample
temperature from the desired one. Usually the temper-
ature stability is better than 1%.

1.1.7 Data Analysis

From our electronic system we obtain, for each de-
tector, a histogram of detected positrons as a func-
tion of the time di�erence between the muon arrival
at the sample and its decay. The number of detected
positrons in a histogram corresponding, for example,
to the back (B) counter is given by:

NB(t) = NB
0 [BB + exp(�t=��) (1 + A0P (t))] (1)

where BB is the time-independent background, P (t) is
the muon polarization function and A0 is the asymme-
try.

The constant backgrounds (NB
0 BB ; and NF

0 BF ),
which are measured during times where no muons are
in the sample (see 1.1.4), are �rst subtracted to form:

B(t) = NB(t) �NB
0 BB (2)

F (t) = NF (t) �NF
0 FF : (3)

The experimental (raw) asymmetry Ar(t) is then
de�ned as:

Ar(t) =
B(t) � F (t)

B(t) + F (t)
(4)

=
(1� �) + (1 + �)AB

0 P (t)

(1 + �) + (1� �)AB
0 P (t)

(5)

where � is the ratio of the raw count rates NF
0 =N

B
0 .

Equation (5) can be inverted to give the corrected asym-
metry:

A(t) = AB
0 P (t) =

(�� 1) + (�+ 1)Ar(t)

(�+ 1) + (�� 1)Ar(t)
(6)

which equals Ar(t) when � = 1. In Fig. 6(a) we show
a raw spectrum from one counter and in Fig. 6(b) we
present the corrected asymmetry corresponding to the
raw asymmetry of that counter (and its corresponding
counter 180� opposed to it).

The quantity � in Eq. 5 reects the ratio of e�ective
solid angles of the di�erent counters and is independent
of the magnetic interaction of the muon with the tar-
get. Although it could, in principle, be calculated from
the experimental geometry, in practice, � is extracted

from the data empirically. In the TF con�guration � is
chosen such that the oscillations are centered around
zero as in Fig. 6b. In the LF con�guration, � is se-
lected such that limt!1 P (t) = 0 in the most strongly
relaxing spectrum for a given sample. Since � is ex-
tremely sensitive and can be a�ected by the applied
�eld, by slight changes in the sample position, and by
the position of the proton beam on the production tar-
get, we leave � as a free parameter with less than 10%
freedom, when �tting the asymmetry.

Figure 6: (a) Raw spectrum. (b) Corrected asymmetry.

We now turn to discuss the time dependence of
muon spin polarization.

1.2 Muon Spin Rotation

The fully polarized muon, after entering the sample,
comes to rest in a magnetic environment. Since the
mechanism which stops the muon is much stronger
than any magnetic interaction, the muon maintains its
polarization while losing its kinetic energy. However,
at the site, the muon spin starts to evolve in the lo-
cal �eld B. When all the muons experience a unique
magnetic �eld in their site, the polarization along the
ẑ direction [Gz(t)] is given by

Gz(t) = Re
�
cos2 � + sin2 �ei!(t�t0)

�
(7)

where � is the angle between the initial muon spin and
the local �eld direction (see Fig. 7), ! = mB, and t0
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is the muon arrival time.[9] We chose to present this
equation in a complex form for reasons which will be-
come clear in section 2.4. When taking the powder
average of Eq. 7 we get

Gz(t) =
1

3
+
2

3
cos(!t) (8)

where we de�ne t0 = 0.

Figure 7: The ẑ component of the muon polarization
in the presence of a constant �eld

In real systems, however, the local �eld experienced
by di�erent muons is rarely unique. It can vary from
site to site as a result of nuclear moments, impurities,
or non-homogeneous freezing of the ionic moments. It
could also vary in time, at a given site, due to dynami-
cal uctuations. These two e�ects cause the relaxation
of the oscillating amplitude (2=3) or the average polar-
ization (1=3).

The relaxation of the 2=3 component results from
both dynamical uctuations and spatial inhomogeneities.
If we ignore momentarily the dynamical uctuations,
and assume that the frequency of oscillations, instead
of being unique, is distributed around a mean !0 with
a distribution �(! � !0), then

Gz(t) =
1

3
+
2

3

Z
d!�(! � !0) cos(!t): (9)

It is easy to see that if � is a Gaussian/Lorentzian the
2=3 component relaxes with a Gaussian/exponential
line shape. Dynamical uctuation could only add ad-
ditional sources of relaxation. However, without the
help of echo techniques (as in NMR) it is hard to dis-
tinguish between the two sources of relaxation of the
2=3 component.

On the other hand the spatial inhomogeneity of the
�eld can not cause relaxation of the 1=3 component
since in the powder there are always muons (1=3 of the
ensemble) with their polarization pointing along the
local �eld. The polarization of these muons is constant
unless the �eld changes with time. Therefore, the re-
laxation of the 1=3 component could result only from

dynamical uctuations. We can isolate this e�ect when
we have a single crystal, by orienting the crystal in such
a way that � = 0 as described in 2.3. We discuss the
dynamical relaxation of the muon spin in detail in the
next section and in chapter 2.

For the time being we assume for data analysis the
phenomenological form

Gz(t) =
1

3
exp(�t=T1) (10)

+
2

3
exp(�[t=TG]2 � [t=T1]) cos(2�ft):

where
f = !=2�: (11)

The combination of a linear and a quadratic terms in
t in the relaxation of the 2=3 component (also known
as T2 relaxation) is supposed to account for both the
static and dynamic relaxation sources. It should be
pointed out that the particular choice of the relaxation
function in data analysis will a�ect the values of T1 and
TG but will only slightly a�ect the values of ! which is
our primary parameter of interest.

1.3 Traditional Theory of Muon Spin
Relaxation

The 100% polarization of the muons in the sample is
not the equilibrium ratio of up spin to down spin and
the muon gradually depolarizes in order to reach the
equilibrium ratio. The time dependence of this depo-
larization is derived in this section using the strong
collision model. In this model we assumed that the
�eld experienced by the muon changes discontinuously
(hops) at times t1 < ::: < tn < t (t = tn+1) with some
average frequency �. Between hops, the polarization
evolves as if the �eld were static.[10] We demonstrate
the application of this model to a �eld distribution
given by

�(B) =
3mp
2��2

exp

 
�

2
�[B�Bs]2

2�2

!
(12)

where Bs is some average �eld which is either applied
externally or caused by magnetic order, and �=m is
the root mean square (RMS) of the �eld distribution.

The static relaxation function g0(t) is obtained by
convolutingGz(t) fromEq. 7 with the �eld distribution
�(B). For example, if Bs = 0 we obtain

g0(t) =

Z
d3B�(B)Gz(t) (13)

=
1

3
+
2

3
(1��2t2) exp(�1

2
�2t2):

This relaxation function is known as the static Kubo-
Toyabe.
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If we now take the �eld hops into account, then the
polarization at the measured time t contains contribu-
tions from muons that experience no hops at all, those
that experience one hop, two hops and so on. The
probability that the �eld stays unchanged during the
time ti+1 � ti is given by �(ti+1 � ti). For Markovian
processes we have

�(t) = e��t: (14)

It should be pointed out that this type of dynami-
cal process (Markovian) leads to an exponential decay
of the time-dependent �eld-�eld correlation function
hB(t) �B(0)i.

The averaged polarization is obtained by taking the
sum over all possible number of hops, weighted by their
probability.[10] Since the probability density for n hops
between [t1; t1 + dt1]; :::; [tn; tn + dtn] is

nY
i=1

exp[��(ti � ti�1)]�dti = �n exp(��t)
nY
i=1

dti

we get

Pz(t) = e��t[g0(t) + �

Z t

0

dt1g1(t1; t)

+�2
Z t

0

dt2

Z t2

0

dt1g2(t1; t2; t) + :::] (15)

where gn(t1; :::; tn; t) is the polarization function given
that the muon hops at t1; :::; tn. If we now assume
that the �elds at di�erent time intervals are uncorre-
lated, and that during each time interval the polariza-
tion propagates according to the static function g0(t)
we have

gn(t1; :::; tn; t) =
n+1Y
i=1

g0(ti � ti�1): (16)

Equation 15 can be further simpli�ed. However, in
most cases we end up using numerical techniques at
some point in order to obtain Pz(t). Therefore we will
not further simplify this equation here (a simple case
where Eq. 15 can be solved analytically is discussed in
section 2.4). We shall present the results graphically
later in chapter 2 where we will compare them with the
relaxation function obtained by other methods.

We refer to the polarization function which is ob-
tained by applying the strong collision model to the
static Kubo-Toyabe as the dynamicalKubo-Toyabe (DKT).
The advantage of the DKT is that it is very practical
for data analysis since it is not limited to a speci�c
range of parameters. In real systems, where the domi-
nant source of relaxation often varies with temperature
between the dynamic and the static, the ability to ac-
count for the muon spin relaxation with a theory which
treats both sources on the same footing, is very useful.

2 A New Look at Muon Spin

Relaxation

The �rst apparent weakness of the traditional muon
spin relaxation formalism and the DKT described in
the previous chapter is that we cannot �nd an analyt-
ical result from which we can easily see the interplay
between the di�erent parameters �, �, and Bs. In ad-
dition, in the strong collision model, the local �eld and
the hop rate are not traced back to the magnetic sys-
tem and cannot be connected easily to other types of
measurements. These problems are dealt with in this
chapter. We start by developing a perturbation the-
ory with which we can treat the problem of muon spin
relaxation more rigorously. Like the DKT, this theory
has its advantages and weaknesses. On one hand, it
leads to an analytical result (AR), but on the other
hand, as usual in perturbation expansion, this result is
limited to a speci�c range of parameters.

After developing the theoretical tools, we use them
to study four di�erent types of relaxation in antifer-
romagnets. In 2.1 we discuss the relaxation when the
local �eld is random, as in an antiferromagnet (AFM)
at temperatures above the N�eel temperature (TN ). In
2.2 we study the relaxation at the critical region (T !
TN ). In this section we also use neutron scattering
measurements of the dynamical uctuation in MnF2
(an AFM) to test our theoretical results. In 2.3 we
discuss the low temperature regime T ! 0 and pre-
dict a possible new kind of relaxation process which is
unique to muons in an AFM. In section 2.4 we describe
muon di�usion in an AFM (using the strong collision
model). Finally, in section 2.5 we give some concluding
remarks.

We write the Hamiltonian describing a muon in a
magnetic environment as

H = Hc � � �B: (17)

where Hc represents the Hamiltonian of the crystal lat-
tice and its electrostatic interaction with the �+, B is
the local �eld at the muon site, and � is the muon
magnetic moment. The local �eld B is generated by
both the local spins Sj and the external �eld Bext.
The �eld B can be written in terms of S� = Sx � iSy,
and Sz as

B� = Bext� +
X
j�0

Aj
��0 � Sj�0 (18)

where the index j of the tensor Aj runs over the neigh-
bors of the muon, and the indices � and �0 represent
+; � and z. The muon magnetic moment in Eq. 17 is
given by

� =
1

2
�hm�

where m is the muon gyromagnetic ratio and � are the
three Pauli matrices. The decomposition of the Hamil-
tonian according to Eq. 17 assumes that the presence of
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the muon does not inuence the magnetic interaction
between the ionic moments. This assumption rests on
the agreement between measurement of magnetic prop-
erties (like order parameter) made by �SR and other
techniques.

In all the cases presented here, the �eld operator B
can be broken into two parts as

B = Bs +Bd(t) (19)

where [Hc;B
s] = 0 and the sample and time average of

Bd(t) is zero. The two �elds Bs and Bd have a simple
interpretation: Bs represents the average static part
of the internal �eld and Bd represents the dynamical
part. In our discussion here, Bs results from either
the external �eld or from the frozen part of the ionic
spins in the sample whileBd stems from the uctuating
part of the ionic spins. We further simplify the problem
by either orienting the external �eld or the sample in
such a way that the static �eld direction will coincide
with the beam direction ẑ which is also the direction
of the initial muon polarization. This con�guration
is known as the longitudinal �eld con�guration (see
section 1.1.2).

In the case where Bd(t) changes on a time scale
much longer than the muon lifetime (the static case),
relaxation occurs due to dephasing since di�erent muons
experience di�erent magnetic �elds and therefore pre-
cess with di�erent frequencies. However, in the static
case not all the muons precess, since some of them re-
side in sites where the local �eld points either parallel
or antiparallel to their initial spin direction. In fact,
when Bs = 0, the relative number of muons experienc-
ing such a �eld is 1=3. These muons do not depolarize
and Pz(t) recovers to 1=3 at t ! 1. This e�ect is
easily seen from Eq. 13. With the application of an ex-
ternal longitudinal �eld (or when a spontaneous �eld
is present) the relative number of muons experiencing
a �eld parallel to their polarization increases and, as a
result, the terminal value of the polarization increases.

In the case where Bd(t) changes on a time scale
much shorter than the muon lifetime (the dynamic
case) relaxation occurs, according to perturbation the-
ory, due to the absorption of energy quanta by the
muon spin Zeeman levels, resulting in a spin ip. In
this case the relaxation depends on the system's spec-
tral density at the muon Larmor frequency

!s = mBs: (20)

A perturbation treatment for dealing with muon
relaxation was developed by McMullen and Zaremba
(MZ) and is reviewed in appendix A.[11] In their nota-
tion the polarization Pz(t) is written as a perturbation
series

Pz(t) = h�z(t)i(0) + h�z(t)i(1) + h�z(t)i(2) (21)

where

h�z(t)i(0) = Pz(0); (22)

h�z(t)i(1) = 0; (23)

h�z(t)i(2) = Pz(0)
�2m
4

Z t

0

d� (t� � )� (24)�
ei!s��+�(� ) + e�i!s���+(� )

�
and where

���0(t
0� t00) = hBd

� (t
0)Bd

�0(t
00)+Bd

�0(t
00)Bd

� (t
0)i0: (25)

In these equations Bd
� = Bd

x� iBd
y , and hi0 is the ther-

mal average with respect to the states of the system in
the absence of the muon. In order to complete the cal-
culation we need to specify the time dependence of the
correlation function �ij(� ). This dependence changes
considerably between the paramagnetic state, the crit-
ical region, and low temperatures and we consider each
region separately.

2.1 The Paramagnetic State (T � TN)

At high temperatures the �eld-�eld correlation func-
tion is expected to drop to zero as time goes by. If
we assume that the dynamic is governed by Markovian
processes, we can write the time dependence of �(� )
as

�+�(� ) = ��+(� ) = 4(�2=2m) exp(��� ) (26)

where �=m is the RMS of the instantaneous �eld dis-
tribution, and � is the inverse correlation time. Using
this expression we notice that Eq. 21 is an expansion
in products of the internal magnetic �eld, which is on
the scale of �, and time, which is on the scale of 1=�.
Therefore, it is an expansion in �=� and is expected to
be a good approximation for �=� < 1. We also expect
Eq. 21 to give an accurate account of the relaxation at
�t < 1 since the nth term in Eq. 21 involves n inte-
grations in time, and its contribution is proportional
to the volume of integration (�t)n. The requirements
on the parameter � prevent us from taking the limits
� ! 0 and t ! 1 simultaneously. Therefore in the
perturbation theory we cannot discuss the static uc-
tuation case at t ! 1 and we do not expect to �nd
the 1=3 recovery in this theory.

If we now write

Pz(t) = Pz(0) exp(��(t)t) (27)

expand Eq. 27 in powers of �, and compare it with
Eq. 21 after the integration, we �nd that

�(t)t =
2�2

(!2s + �2)2
�
[!2s + �2]�t+ [!2s � �2]�

[1� e��t cos(!st)]� 2�!se
��t sin(!st)

	
(28)
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which is our desired analytic result. We can see from
this formulation that in general, the polarization re-
laxes; however some oscillations of frequency !s exist
near �t! 0.

We now examine the behavior of Eq. 28 in three
limits: (I) zero static �eld (!s ! 0), (II) the fast uc-
tuation regime (�t ! 1 and � > �), and (III) early
times (�t! 0 and !st! 0).

(I) In the zero static �eld limit we �nd that Eq. 28
simpli�es to

�(t)t =
2�2

�2
(e��t � 1 + �t): (29)

This relaxation form is equivalent to the well known
Abragam relaxation function for the transverse �eld
con�guration, apart from an overall factor of 2. This
factor is expected since in the longitudinal con�gura-
tion both x and y uctuations contribute to the re-
laxation, whereas in the transverse con�guration only
uctuations in the z direction cause relaxation.

(II) In the fast uctuation limit we �nd

�(t)t =
2�2�

!2s + �2
t (30)

and the relaxation has an exponential shape. The re-
laxation rate � (also known as 1=T1) is simply given
by the Fourier transform of Eq. 26 evaluated at !s.
This demonstrates how the relaxation rate, in the fast
uctuation limit, depends on the spectral density at
the Larmor frequency. In fact in the fast limit, and
when the system is symmetric with respect to the in-
terchange of the x̂ and ŷ axis, it is possible to show
(see appendix A), using Eq. 21, that

1

T1
=

1Z
0

d� cos(!s� )�(� ) = ~�(!s) (31)

The relaxation rate given in Eq. 30 is the same as
the one obtained by the DKT theory in the fast uc-
tuation limit.[10] Since the muon lifetime (2:2 �sec)
restricts the value of t to less than 10 �sec, the fast
limit is valid only for uctuations � � 0:1 �sec�1.

(III) In the early time limit we �nd

�(t)t = �2t2 +O(t3) (32)

producing a Gaussian relaxation. We see that the re-
laxation at early times is independent of both the ex-
ternal longitudinal �eld and the uctuation rate; it de-
pends only on the RMS of the �eld distribution. In
this case the dynamical Kubo-Toyabe and the analyt-
ical results also agree.[10] A typical experiment limits
the time range to t > 10 nsec (see 1.1.4); therefore,
the early time limit materializes only if � � 0:1 nsec�1

and Bs � 1 T.
As mentioned earlier, Eq. 28 is expected to give a

good description of the relaxation for �=� < 1; at the

most we expect Eq. 28 to work for � = �. In Fig. 8a
we present the relaxation obtained in this condition for
several longitudinal �elds [Bs = (!s=m)ẑ]. For com-
parison we also show in Fig. 8b the relaxation obtained
under the same conditions with the DKT as previously
described.

Figure 8: Muon relaxation function in the longitudinal
�eld con�guration obtained in three di�erent models:
(a) the perturbation expansion (Analytical Result), (b)
the dynamical Kubo-Toyabe with a Gaussian �eld dis-
tribution, and (c) Monte Carlo simulations described
in the text. The static longitudinal �eld is given by
Bs = (!s=m)ẑ.

In Fig. 9 we present the polarization at Bs = 0 and
several values of � as obtained from Eq. 28. Again, for
comparison we also show in this �gure the result of the
DKT for the zero �eld case.

Figure 9: Muon relaxation function in zero external
�eld obtained in three di�erent models: (a) the pertur-
bation expansion (Analytical Result), (b) the dynam-
ical Kubo-Toyabe with a Gaussian �eld distribution,
and (c) Monte Carlo simulations described in the text.

In Figs. 8c and 9c we depict the relaxation function
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obtained using Monte Carlo (MC) simulations. The
MC method is based on directly integrating the equa-
tion

dP(t)

dt
= m

�
P(t)� �Bd(t) + Bsẑ

��
(33)

where
P(0) = ẑ:

The �eld B(t) is determined in a cyclic order with two
steps. In the �rst step a �eld Bd is selected randomly
with distribution �(Bd); in the second step a time t is
selected randomly with distribution � _�(t). The �eld
is kept constant during the time t after which we re-
turn to the �rst step. The �nal polarization function
is obtained by averaging over an ensemble of separate
muons. The simulations shown in these �gures were
made using 10000 �ctitious muons in a Gaussian �eld
distribution for Bd (as in Eq. 12) and �(t) = exp(��t)
(as in Eq. 14).

We note that oscillations near �t ! 0 are present
in all three methods, and that the early time behav-
ior has a Gaussian shape independent of !s. In the
DKT and MC we can obtain the relaxation for � < �
as well and clearly see the recovery to 1/3. It is clear
from the �gure that as the uctuations become very
fast, the �eld experienced by the muon is very ine�ec-
tive in depolarizing its spin. In Fig. 10 we compare the
three methods and observe that the DKT resembles
the simulation more closely in a low static �eld, while
the analytical result better describes the simulation in
a high static �eld. We also observe that the AR relaxes
somewhat faster than the DKT function and is harder
to decouple with a longitudinal magnetic �eld. Other-
wise, the three methods yield very similar results even
for values of the expansion parameter �=� approaching
1; in fact, they are probably experimentally indistin-
guishable when we consider the typical resolution of
the �SR technique.

2.2 Critical Region (T ! TN)

In this section we show that the muon 1=T1 in the or-
dered state (T < TN ) of the antiferromagnet MnF2 can
be accounted for by the sum of host spin uctuations
measured by neutron scattering. For this discussion we
�rst adopt Moriya's [12] ideas originally developed for
Nuclear Magnetic Resonance (NMR) and apply them
to the case of a positive muon in this compound. The
starting point is the breaking of the solid spins into two
parts: static and dynamic, namely,

Sj = hSji+ �Sj: (34)

By substituting Eq. 34 into Eq. 18 (taking Bext = 0),
we can relate the static part of the �eld Bs to hSji and
the dynamic Bd part to �Sj. In MnF2 B

s coincides
with the easy ĉ axis and both can be aligned with the
initial polarization.[13]

Figure 10: The analytic result (AR) obtained by the
perturbation expansion compared with the dynami-
cal Kubo-Toyabe (DKT) relaxation function with a
Gaussian �eld distribution, and Monte Carlo (MC)
simulation for several static longitudinal �elds Bs =
(!s=m)ẑ.

The time dependent correlation function de�ned in
Eq. 25 can now be written in terms of the spin corre-
lation according to

���
0 (� ) =

X
jj0��0

Aj
��A

j0

�0�0 hf�Sj�(� ); �Sj
0

�0 (0)gi: (35)

It is customary to introduce the Fourier transform in
space of the spin variable. In MnF2 there is only one
magnetic ion per unit cell, and we can de�ne

Sk = N�1=2X
j

Sj exp(ik �Rj); (36)

where k is a wavevector and N the number of magnetic
ions. Using Eq. 36, the correlation between the jth and
the j0th spins can be expressed as

hf�Sj�(� ); �Sj
0

�0(0)gi = N�1 � (37)X
k

hf�Sk� (� ); �S�k�0 (0)gi exp(�ik � [Rj �Rj0 ]):

Combining equations 31, 35, and 37 we �nd

1=T1 = (1=2N )

Z 1

�1
d� cos(!s� )� (38)X

k

X
��0

D��0 (k)hf�Sk� (� ); �S�k�0 (0)gi:

where

D��0 (k) =
X
jj0��0

Aj
��A

j0

�0�0 exp(�ik � [Rj �Rj0]):
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Most of the contribution to the sum in Eq. 38 is from
k near the staggered magnetization wave vector k0 of
the antiferromagnetic order. We therefore shift the ori-
gin of the Brillouin zone to the point k0, and de�ne
q = k � k0. In the most general case, both longitu-
dinal and transverse uctuations contribute to 1=T1.
However, as we will show, longitudinal uctuations do
not contribute to 1=T1 in the case of MnF2. We there-
fore conclude that in this case D33(q) = 0. Since Aj

is very short range, as a function of j, and since the
correlation function peaks at q = 0 [14], we can approx-
imate D��0(q) in the sum of Eq. 38 as independent of
q for small q. Similar approximations were used by De
Renzi et al. [14] in their work on �SR linewidth in
MnF2 at T > TN .

De�ning the scattering function

S?(q; !) =
Z 1

�1
dt cos(!t)hf�Sq+ (t); �S�q� (0)gi (39)

and using the symmetry ofMnF2 under the interchange
of x and y, we arrive at

1=T1 = D

Z
S?(q; !s)d3q (40)

where D is a constant independent of temperature, and
the sum over q is replaced by an integral.

The temperature dependence of the right hand side
of Eq. 40 enters in two places: one is the temperature
dependence of the scattering function S?(q; !), and
the other is the temperature dependence of the static
local �eld !s.

�SR measurements in MnF2 were performed by Ue-
mura et al., and are fully described in Ref. [13]. They
used two experimental con�gurations in zero external
�eld: (a) the transverse con�guration (TC) in which
the initial muon polarization was perpendicular to the
ĉ axis and (b) the longitudinal con�guration (LC) in
which the initial polarization was parallel to ĉ. In TC
they measured the precession frequency of the muon
moment in the static local �eld at T < TN , and thus
obtained !s(T ). Two frequencies were found in the
�SR spectra and assigned to two di�erent muon sites.
In LC they measured the relaxation rate of the muon
polarization in temperatures both above and below TN .
Here again two relaxation time scales were observed.
The fast relaxation was attributed to muons at the
high �eld site. We are concerned here only with the
spin lattice relaxation of muons in the site with the
higher �eld since the data is less scarce. In Fig. 11 we
show the fast 1=T1 as a function of temperature.[13]
The relaxation rate of the muon at the N�eel tempera-
ture is � 14 �sec�1; the precession frequency at T ! 0
in the TC is !s = 2��1.3 GHz. If we make the ap-
proximation � � !s(0) we �nd (using Eq. 30) �=� �
1=!sT1 � 10�3, and can safely say that Eq. 31 is valid
in this case. It is also obvious from the �gure that at

temperatures higher than the N�eel temperature 1=T1
is independent of T. This is clear evidence that 1=T1 is
independent of the longitudinal spin uctuation, since
these uctuations are known to undergo critical slowing
down as discussed in.[13, 15] The same conclusion was
drawn from the study of De Renzi et al. at T > TN .[14]

Figure 11: �SR relaxation rate measurements in MnF2,
compared with model calculation and power law as de-
scribed in the text.

Schulhof et al. [15] measured the scattering func-
tion S?(q; !) in MnF2 near TN by neutron scatting.
They showed that near TN , S?(q; !) could be approx-
imated by

S?(q; !) / 1

�2? + q�2

�
�?

�2? + (! � !0)2
(41)

+
�?

�2? + (! + !0)2

�
+ O((!s=T )

2)

where !0 and �? are functions of the temperature and
are given by

!0(T; q) = a0(T ) + b0(T )(q
�)2;

�?(T; q) = a?(T ) + b?(T )(q�)2; (42)

q�2 = q2x + q2y + (c=a)2q2z ;

where a and c are the lattice parameters. From their
data we derive b0(T ), a?(T ), and b?(T ), as shown in
Fig. 12. The solid lines represent �ts to power laws
made just for interpolating the neutron scattering data.
The functions describing these lines are shown in the
�gures. The gap energy a0(T ) = 1:36(1�T=TN)0:37meV
, and �? = 0:054(5) �A�1 is explicitly given by the
authors.[15] This form of S?(q; !) and !s(T ) is then
used to numerically integrate the right hand side of
Eq. 40 at various temperatures. The integral was per-
formed in a cube, and the range of integration was
limited by the available neutron data (q < 0:3 �A�1).
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The temperature dependence of this integral was then
scaled by a factor D so that both sides of Eq. 40 agree
at TN . The result of the computed 1=T1 is shown in
Fig. 11 by the solid line. In this �gure we can see that
the calculated line agrees very well with the measured
data. This is the �rst demonstration that the muon
relaxation rate results from host spin uctuations ac-
cording to Eq. 40 in the ordered state of a magnet. The
broken line in this �gure represents a �t to a power
law. It is clear that such a power law �ts the data
very poorly. However,the agreement with Eq. 40 ex-
tends over a wide temperature range. Thus, Eq. 40
provides us with a powerful tool to check theories of
magnetic interaction, since it contains more informa-
tion than merely critical exponents.

Figure 12: Fitted parameters from neutron scattering
measurements.

2.3 Relaxation Mechanism (T ! 0)

In this section we concentrate on the low temperature
region, namely T=TN ! 0. In this region it is possible
to describe the dynamics in terms of a quasi-particle
excitation and relaxation mechanism. Here we will ex-
amine the possible existence of a unique kind of muon
spin relaxation mechanism; as a result of this mecha-
nism, the muon spin relaxation rate (1=T�

1 ) is expected
to exhibit a temperature dependence that is di�erent
from that of the spin of a nuclei (1=TN

1 ) with the same
type of coupling to the magnetic system. The relax-
ation mechanism suggested here has not yet been ob-
served in a real system but, as we shall see, the required
conditions can be met in some materials.

First let us briey review the traditional theory of

muon (or nuclear) spin relaxation mechanisms. For
simplicity we concentrate on the case of a muon which
interacts with the moment of a single ion, namely,
B� = A��0S�0 . Rewriting S in the spin wave theory
form (see appendix C Eq. 107) breaks the �eld B into
static and dynamic parts. The static part is a conse-
quence of the operator free term (S) in the expression
for Sz. The dynamic part includes all of the linear and
bilinear terms in creation and annihilation operators.
For the evaluation of the relaxation rate we convert in
appendix B, Eq. 31, to the thermally averaged Fermi
golden rule

1

T1
=

��h2m
2

X
i�

e��Ei

z
� (43)

X
f

j hf j Bd
� j ii j2 �(Ei �Ef � �h!s)

which depends on the matrix element of Bd
�. Bd

�, in
turn, depends on both S+ and S�, or on Sz � S. The
matrix elements are evaluated between the initial and
�nal magnon con�guration fn(k; p)g, where n(k; p) in-
dicates the number of magnons in an excited state of
wave vector k and polarization p.

Since the S� and S+ operators involve single cre-
ation or annihilation operators, they lead to relaxation
through the absorption or creation of a magnon with
an energy �h!s. The relaxation rate therefore involves
the factor n(�h!s) (the number of magnons with this
energy). The Sz operator, on the other hand, involves
both a creation and annihilation operator and leads to
relaxation through the annihilation of one magnon and
the creation of another. This scattering-like contribu-
tion to the relaxation rate involves n(E)[n(E0) + 1],
the product of the number of magnons with the in-
coming energy (E) and outgoing energy (E0). The en-
ergy di�erence between the incoming and the outgoing
magnons must be �h!s. This type of process is known
as magnon Raman scattering (MRS).

If, for example, A = A���0 , and if we consider con-
tribution only from absorption, we get

1

T1
/ �h(mA)

2

Z
u2kn(k)�(Ep(k) � �h!s)d

dk (44)

where Ep(k) is the energy of a magnon with wave vec-
tor k and polarization p and uk is given in appendix C.
By looking at the low temperature limit (where we let
k ! 0 and uk ! 1=k1=2), and by taking the magnon
dispersion relation (Eq. 114)

Ep(k) = �N bk (45)

we �nd

1

T1
= D(mA)

2 !d�2s

(�N=�h)d�1
n(�h!s) (46)
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where D is a factor on the order of unity and d is the
dimensionality. We see that the relaxation rate is �nite
at !s ! 0 for d = 2. For d = 3, 1=T1 goes to zero at
!s ! 0. In both cases the relaxation rate decreases
with decreasing temperature.

As can be seen from Eq. 46 the magnitude of the
relaxation rate depends on the ratio �hmA to �N . In
a typical local �eld of 1 kG and ordering temperature
of 10 K this ratio is 10�7 �sec (in 3D) which is un-
detectably small. Thus, in order to account for the
relaxation of muon spins in AFMs we have to look for
a di�erent relaxation mechanism.

Van Kranendonk and Bloom found that the nu-
clear TN

1 relaxation mechanism, at temperatures much
smaller than the N�eel temperature TN , is indeed dom-
inated by magnon Raman scattering (MRS).[16] They
argued that at such temperatures one may ignore not
only direct absorption but also the phonon contribu-
tion, provided that TN is smaller than the Debye tem-
perature �D . An explicit calculation carried out by
Moriya supports these assumptions.[17] It was later
demonstrated quantitatively by Kaplan et al. that the
MRS model can explain very well the relaxation rate
of 19F spin in MnF2 at T ! 0.[18]

However, the implanted muon is coupled electro-
statically to its neighbors in a di�erent manner than a
nucleus, and has a much smaller mass. This can result
in vibration frequencies of the �+ di�erent from those
of the nuclei, which in turn allows additional sources of
1=T1 to become important. The relaxation mechanism
pursued here applies in cases where the muon vibration
energy levels' spacings are of the same order of magni-
tude as the energy carried by a magnon. In these cases
muon T1 relaxation could proceed via the absorption
of a magnon, excitation of the muon to a higher vi-
brational level and a spin ip. This excitation-assisted
spin ip process can coexist with the previously studied
MRS process.

When a narrow �eld distribution at the muon site
(at T ! 0 in an AFM) is observed, one can assume
that there is a muon bound state. An estimate of the
energy scale of the muon vibration energy levels in a
particular compound can be obtained frommuon di�u-
sion. For example, thermally activated muon di�usion,
with an activation energy of Ea = 0:39(1) eV, will be
shown in section 2.4 to take place in the ordered state of
the so-called In�nite Layer AFM Ca0:86Sr0:14CuO2.[7]
The vibrational energy spacings are only a fraction of

Ea, and can be estimated by
q
2�h2Ea=mLe�, where

m =105.66 MeV/c2 is the muon mass and Le� is some
e�ective length scale of the potential well. For Le� =

3 �A (the lattice parameters are a = 3:8 and c = 3:2 �A)
the energy spacings are on the order of 0.05 eV. It so
happens that the N�eel temperature of this compound
is also 0.05 eV (540 K) which is the expected energy
scale for magnons. Thus we believe that the conditions

for the excitation-assisted spin ip relaxation process
could exist in this compound.

The model used here to account for the tempera-
ture dependence of 1=T�

1 assumes that the muon, after
entering the sample, is trapped instantaneously in a
crystallographically unique electrostatic potential well.
Once the �+ is in this well, the HamiltonianHc is given
by Hc = Hss + V (r) where Hss describes the AFM
spin system (here we use the Heisenberg model), and
V (r) describes the electrostatic interaction of the muon
with the solid. The magnetic �eld can be written as in
Eq. 18 but with the matrixAj(r) depending on the dis-
placement r of the �+ from its equilibrium position. It
is this dependence which couples the magnons to the
vibrational levels of the �+ in its well. A schematic
view of the excitation-assisted spin ip process is pro-
vided in Fig. 13.

Figure 13: A schematic view of the excitation-assisted
spin ip process

In order to simplify the problem, the quantization
axis of the AFM electronic spins, the direction of the
�eld at the �+ site, and the initial muon polarization,
are taken to align with the ĉ axis. The relaxation pro-
cesses are accounted for by two expansions: Aj(r) is
expanded in terms of r around r = 0 and S is ex-
pressed in terms of creation (M y

kp
) and annihilation

(Mkp) operators of magnons, as given by spin wave
theory described in appendix C; k and p are the wave
vector and polarization of the magnon. These expan-
sions give rise to various terms. All terms contributing
to the static local �eld are represented by the observed
internal �eld Bs. Other terms induce the direct ab-
sorption, the MRS, and the excitation assisted spin
ip processes. Since the �rst two processes have been
examined elsewhere, only the latter will be considered
here.

The model is further simpli�ed by the following two
assumptions: I) the potential well is isotropic, II) the
muon falls down to its vibrational ground state before
its spin relaxes. The second assumption is a conse-
quence of the short stopping time 10�10 sec and the
expected population of higher vibrational energy lev-
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els. Since in our model these energy levels are on the
order of TN , at T < TN the population of the higher
level decreases as exp(�TN =T ) with decreasing tem-
perature. The focus is therefore on the terms leading
to transitions between an initial state of a �+ in the
vibrational ground state, up spin, and a magnon con-
�guration fn(k; p)g, and a �nal state with the �+ in
the �rst excited vibrational state, down spin, and one
less magnon.

If �+m is the raising operator of the vibrational levels
in the m'th spatial direction, then the important part
of the dynamical �eld operator is given by

Bd
+ =

X
p;m

X
k

dpm(k)�
+
mMkp; (47)

where

d1m(~k) =

�
2s�h

m!vN

�1=2

�0@vkX
i

dAi
��

drm
eikRi + uk

X
j

dAj
��

drm
e�ikRj

1A
d2m(~k) =

�
2s�h

m!vN

�1=2

�0@ukX
i

dAi
�+

drm
e�ikRi + vk

X
j

dAj
�+

drm
eikRj

1A :

The functions uk and vk are given in appendix C, �h!v
is the energy di�erence between the ground state and
the �rst excited state of V (r), and the indices i and j
are taken over the di�erent sub-lattices. In principle,
the local �eld Bs will cause an energy splitting between
the up spin and down spin states, which will result in
di�erent relaxation rates on the two sub-lattices. How-
ever, the splitting (� 0:01 K) is much smaller than the
typical magnon energy and can be ignored.

The relaxation rate is evaluated by the thermally
weighted Fermi golden rule. It is easy to see that the
temperature dependence comes only from the average
number of magnons with energy �h!v. The relaxation
rate is given explicitly by

1

T1
= Kn(�h!v) (48)

where

K =
�h2mV

(2�)2

X
p;m

Z
d3k j dpm(k) j2 �(Ep(k) � �h!v):

The order of magnitude of this mechanism can be
estimated at low temperatures (T � TN ) by taking
n(�h!v) � exp(��h!v=kBT ) and the long wavelength
approximation. In the k ! 0 limit of an ideal Heisen-
berg antiferromagnet, the following relation is valid

[16]: X
p;m

j dpm(k) j2= s

2Nbk
F 2

The factor F � (�h=2m!v)1=2(dA=dr) has units of mag-
netic �eld, and is of the order of the �eld uctuations
seen by the muon as it oscillates in the well. The re-
laxation rate calculated from Eq. 48 in the long wave-
length limit obeys an Arrhenius law

1

T1
=

Sv

2�b3

�
�h!d
�N

�2

!v exp(��h!v=kBT ) (49)

where !d = mF , and v is the volume of the cell. This
result is in contrast to the T 3 law at low temperatures
of the MRS.[16] The excitation-assisted spin ip relax-
ation mechanism will be important when �h!d=�N is
large, and the signature of this mechanism is an acti-
vation energy of the order of the N�eel temperature.

As mentioned earlier, the conditions for the excita-
tion assisted spin ip process exist in Ca0:86Sr0:14CuO2.
However we could not experimentally con�rm that the
muon relaxation in this compound is indeed governed
by the model developed here. The main reason for this
failure is that at the moment only powder samples ex-
ist and we could not separate the di�erent relaxation
sources (see 1.2). Therefore, the con�rmation of the
excitation assisted spin ip process will have to wait
for the fabrication of a single crystal.

2.4 Hopping

Another source of dynamic relaxation which occurs in
solids is muon di�usion. When di�usion takes place,
the muon does not spend its entire life in a single site
but actually hops between several sites. In order to
include this extra dynamical e�ect we should replace
Bd(t) byBd(r(t); t) in Eq. 25 where r(t) now represents
the site of the muon at di�erent times. The problem
of the relaxation can be worked out with some di�u-
sion model describing r(t). However, in this section we
describe a situation were the muon hops between di�er-
ent sites in the ordered state of an AFM. This problem
can be solved analytically with the use of the strong
collision model (section 1.3). The relaxation function
developed here is also used in chapter 4 to �t �SR data
in Ca0:86Sr0:14CuO2 (an AFM) at T � 300 K where the
data clearly indicates that muon di�usion takes place.

We assume that the �eld changes experienced by
the muon spin occur only due to physical site change
of the muon itself. Moreover, we say that the muon
hopped only if it jumped to a site where the �eld is
opposite to the previous site. After each time the muon
hops between such sites the spin polarization starts to
rotate in the opposite sense to the rotation before the
hop. The polarization resulting from two such hops is
demonstrated in Fig. 14.
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Figure 14: The polarization of a muon that hops at t1
and t2 in an antiferromagnet. The angle between the
initial polarization and the local �eld is taken as 30�.

For n hops between sites of opposing �eld, at times
t1 < ::: < tn < t, the polarization function gn is given
by

gn(t1; :::; tn; t) = Refcos2(�) (50)

+ sin2(�) exp(i
n+1X
i=1

[�1]i+1![ti � ti�1])g

where tn+1 = t. In order to evaluate this sum we take
the Laplace transform of both sides of Eq. 15,

F (s) =

Z 1

0

e�stPz(t)dt: (51)

In this case, the integrals on the right hand side of
Eq. 15 decouple and F (s) is given by

F (s) = Re

 
cos2 �

X
n=1

�n�1fn0 (x) (52)

+ sin2 �f!(x)(1 + �f!(x))
X
n=0

�n j f!(x) jn
!
:

when x = s+� and f!(x) = 1=(x�i!). After summing
over the geometrical sequences we �nd

F (s) = cos 2�
1

s
+ sin 2�(

c+
s � z+

+
c�

s� z�
) (53)

where

c� =
1

2
� �(�2 � !2)�

1
2

2

and

z� = �� � (�2 � !2)
1
2 :

It is easy to obtain the inverse Laplace transform of
Eq. 53 from which we obtain

Pz(t) = cos 2� + sin 2�(c+e
z+t + c�ez�t): (54)

In a powder sample we can replace the cos 2� with 1
3

and the sin2 � with 2
3 for the powder average.

In Fig. 15 we show Pz(t) in two cases: the fast hop-
ping regime, characterized by � > !, and the slow hop-
ping regime with � < !. For both fast and slow hop-
ping, the relaxation of the 2=3 component at t� 2�=!
follows t as 1� (1=2)!2t2. This quadratic behavior at
t ! 0 is expected in a strong collision model and also
emerges from the perturbation treatment (Eq. 32). At
long times t� 2�=!, two limits are of interest: In the
very fast hopping limit (� � !) the 2=3 component
relaxation function is given by exp(�!2t=2�), similar
to the fast limit of the perturbation approach (Eq. 30).
In the very slow hopping limit � � !, the time depen-
dence of the 2=3 component goes as exp(��t) cos(!t).
In this limit, the relaxation rate can be understood
by noting that only the spins of muons that haven't
hopped at all will contribute to the polarization at long
times; the number of such muons decreases exponen-
tially. If we now include T1 and T2 relaxation from
other sources, independent of the hopping, we arrive
at

Pz(t) =
1

3
e�t=T1 +

2

3
e�t=T2(c+ez+t + c�ez�t): (55)

This model is not applicable if the sizes of the mag-
netic domains are smaller than the average length that
the muon travels between sites. It also should be noted
that hopping between sites of opposite �elds (� = �"#)
is not the total hopping rate because hopping between
sites of the same �eld (�"") also might occur; if �tot is
the total hopping rate, then �tot = �"# + �"".

2.5 Summary

We have discussed the depolarization rate of a muon
in an antiferromagnet in four di�erent regimes: I) the
random �eld regime which is encountered in either high
temperatures (T � TN ) or in systems where the spins
freeze in random orientations, II) the critical regime
(T ! TN ) where the physics of the spin system is
best described in terms of spin-spin correlation func-
tion, III) the low temperature regime (T ! 0) where
we can actually distinguish between di�erent relaxation
mechanisms, and IV) the hopping regime which can
take place at all temperatures. The emerging picture
is that when the ionic spins uctuate very fast (� � �
at T � TN ) they are not e�ective in depolarizing the
muon spin. Therefore, the relaxation rate in this re-
gion is small. As T ! T+

N the ionic spins slow down
(� � �), they depolarize the muons very e�ectively,
and the relaxation increases. At T � TN the relax-
ation depends on the amount of energy quanta avail-
able to cause spin ips. Since this amount decreases
as T ! 0, the relaxation rate is small again. Thus we
expect to �nd a peak in the relaxation rate in systems
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Figure 15: Muon polarization in an antiferromagnet for
various ratios of hopping rate � to rotation frequency
! calculated with the strong collision model. In (a)
! > � and in (b) ! < �.

which go through phase transition. This type of behav-
ior was observed in all magnetic systems known to us.
It is the breakdown of this very fundamental behavior
in systems with kagom�e lattice structure which �rst
drew our attention to them. We now turn to review
our experiments on these kagom�e systems.

3 The Kagom�e Lattice

3.1 Introduction

The term \super-degenerate", in the title of this thesis,
refers to antiferromagnetic systems with an exception-
ally large number of states in which the classical energy
is minimized. These states are sometimes referred to
as the degenerate classical ground states. In contrast
to most magnets, where the degeneracy stems from the
invariance of the energy only under a collective rota-
tion of a macroscopic number of spins, the energy of a
super-degenerate antiferromagnet is also invariant un-
der a rotation of a very small number of spins. This
extra invariance (symmetry) dramatically increases the
number of classical ground states. Since the thermody-
namical and dynamical properties of a magnet (at low
temperature) are strongly inuenced by the degenera-
cies of the ground state, we expect to �nd new physics
in such systems. In this chapter we explore one such
system known as the kagom�e lattice and, as expected,
encounter numerous unusual e�ects.

An example of an antiferromagnet whose ground
state is invariant only under a rotation of all the spins
in the system (a merely degenerate AFM) is the classi-
cal Heisenberg model with a Nearest Neighbors (NN)
interaction on a cubic lattice. The Hamiltonian of this
system is

H = J
X
<i;j>

Si � Sj (56)

where Si is a classical unit vector associated with the
i'th site, the sum is taken only over NN, and J >
0. This Hamiltonian is rotationally symmetric, and
for the system to order magnetically there must be a
spontaneous symmetry breaking where the system se-
lects a particular direction (ẑ) with which the spins are
aligned. The ground state energy (Eg) in this case is
independent of the direction ẑ, and any collective ro-
tation of all the spins in the system leaves Eg intact.
However, once a direction ẑ is selected, any change of
spin orientation which involves a �nite number of spins
could only increase the system's energy. Therefore this
system is not super-degenerate.

A system with a super-degenerate ground state is
obtained by placing Heisenberg spins on a kagom�e lat-
tice. The name \kagom�e" is constructed from two
Japanese words: kago, which means basket, and m�e,
which means lattice. The basket (kago) made from
woven bamboo strips, is used in Japan to hold goods
as large as fruits or as small as candy. The kagom�e
lattice, shown in Fig. 16, is obtained from the trian-
gular lattice by omitting a spin from every other site
on every other line. The energy of the NN Heisenberg
model on the kagom�e lattice can be minimized by plac-
ing the spins on each triangle 120 degrees away from
each other, so that

SA + SB + SC = 0;

where A, B, and C represent the three corners of a
triangle.[19] Examples of such spin arrangements are
shown in Fig. 16a and b as well as in Fig. 19. How-
ever, the spins do not have to be on the same plane
as in these �gures. For example, the spins to the left
of spins C in Fig. 16a could be on a di�erent plane
than the spins to their right. The con�gurations in
which the spins are on a single plane are called copla-
nar states. Now we can see that the interchange of
a small group of spins leaves the energy invariant, for
example, the spins which are labeled A and B in Fig.
16b (only six spins). It is due to this property that
the kagom�e system earns the title \super-degenerate"
and it is in this system that experimenters and theo-
rists alike study the inuence of the high degeneracy
on magnetic properties.

Long range order in the kagom�e lattice is possible
in two con�gurations known as the q = 0 and

p
3�p3

states. The q = 0 con�guration, shown in Fig. 16a, is
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Figure 16: Classical spins on the kagom�e lattice with
(a) a q=0 ground state and (b) a

p
3�p3 ground state.

obtained by placing the spins along any line which con-
nects nearest neighbors in an alternating sequence (e.g.
ABABAB).[20] The name q = 0 alludes the fact that
in this con�guration the periodicity of the atomic and
magnetic unit cells coincide. The

p
3�p3 state, shown

in Fig. 16b, is obtained by placing the spins along each
such line in a rotating sequence (e.g. ABCABCA).[21]
The name

p
3 � p

3 pertains to the fact that in this
con�guration the magnetic unit cell is

p
3 longer than

the atomic unit cell.
In an external magnetic �eld H, the nature of the

Heisenberg kagom�e lattice does not change much. In
a ground state, the spins on each triangle obey the
condition

J(SA + SB + SC)�H=2 =0:

[19] This condition may be satis�ed for both canted
states, where the three spins in a triangle no longer lie
on a single plane, and for planar states where all spins
are coplanar with the magnetic �eld. There are an in�-
nite number of ways of distributing any of these triads
over the kagom�e lattice, as in the case of zero �eld.
There are also states which contain more than three
possible spin orientations. These may be obtained from
the

p
3 � p

3 state by rotating, for example, spin A
and B about the axis de�ned by Sc �H=2J .[19] Thus
the magnetic �eld does not remove the in�nite ground
states' degeneracy (for H < 6J). Furthermore, the

magnetization in all of these states is identical.
The �rst question to be asked about the kagom�e

system is whether this lattice can support a long range
N�eel order at T ! 0. This is not a trivial question,
since the degeneracy of the classical ground state re-
sults in a manifold of states out of which only two are
known to possess long range order. Minimizing the
classical energy in itself does not necessarily cause the
system to favor long range order or even a coplanar
con�guration. Therefore, we expect the ground state
to be either a very dynamical one, or one in which
a selection of speci�c spin con�gurations would take
place by some other mechanism. Two such possible
mechanisms are thermal uctuations (so-called \order
by disorder") and quantum uctuations.

A simple example of the thermal uctuations selec-
tion mechanism is given by considering a single quan-
tum particle in a non-symmetric double potential well,
such as in Fig. 17. Both sides of the well have the
same minimum energy (the classical ground is doubly
degenerate) but the restoring force in the left side is
stronger than in the right side. In other words, the fre-
quency of oscillations in the harmonic approximation
on the left side (!L) is larger than that frequency on
the right side (!R). As in the kagom�e case, we �nd our-
selves unable to decide where the particle would be at
�nite temperature just fromminimumenergy consider-
ation. However, the number of excited states between
Eg and Eg +�E on the left/right side is �E=�h!L=R,
and therefore the density of states is higher on the right
side. Since at temperature T the particle will be in
states with energy �E � kBT , and since there are
more such states on the right side, that is where the
particle is more likely to be. The selection of the right
side should be most dramatic if that side has no restor-
ing force in the harmonic approximation (zero mode),
or, better yet, no restoring force to higher orders of
approximation.

Figure 17: A non-symmetric double potential well.
The minimum energy is the same on both sides, but
the density of excited levels is higher on the right side.

Returning to the magnetic kagome case, it was shown
by Chalker et al. [22] that the density of excited states
in the harmonic approximation is highest near a copla-
nar ground state. Therefore, thermal uctuations should
select a coplanar con�guration. Among all coplanar
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states, both the
p
3 � p

3 and the q = 0 states are
special in that they contain spin deviations with no
restoring force whatsoever. For example, in the q = 0
case, all the spins to the left of spins C, in Fig. 16a,
can rotate around an axis de�ned by spins C with no
restoring force. An example for the

p
3�p3 case can be

visualized again from Fig. 16b by continuously rotating
the A and B spins around the C spins while keeping the
angle between each pair constant at 120� throughout
this rotation (see also sub-section 3.5.2). However, in
the q = 0 state there are less such modes than in thep
3�p3 state, therefore making the

p
3�p3 state the

most likely to be selected at low temperatures (accord-
ing to the order from disorder argument). Indeed, in
the numerical simulations performed by Reimers and
Berlinsky, a tendency towards coplanarity was found
starting at T=J � 0:01. In addition, the order pa-
rameter corresponding to the

p
3 � p

3 state (mp
3)

increased as T ! 0.[23] However, the tendency toward
the

p
3 � p

3 state decreased with increasing lattice
size. Henley demonstrated (by taking nonlinear inter-
actions between the normal modes into account) that
the

p
3 � p

3 order is thermally selected in the low-
temperature regime.[24]

As mentioned earlier, another mechanismwhich might
help to select a speci�c con�guration is that of quan-
tum uctuations. These types of uctuations emerge
from the inability to specify Sx, Sy , and Sz simulta-
neously for quantum spins. Therefore, even when two
neighboring spins are fully up, there is still a residual
interaction between their x and y components. This
situation is demonstrated in Fig. 18 where we see that,
unlike the classical spins, the quantum spins in a N�eel
type state spend some of their time with their x (or y)
components parallel. According to Chubukov, when
it comes to the kagom�e lattice, this residual interac-
tion is minimized in one of the long range coplanar
con�gurations.[25] Another approach to account for quan-
tum uctuations is the so-called large N expansion,
where each spin is allowed to have N > 3 compo-
nents. Sachdev has found evidence from the large N
expansion that the kagom�e system prefers to be in thep
3�p3 state. [26]
From our discussion up to this point, it seems that

the kagom�e lattice favors the
p
3 � p3 ground state.

However, if we momentarily assume that this is indeed
the case, we immediately �nd some processes which
act to destroy this state. Two such processes are chiral
domain wall formation and quantum tunneling.

The chiral domain walls separate regions where the
spins are arranged in a di�erent sense of rotation, i.e.
ABCABC vs. ACBACB (see the solid line in Fig. 19).
The generation of chiral domain walls costs no energy
but does increase the entropy. We therefore expect to
�nd a large number of these walls. They should also
be able to move easily across the lattice. This means
that from an entropical point of view, long range or-

Figure 18: Classical and quantum spins with antiferro-
magnetic interaction in a N�eel state. In the quantum
case some residual interaction exists from the x and y
components.

der is hopeless. But that is not the end of the story.
In the presence of a domain wall, the restoring force
reappears and the density of excited states in the pres-
ence of a wall is smaller than when the wall is absent.
Thus, there must be a gentle competition between the
tendency to order (from the disorder) and the tendency
to increase the entropy by generating walls.[23]

Figure 19: Chiral domainwall in a coplanar the kagom�e
system

The other force which is detrimental to the
p
3�p3

state, and which was discussed by von Delft and Hen-
ley, is tunneling of spins from the A direction to the B
direction, and vice versa, in a small region (say along
the hexagon in Fig. 16b).[27] This tunneling can take
two routes, from above the plane and from below it. In
the case of integer spins, the two paths interfere con-
structively, and tunneling competes with the quantum
tendency towards long range order. In the case of half
integer spin the interference is destructive.

It is therefore di�cult to answer our �rst question
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and to determine whether the kagom�e system orders at
low temperatures or stays dynamic. The competition
between mechanisms that favor the

p
3�p3 state (or

any other coplanar state) and those that drive the sys-
tem towards disorder could result in a very interesting
dynamical nature.

This leads us to the second question concerning
the kagom�e lattice, which is what type of excitation
dominates the dynamics in this system. A priori, the
dynamics could involve three di�erent types of excita-
tions:

(I) The usual magnon-like excitations (which are
present in all ordered magnets).[20]

(II) The motion of chiral domain walls. We expect
the rate at which domain walls move to be related to
their length. In the kagom�e lattice this length can in-
volve as few as 6 spins with no upper limit to the num-
ber. On the other hand, walls of all lengths can move
with no cost in energy, and we expect motion on all
length scales to be present even at very low tempera-
tures. Thus, the dynamical e�ects which result from
this motion involve a wide range of time scales.

(III) The local modes. In the kagom�e system, the
high degeneracy leads to the motion of small groups
of spins, as previously described. These excitations
could a�ect the properties of the kagom�e magnet at
both the low temperature and the critical regions. In
the critical region, the dynamical properties are usually
determined by a frequency-wavelength relation and the
rate at which the length scale diverges as T ! Tc.
The local modes, however, are completely impartial to
length scales, and should contribute to the dynamical
properties even near Tc. In the low temperature region,
the dynamical e�ects are usually determined by the
fact that the amplitude of excitations decreases as the
energy of the excitation decreases. This is not the case
for the local modes, and their amplitudes are nearly
independent of the excitation energy.

Again, it is hard to give a de�nite answer to the
second question since it is not clear which type of exci-
tation is the dominant one. What is clear is that these
characteristics of the system must lead to anomalous
dynamical behavior.

Experiments were done on two families of systems
which have localized moments on kagom�e lattice. These
are the SrCr8�xGa4+xO19 (SCGO) and the Jarosites
KR3(OH)6(SO4)2 where R=Fe (FeJ) or Cr (CrJ). How-
ever, instead of shedding new light on the problem, the
experiments are even more confusing. Some unusual
results were found in:

(I) Low temperature DC-Susceptibility measurement
in SCGO which was done in two di�erent cycles.[28, 29]
The �rst cycle is known as the zero �eld cooled (ZFC),
in which the sample is �rst cooled down to low tem-
perature in zero external �eld and only then is the
�eld applied. The susceptibility �zfc(T ) is then mea-
sured by warming the sample. The second cycle is

the �eld cooled (FC), in which the �eld is �rst applied
at high temperature (in the paramagnetic state) and
then �fc(T ) is measured upon cooling. It was found
that SCGO behaves like a spin glass (SG) in suscep-
tibility measurements (see appendix D). A spin glass
usually shows a sharp peak in �zfc(T ); the tempera-
ture at which �zfc peaks is known as the glass tem-
perature Tg. In addition Tg is a bifurcation point in
the sense that at temperatures below Tg the values
of �zfc and �fc are di�erent. This di�erence occurs
since, upon cooling, a spin glass system is trapped in
some region of phase space (the ZFC-region) separated
from the rest of the phase space by an entropy wall.
Therefore, the application of the �eld generates a re-
sponse which represents only states of the system in
the ZFC-region of phase space. On the other hand,
cooling the system in the �eld leads it to a completely
di�erent region in phase space (the FC-region) result-
ing in a magnetic response indicative of that region. In
general, systems with such con�nement in phase space
are known as nonergodic systems.[30] However, up to
the time of these experiments, spin glass behavior has
been observed only in systems in which magnetic ions
randomly occupy a small fraction of sites in an other-
wise non magnetic sample. This kind of geometrical
randomness cannot be associated with SCGO. More-
over, even if the system is trapped in some region of
phase space, the moment (according to the Heisenberg
model) is expected to be the same as in any other re-
gion, as previously mentioned. Thus, the origin of the
SG behavior is not understood.

(II) High temperature DC-susceptibility measure-
ments in SCGO yielded the Curie-Weiss temperature
of � 500 K.[31, 28, 29] This value is rather surpris-
ing since normally the Curie-Weiss temperature and
the glass temperature are on the same scale, and for
SCGO Tg � 4 K.[32]

(III) AC-susceptibility measurement of the non-linear
part of �(!), performed by Mart��nez et al. in SCGO,
implied that the magnetic state below Tg does not cor-
respond to a conventional spin glass.

(IV) Heat capacity measurement performed by Ramirez
et al.[33] in SCGO showed that C(T ) � T� where
� = 2. In the CrJ, C(T ) is also consistent with the
T 2 behavior at T ! 0.[34] This temperature depen-
dence is in contrast to normal SG where C(T ) � T ,
but in agreement with antiferromagnetic type excita-
tions (! � k) in two dimensions. Assuming AFM
type of excitation, it was concluded that the size of
the area over which these excitations are well de�ned
is 600�600 �A2. Upon dilution of the magnetic Cr ions,
� did not change appreciably, even when the percola-
tion threshold for the kagom�e lattice was crossed. This
shows that the excitations which give rise to the T 2

behavior of the speci�c heat are of local nature and do
not result from a collective phenomena.

(V) The neutron scattering experiment of Broholm
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et al.[35] in SCGO found that at T = 1:5 K (� 0:5Tg),
the ordered moment is only 25% of the total moment,
while the rest of the moment uctuates. A careful �t of
the scattering peak to 2D and 3Dmodels indicated that
in this system the interactions are mainly of 2D nature,
and that the correlation length � is only 7� 2 �A. This
correlation length is in contrast to the size of the pre-
sumably AFM correlated region inferred from the heat
capacity experiment, and suggests a somewhat disor-
dered ground state. On the other hand, the response
function S(Q0; !) �

R
S(q; !)d3q showed no frequency

dependence below Tg . This is the expected behavior
from a 2D AFM (see section 2.3) with long range order.
It should be pointed out that from this neutron scat-
tering experiment we know only that the AFM corre-
lations persist on a time scale of THz, and the ordered
portion of the moment could, in principal, uctuate on
a longer time scale.

The picture emerging from all these experiments
cannot be accommodated with traditional theories of
spin glasses or antiferromagnets. The peculiarity of
these systems is further emphasized in the experiments
presented here. In the following sections, we will mostly
study the dynamical nature of the kagom�e magnet, uti-
lizing both experimental and theoretical means. The
experimental side concentrates on additional suscep-
tibility and �SR measurements of the two families of
samples with kagom�e structure. The theoretical part
is devoted to dynamical numerical simulations and to
the development of a dynamical model.

The structure of the chapter is as follows: In sec-
tions 3.2 and 3.3 we present the measurements on SCGO
and Jarosites respectively. In section 3.4 we present a
new type of numerical simulation, designed to evalu-
ate the dynamical properties of Heisenberg spins on
the kagom�e lattice. Finally, in section 3.5 we draw
some conclusions concerning this system. Using the
insight obtained from the experiments and simulation,
we suggest a model which could account for some of
our observations.

3.2 SrCr8�xGa4+xO19

The physics of localized spins on kagom�e lattice was
considered by Japanese physicists from the early 50's.
It became a popular subject in the western world only
after the discovery, in 1984, by Obradors et al. of the
compound SrCr8�xGs4+xO19 (SCGO) which has layers
of Cr+3 ions arranged in the kagom�e structure.[31] The
cell of SCGO, shown in Fig. 20, is constructed of �ve
layers, two of them (the 12KI and 12KII) are kagom�e
nets and the other three (the 2A, 4FI and 4FII) are lay-
ers of Cr+3 ions arranged in a triangular array. In the
lattice these layers are arranged in the sequence 4FI-
12KI-2A-12KII-4FII-4FII which isolate the two kagom�e
layers. The distance between the Cr ions on the trian-
gular layers is larger than in the kagom�e layers and we

believe that the magnetic behavior of this compound
is determined by the physics of the kagom�e lattice.

Figure 20: The crystal structure of SrCr8Ga4O19. The
solid circles represent the kagom�e layers (12KI and
12KII) and the empty circles represent the more di-
lute triangular layers (4FI, 4FII, and 2A).

In this compound, the nonmagnetic Ga ions reside
mostly on the triangular planes, but some Ga ions oc-
cupy sites on the kagom�e plane. Unfortunately the
SCGO is apparently not stable without the Ga and
samples of pure kagom�e planes (x = �1) have not been
made. However, for x < 2:126, the concentration of Cr
moments on the kagom�e plane in SCGO is higher than
the percolation threshold for that lattice (pc = 0:6527),
and we expect an in�nitely large patch of interacting
ions to exist in these samples. The superexchange in-
teraction in SCGO is mediated via the oxygen ions.

In this section we present LF-�SR, TF-�SR, and
susceptibility measurements of SCGO. The section is
divided as follows: in sub-section 3.2.1 we present a
new type of susceptibility experiment designed to study
the �eld dependence of the bifurcation between �eld
cooled and zero �eld cooled measurements. In sub-
section 3.2.2 we present �SR data on the two SCGO
samples, one with x = 0 and the other with x = 1:5.
The x = 0 and x = 1:5 has a site occupation p = 0:88
and p = 0:72 respectively. We �nd that it is di�cult
to reconcile our data with known relaxation theories of
�SR. This di�culty is discussed in sub-section 3.2.3.
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3.2.1 Susceptibility Measurements

In our susceptibility experiment we test how the dif-
ference between the FC and the ZFC measurements
depends on the applied �eld H. The motivation is
that there should be no di�erence between FC and
ZFC measurement in the Heisenberg model of spins
on the kagom�e lattice, unless there is some single ion
anisotropy (a D(Sz)2 term in the Hamiltonian).[19]
This is because di�erent classical minimumenergy states,
in the Heisenberg model with external �eld, have the
same moment; even if the system is trapped in some
state in phase space, separated by an entropy wall from
the rest of phase space, no e�ect should be observed in
the susceptibility measurement. On the other hand if
a single ion anisotropy does exist and the spin glass be-
havior is a result of this anisotropy, then the di�erence
between the FC and ZFC experiments should disap-
pear when �BH exceeds the anisotropy energy.[19]

We test this expectation by performing FC and
ZFC experiments in various �elds using a commer-
cial (Quantum Design) SQUID dc-magnetometer at
ColumbiaUniversity. The results are presented in Fig. 21.
We see that the di�erence at the lowest temperature
(2 K) between the �fc and �zfc (��) decreases as the
�eld increases, and disappears almost completely for
H = 2 kG. We therefore conclude that any anisotropy
energy should be on a scale of 0:1 K. In addition, we
see that the bifurcation temperature Tb, where a di�er-
ence between �fc and �zfc is observed, also decreases
with increasing �eld.

Figure 21: Field cooled and Zero �eld cooled suscep-
tibility measurements in SrCr8Ga4O19 at di�erent ap-
plied magnetic �elds.

We would like to present ��(0)=�(Tg) as a function
of the �eld, but of course this quantity is not measur-
able. Instead we present

��(0)=�(Tg) ' [��(2) � Tb]=[�(Tg) � (Tb � 2)]

in Fig. 22 as a function of the applied �eld. Since
there is no theory to guide us in presenting this mea-
surement, we also show the same quantity but with Tb
interchanged with Tg. In the inset we show the �eld de-
pendence of the bifurcation temperature. At this point
we don't know whether these quantities behave any dif-
ferently than they would in a canonical spin glass since
these kind of measurements were not performed be-
fore in SG systems. Such experiments are currently in
preparation in our group.

Figure 22: The di�erence between the susceptibil-
ity in the �eld and zero-�eld cooled measurements
at 2 K (��(2)) normalized by two di�erent normal-
ization factors is plotted as a function of the ap-
plied magnetic �eld. The normalization factors are
TN=[�(Tg) � (TN � 2)] where TN is either Tg , the tem-
perature of bifurcation at the lowest �eld (50 G), or
Tb, the temperature of bifurcation at the applied �eld.
In the inset we show the bifurcation temperature as a
function of the applied �eld.

3.2.2 �SR Measurements

The �SR experiment was performed on two sintered
SCGO samples, one with x = 0 and the other with
x = 1:5. For this experiment we used both a dilution
refrigerator and a normal cryostat.

In Fig. 23 we show the �SR measurement in the
longitudinal �eld con�guration using a LF of 100 G.
Since the relaxation rate increases by more than two
orders of magnitude as the temperature is lowered, we
present the data for temperatures below 5 K in Fig. 23a
using a shorter timescale and for temperatures above
5 K, in Fig. 23b, using a longer timescale. The most
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obvious feature of the data is that the rate at which
the muon loses its polarization continuously increases
as the temperature is lowered, even past Tg . This fea-
ture of the relaxation is very unusual (see 2.5), and in
all other types of magnets known to us the relaxation
rate increases as T ! T+

g , peaks near the transition
temperature, and then decreases as T ! 0.

Figure 23: The corrected asymmetry in a longitudinal
�eld of 100 G in SrCr8Ga4O19 at (a) high temperatures
(T � 5 K) and (b) low temperatures (T < 5 K). The
solid lines are �ts to Eq. 57 and 58 as described in the
text.

When coming to �tting the muon asymmetry to a
speci�c relaxation function we observe three elements
in the data:

I) The asymmetry, at very low temperature (0.1 K),
has a gaussian line shape at early times, and a slowly
relaxes at long times. This is demonstrated in Fig. 24a
and on a logarithmic scale in Fig 24b. The asymmetry
involved in the long time relaxation rate is rather small
and could, in principal, be a consequence of some un-
known and complicated relaxation function. However,
it could also be ascribed to background or defects in
the sample. For practical reasons we assume the latter.

II) At temperatures close to Tg the asymmetry has
an exponential line shape, again with two timescales
involved. This is seen for T = 4:5 K in Figs 24c and d.

III) At high temperature (T � 5:5 K) the asymme-
try is well described by an exponential line shape with
a single timescale for relaxation. The asymmetry at
T = 5:5 K is depicted in Figs. 24e and f.

We therefore �t the data at T � 5 K with

A(t) = Ab exp(��t) + As exp(��(t)t) (57)

where As/Ab is the asymmetry of the sample/background,
� is the background relaxation rate and �(t)t is given
by Eq. 28 (with !s = !L = mHL). This function
yields all the features described above in items I and

II. It will also continuously connect to the function

A(t) = At exp(��t) (58)

with At ' Ab + As, which is su�cient to describe the
data at T � 5 K. We label the parameters � and � ob-
tained from �tting the data to Eqs. 57 and 58 with the
index \�t" since we are planning to estimate them by
other methods as well. The subscript 0 and 1:5 refers to
the di�erent samples. The connection between the two

equations is made via the relation � = 2(��t0 )2=��t.
This parameterization of the relaxation rate � is valid

when ��t � !L as is the case for temperatures above

5 K. The parameter ��t0 = 10� 1 �sec�1 is global to

both high and low temperatures. This value of ��t0
corresponds to



B2
�1=2 � 100 G. The �ts are rep-

resented in Fig. 24 by the solid lines. Surprisingly,
we �nd that Eq. 57 �ts the data very well even for

��t < ��t0 . We therefore take Eq. 57 as a phenomeno-
logical function which can be rigorously derived in the

region ��t > ��t0 as shown in section 2.1.

Figure 24: The line shape of the muon polarization in
SrCr8Ga4O19 at three di�erent temperatures demon-
strated on both linear and logarithmic scales. The solid
lines are �ts to Eq. 57 and 58 as described in the text.

The correlation time ��t = 1=��t obtained from
the �ts is presented in Fig. 25 as a function of temper-
ature. The crossed and open squares represent �ts to
Eqs. 57 and 58 respectively. We also present a scale

which is 2(��t0 )2 times the scale of ��t. We can read
on this scale the spin-lattice relaxation rate 1=T1 which
is well de�ned (and equals �) for temperatures above

5 K. In the inset we show ��t in a wider temperature
range and on a logarithmic scale. We see that as we

cool down ��t continuously increases over a very wide

temperature range Tg < T < 30Tg, and at 1 K ��t sat-
urates. These two phenomena are in contrast to usual
spin glasses. For comparison, in the canonical spin
glass CuMn, no relaxation is observed when T > 3Tg,



3 THE KAGOM�E LATTICE 23

and the relaxation rate drops sharply below Tg .[36] In
CuMn(5 at.%) the relaxation rate reaches � 1% of its
maximum value when the temperature is decreased to
� 25% of Tg .

Figure 25: The correlation time � = 1=� as a func-
tion of temperature in both SCGO samples. The
crossed/empty squares are obtained from a �t to
Eq. 57/58 in the x = 0 sample. The same holds for
the diamonds and the x = 1:5 samples. In the inset
we show the same plot on a wider temperature range.
The additional vertical axes are explained in the text.

An important test of our understanding of the re-
laxationmechanism is a decoupling experiment in which
we measure the relaxation rates in various external lon-
gitudinal �elds. Normally we would expect a polar-
ization with a gaussian shape and � � 10 �sec�1 to
decouple completely with a �eld of 500 G. However,
again to our surprise, we �nd that this is not the case
in SCGO. In Fig. 26a we show the raw asymmetry for
various longitudinal �elds at T = 100 mK. It is clear
that the polarization in SCGO does not decouple as
expected. In fact there is hardly any change in the re-
laxation rate up 0.2 T. Since the application of a large
�eld strongly inuences the � parameter (see 1.1.7), as
can be seen most clearly in the case of 2 T, we correct
� so that the asymmetry at t = 0 is the same for all
the spectra. The corrected asymmetry is presented in
Fig. 26b. In this �gure we also see the expected polar-
ization using Eq. 57 with the parameters obtained from
the 0.1 K, 100 G data and an external �eld of 500 G.
There is an obvious discrepancy between the expected
decoupling rate and the observed one. It also should be
pointed out that the discrepancy between theory and
experiment is independent of which theory (AR, DKT,
or MC) we use (see section 2.1). Thus we conclude that

��t0 and ��t do not represent the true RMS and cor-
relation time of the local �eld and that they should be

regarded only as phenomenological �tting parameters.

Figure 26: The (a) raw and (b) corrected asymmetry
in a LF-�SR measurement in SrCr8Ga4O19 at 100 mK
and various longitudinal �elds. The solid lines are
guides to the eye. The broken line in (b) is the expected
polarization in a longitudinal �eld of 500 G according
to the parameter obtained from the 0.1 K, 100 G data
as explained in the text.

Puzzled by the decoupling mystery, we attempt to
test more directly the internal �eld at the muon site.
This test is performed in two steps: (I) TF-�SR and
(II) susceptibility measurements.

(I) In the TF-�SR experiment we measured the
muon rotation frequency as a function of temperature
f(T ) by applying a strong �eld (2 kG) perpendicular to
the initial muon polarization. The oscillating asymme-
try for T = 100 K and T = 20 K is shown in Figs. 27a
and b in the so called rotating reference frame. In
this frame we multiply the signal by cos(2�frrf) and
average all the events within a time period n=frrf (n
is an integer). In this way we see only the beat fre-
quency, which is the di�erence between the precession
frequency and frrf. Looking at this �gure, it is hard
to see any shift in frequency between the two tempera-
tures. We therefore conclude that the frequency shift is
smaller than our resolution, namely, f(100) � f(20) <
0:1 �sec�1.

(II) In the susceptibility experiment we measure
the sample magnetization as a function of tempera-
ture M (T ) also in H =2 kG. In Fig. 27c we present
the susceptibility �(T ) = M (T )=H.

If we now assume that the internal �eld is a linear
combination of the applied �eld and the magnetization
we have

�B(T ) = (2�=m)�f(T ) = g��zeff (T ) (59)

where �zeff = M=N is the induced moment per Cr, we
�nd that g < 3 kG/�B. With this upper limit on g we
can estimate the upper limit on the �eld at the muon
site by replacing ��zeff with the Cr e�ective moment
�eff = 4:07 �B in Eq. 59.[28] This method predicts
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Figure 27: Muon precession in the TF-�SR con�gu-
ration at an applied �eld of 2 kG, presented in the
rotating reference frame at (a) T = 100 K and (b)
T = 20 K, for SrCr8Ga44O19. The uniform suscepti-
bility as a function of temperature is depicted in (c).

that the local �eld at the muon site is smaller than
12 kG.

In order to �nd a lower limit on the �eld we use
numerical simulations. In these simulations, the orien-
tation of the Cr momentswas allowed to vary randomly
in a �nite size numerical sample. The local �eld at a
position r in this sample was calculated by summing
the dipolar �elds from all moments in a sphere of ra-
dius 10 �A. We found hB2i1=2 > 3 kG at all sites. Using
a larger sphere could only increase the minimum value
of hB2i1=2.

A third method for �eld estimation is to use the re-
lation 1=T1 = 2�2� (see 2.1) which should hold at high
temperatures and small LF. The correlation time � is
estimated from the energy-time version of the Heisen-
berg principel as � ' �h=J

p
Ze� where Ze� is the aver-

age number of nearest neighbors. In order to evaluate
this number we use the relation

Ze� =
4X
i=1

iC4
i p

i(1� p)4�i

where C4
i is the number of ways an ion can have i

chromium neighbors and p is the site occupation. For
the x = 0 sample (p = 0:88) Ze� = 3:38. Taking
the relaxation rate at 50 K, 1=T1 = 0:026 �sec�1, and
J = 60 K [20] we �nd �=m = 6:2 kG. These method,
combined with the other two, shows that the order of
magnitude of the internal �eld is 10 kG. The huge dif-
ference between the estimated value of the parameter
�, (�est � 103 �sec�1) and the value we obtain from

our �ts in the LF-�SR experiment (��t0 = 10 �sec�1)
reinforces our conclusion that ��t0 and ��t do not truly
represent the RMS and correlation time of the internal
�eld.

We now turn to look at the x = 1:5 sample. Since
the temperature and �eld dependence of the muon po-

larization in this case is very similar to the one we
observed in the x = 0 sample we present the data
somewhat briey. In Fig. 28a we show the corrected
asymmetry for several temperatures and a longitudi-
nal �eld of 100 G. Here again we see that the rate at
which the muon loses its polarization increases contin-
uously down to 2 K and then saturates. In Fig. 28b
we show the corrected asymmetry for several longitu-
dinal �elds. We �t the HL = 100 G data in exactly the
same way as in the x = 0 case, but this time the global

parameter ��t1:5 = 5:8 � 0:2 �sec�1. We present the
correlation time and spin-lattice relaxation rate as de-
scribed in the previous section in Fig. 25. The crossed
and empty diamonds represent �ts to Eq. 57 and Eq. 58

respectively. We also present a scale which is 2(��t1:5)
2

times the scale of ��t as in the x = 1:5 case.

Figure 28: The muon polarization in the x = 1:5 sam-
ple at (a) longitudinal �eld of 100 G and various tem-
peratures and (b) temperature of 0.02 K and various
longitudinal �elds. In (b) the solid lines are guides to
the eye; the broken line is the expected polarization in
a longitudinal �eld of 1 kG according to the parameter
obtained from the 0.02 K, 100 G data as explained in
the text.

The most striking feature of the comparison be-

tween the correlation time ��t in the two samples is
that it is nearly the same for all temperatures below
7 K. This is surprising since the x = 1:5 sample is di-
luted; therefore, the correlation length and, thus, the
correlation time, must be smaller. In other words,
smaller groups of spins are locked together and the
magnetic behavior of the x = 1:5 sample should more
resemble a paramagnet.

Using the ��t and ��t obtained from the T =
0:02 K,HL = 100G data, we plot the expected theoret-
ical curve at a �eld of 1 kG using Eq. 57. Again, we �nd
that the decoupling rate does not agree with our expec-
tation. We can estimate the internal �eld in this sam-
ple using the 50 K value of 1=T1 = 0:036 �sec�1 and
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Ze� = 2:56 (p=0.72) which gives �est1:5 =m = 6:9 kG.
Again the estimate of the local �eld from our dynam-
ical theory of chapter 2 and simple energy scale con-
siderations disagree. It also seems that �est0 < �est1:5 .
This is not expected in a paramagnetic state, unless at
50 K the spins are still correlated, and for some reason
dilution increases the local �eld.

3.2.3 Discussion

We have found several unexpected features in our �SR
experiments in SCGO. These features will be reviewed
in the concluding chapter (3.5). At the moment, the
open question is whether these e�ects are indeed prop-
erties of the kagom�e lattice or are a mere coincidence
which occurs in the SCGO compounds. In order to test
the second possibility we present in the next section a
similar experiment on another group of systems, known
as the jarosites, which also have a kagom�e lattice struc-
ture. In section 3.4 we demonstrate, using numerical
simulations, that indeed some of the unusual properties
found here are inherent in the kagom�e lattice.

3.3 The Jarosite Systems

Most of the experimental e�ort in kagom�e systems to
date has concentrated on SCGO.[35, 29, 33, 37, 5, 38]
However, SCGO possesses magnetic impurities on the
kagom�e plane (for all values of x at which it is sta-
ble) and so does not serve as a perfect realization of
the AFM kagom�e lattice.[31] Therefore, we decided to
broaden the �SR investigation to the family of com-
pounds known as the jarosites, especially KFe3(OH)6(SO4)2
(FeJ), and KCr3(OH)6(SO4)2 (CrJ). The jarosites have
no magnetic impurities on the kagom�e plane and the
ionic moments (Fe+3, S=5/2 and Cr+3, S=3/2) can
be easily interchanged, thus making this system al-
most ideal for the experimental study of the kagom�e
lattice.[39, 40] The Jarosites may still fall short of the
idealized 2D kagom�e system because of the interplane
interactions found in all real systems.[41, 42, 43, 35]
These interactions, as small as they might be, could
change the nature of the problem in question.

Some informationon the dimensionality of the mag-
netic interaction is provided by previously performed
experiments.[40, 41, 42] Susceptibility and M�ossbauer
measurements show that FeJ orders magnetically with
TN > 50 K and that the Curie-Weiss temperature
(Tcw) is 600 K;[40, 41] therefore TN=Tcw = 0:08. Neu-
tron scattering in this sample found that the order ex-
tends in all 3 dimensions.[41] The CrJ, on the other
hand, has a Curie-Weiss temperature of 67.5 K [41] and
shows a phase transition, in neutron scattering, only
at 1.9 K [43]; therefore TN=Tcw = 0:03. The frozen
portion of the moment, however, is only 4% of the
total moment.[43] This fact, combined with detailed
analysis of the inelastic neutron scattering peaks, sug-

gests that the interaction in the CrJ is closer to being
two dimensional than the interaction in the FeJ com-
pound. The ordering in both cases is of the q = 0
type.[40, 41, 43] It should also be pointed out that the
neutron scattering in CrJ revealed the coexistence of
a short range correlation component together with the
long range order.[42, 43]

We therefore study in section 3.3.1 the FeJ as an ex-
ample of an ordered kagom�e system, possibly with 3D
interactions, and concentrate on the magnetic proper-
ties in the ordered state. We investigate the CrJ in
section 3.3.2 as an example of a quasi 2D kagom�e sys-
tem and concentrate on the dynamical properties. For
the CrJ we present susceptibility measurements in ad-
dition to the �SR experiments.

3.3.1 KFe3(OH)6(SO4)2

The �SR experiment in FeJ was performed in the zero
�eld (ZF) con�guration using a gas-ow cryostat. In
this con�guration the muon spin is inuenced only by
the presence of the internal magnetic �eld. In Fig.29 we
show the time dependence of the polarization in FeJ at
three di�erent temperatures. At 100 K the electronic
moments uctuate very rapidly and are not e�ective
in depolarizing the muon spin, but as the temperature
is lowered these uctuations slow down. At 55 K we
already see a strongly damped oscillatory signal which
indicates the onset of magnetic order. At a much lower
temperature (6 K), the damping decreases and full spin
precession is observed. It is evident from the �gure that
the precession is governed by more than one frequency
at low temperatures. Therefore, we �t the data below
45 K with

Pz(t) = Abe
�t=Tb + Afe

�t=Tf cos(!f t) (60)

+ Ase
�t=Ts cos(!st):

Above 50 K we could not resolve the two frequencies
and so used only one oscillating signal. The fact that
two frequencies are observed indicates that there are
either two crystallographically inequivalent muon sites
or a unique site which does not possess the symmetries
of the magnetic system.

In a linear interaction between the muon spin and
the electronic spins (e. g. dipolar interaction), the
local moment is proportional to the muon precession
frequency. We present the fast frequency !f and slow
frequency !s normalized by their value at the lowest
temperature (2.1 K) in Fig.30. For comparison we also
show the mean �eld theory curve for spin 5/2 assuming
TN = 60 K. From this �gure we see that the measured
moment is somewhat more stable against thermal ex-
citation than the mean �eld prediction. This stability
supports the identi�cation of three dimensional order-
ing found by neutron scattering. As a justi�cation for
the use of two oscillating signals in our �t at low tem-
peratures, we show in the inset of Fig.30 the Fourier
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Figure 29: The corrected asymmetry in
KFe3(OH)6(SO4)2at three di�erent temperatures.

transform of the data at T = 2:1 K. Two major fre-
quencies are seen with a smaller contribution from a
third frequency which cannot be resolved in the �ts.
The frequencies at T = 2:1 K correspond to a local
�eld of 2.8 kG and 1.6 kG at the muon sites, respec-
tively.

3.3.2 KCr3(OH)6(SO4)2

The susceptibility measurements on the CrJ were made
using a Quantum Design (SQUID) magnetometer at
the University of British Columbia. The results, shown
in Fig.31, were obtained using a �eld of 100 G in the
�eld cooling and a zero �eld cooling sequences. We
found a clear di�erence between the FC and ZFC mea-
surements below 2.5 K but no actual cusp in the suscep-
tibility. The same di�erence was observed in SCGO,
but there a cusp was also observed.[29] This suggests
that the temperature hysteresis in susceptibility is in-
herent in the kagom�e lattice and is not a result of mag-
netic impurities.

The �SR experiment in CrJ was performed in the
longitudinal �eld (LF) con�guration using an Oxford
dilution refrigerator. In order to obtain better cooling
of the powder sample in the dilution refrigerator we
mixed the powder with 10% apiezon grease which was
diluted in Hexane and allowed to dry for a day. This
procedure did not change the susceptibility (per Cr) of
the sample.

The polarization function in CrJ at HL = 100 G
and several temperatures is shown in Fig.32. We used

Figure 30: The temperature dependence of the slow
and fast muon spin precession frequency !s=f (T ), as
given by Eq. 60, normalized by !s=f (0). The solid
line represents the mean �eld prediction of spin 5/2.
The inset shows the Fourier transform of the corrected
asymmetry at 2.1 K.

a small longitudinal �eld of 100 G in order to obtain
a clear baseline by decoupling the background and the
�eld generated by nuclear dipole moments. The in-
crease in relaxation as the system is cooled down from
10 K to 25 mK indicates the slowing down of spin
uctuations. The absence of the 1/3 recovery even
at T = 25 mK indicates either fast or intermediate
uctuations. In order to distinguish between the two
uctuation regimes we plot the early time relaxation at
T = 25 mK in the inset of the �gure. The shape of the
relaxation function suggests the existence of two sites,
as in FeJ, with a gaussian shaped relaxation function
at early time. In order to be impartial to the line shape
we use the relaxation function

Pz(t) = Af exp[�(t=Tf )�f ] +As exp[�(t=Ts)�s ]: (61)
for data �tting. � is a free parameter limited to the
region 0 � � � 2. We allow fractional values for �
in order to accommodate the possibility of dilution
e�ects (see appendix D). We �t the data with the
asymmetries of the fast relaxing signal Af and slow
relaxing signal As held �xed at all temperatures. At
T = 25 mK we found �s=f = 2:0=1:67; these values
of �, combined with the lack of the 1/3 recovery, sup-
port the intermediate uctuation scenario (� � �) at
this temperature (at least for the slow signal). The
values of the relaxation rates at this temperature are
Ts=f = 1:08=0:11 �sec and the square root of their ra-
tio has the same order of magnitude as the ratios of
the local �elds in the FeJ case. However, we cannot
conclude that the muons occupy the same site in the
two compounds, since the asymmetry ratio Af=As in
CrJ is di�erent from this ratio in FeJ.
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Figure 31: Field cooled and zero �eld cooled suscepti-
bility measurement in KCr3(OH)6(SO4)2.

The amplitude of the fast relaxing signal (Af ) is
small and the error bars in Tf and �f are rather large.
This is not the case for Ts or �s. We therefore show
only the parameters of the slow signal as a function of
temperature in Fig.33. The change in �s from � 1 at
high temperatures to 2 as T ! 0 indicates a transition
between the fast uctuating limit to the intermediate
limit. The transition takes place at T ' 2 K which
corresponds to the phase transition observed in neutron
scattering.[43] Below T � 1 K, the relaxation rate Ts
saturates; the same saturation was observed in SCGO
(see 3.2).[37, 5, 38] The saturation of Ts indicates that
spin uctuations remain with large spectral weight at
low frequencies (� 1 MHz) down to 25 mK.

In Fig.34 we show the �eld dependence of the polar-
ization function at T = 25 mK for several longitudinal
magnetic �elds. The solid lines are guides for the eye.
The expected increase in the terminal value of Pz(t)
with increasing LF is indeed observed. However, this
increase occurs at a rate which is much slower than ex-
pected. For comparison, we also plot in this �gure the
expected theoretical curve (dashed line) for a longitu-
dinal �eld of 500 G. For this curve we assume � = �
and use the Kubo-Toyabe dynamical theory with these
parameters evaluated from the 25 mK, 100 G data. A
large disagreement is observed between the theory and
experiment. A similar disagreement was observed in a
LF �SR experiment in SCGO.[38]

3.3.3 Discussion

We �nd that the lack of a peak in 1=T1, the unexpected
decoupling rate, and the bifurcation in susceptibility
measurement are common to both CrJ and SCGO. The
FeJ behaves in a completely di�erent manner. Whether
there is indeed a stronger 3D interaction in FeJ or there
is some critical spin value 3=2 < Sc � 5=2 above which

Figure 32: The corrected
asymmetry in KCr3(OH)6(SO4)2 at a HL = 100 G
and several temperatures. The inset shows the early
time depolarization in the T = 25 mK case.

Figure 33: The temperature dependence of the param-
eters Ts and �s as obtained from Eq. 61.

quantum uctuations are suppressed and the kagom�e
lattice can order, is not clear to us. We now turn to the
numerical simulation which will further enforce some of
these conclusions.

3.4 Numerical Simulation

The dynamical properties of the kagom�e system found
by �SR (see section 3.2 and 3.3), and our theoretical ex-
pectation for unusual dynamical behavior (discussed in
section 3.1) motivated us to simulate the time evolution
of spins on a kagom�e lattice. Our aim is to check the
stability of the possible long range ground state con�g-
urations against small excitations as well as to inves-
tigate the temperature dependence of the spin-lattice
relaxation rate 1=T1. This relaxation rate is computed



3 THE KAGOM�E LATTICE 28

Figure 34: The corrected asymmetry in a LF-�SRmea-
surement on KCr3(OH)6(SO4)2 at 25 mK and various
longitudinal �elds. The solid lines are guides to the
eye. The broken line is the expected polarization in a
longitudinal �eld of 500 G according to the parameter
obtained from the 25 mK, 100 G data as explained in
the text.

via the spin-spin correlation function
D
Ŝ(0) � Ŝ(t)

E
. We

also wish to examine the inuence of the underlying lat-
tice geometry on the spin evolution. This is achieved
by comparing the dynamics of kagom�e and square lat-
tices (both are 4-fold coordinated). Since some of the
experiments were done on diluted systems, we also test
the inuence of vacancies on the correlation time.

Our numerical study proceeds in three steps: (I) we
examine the time evolution of an individual spin Ŝi(t)
for given initial conditions, (II) we test the stability of
the system by comparing the sample averaged correla-

tion function
h
Ŝ(0) � Ŝ(t)

i
(SACF) between the two lat-

tices for a given excitation energy, and (III) we evaluate
the spectral density (see Eq. 31) from the temperature

averaged correlation function
D
Ŝ(0) � Ŝ(t)

E
(TACF) and

discuss its application to experiments.
We approximate the equation of motion for each

spin with that derived from the classical Heisenberg
Hamiltonian; namely,

dŜi
dt

= �JŜi �
X
j:i

Ŝj; (62)

where Ŝi is a three-component unit vector representing
the spin direction. The sum in Eq. 62 is taken over the
nearest neighbors of the i'th spin (employing periodic
boundary conditions). We numerically evaluate Ŝi(t)
using the 4'th order Runge-Kutta (RK) algorithmwith
a time increment (dt) of 0:02 or less.[44] In this algo-
rithm the spin con�guration at t + dt is �rst crudely
estimated from Si(t) using Eq. 62 with a �nite dt. The

estimated value is then fed back into the equation of
motion in order to obtain a more correct value. The
term \4'th order" stands for four corrections in each
time step (dt). The error thus obtained is of order
O(dt)5. The lattice sizes in steps I and II are 972 spins
(L = 18) for the kagome and 900 spins (L = 30) for the
square. In step III we present results for the kagom�e
lattice with smaller sizes as well.

In step (I) the simulation is performed for a partic-
ular choice of excitation in (a) the square lattice, (b)
the

p
3 � p3 state on the kagom�e lattice, and (c) the

q = 0 state on the kagom�e lattice. We �rst place the
spins in a long range ordered ground state where the
spins lie in the bxby plane. We then pivot one spin out
of this plane (Sz(0) = 1). The excitation energy cor-
responding to this con�guration is 4J on the square
lattice and 2J on the kagom�e lattice. The results are
shown in Fig. 35. In each of the three cases, a, b,
and c, we present the time evolution of Sz for two dif-
ferent spins on the lattice: Sz(t) of a modi�ed spin
and Sz(t) of an unmodi�ed spin. The �gures demon-
strate a remarkable di�erence between the time evo-
lution of the spins on the square lattice and the spins
on the kagom�e lattice. In the square case, the modi-
�ed spin undergoes periodic motion around an average
value which lies in the plane. The frequency (8�J) of
this motion corresponds to the �eld at the site of the
modi�ed spin at t = 0. The motion of the modi�ed spin
is governed by a narrow distribution of frequencies and
is only weakly damped within the plotted simulation
time. In the kagom�e case, on the other hand, none of
the spins can be described as uctuating around a �-
nite average component at long times. There is also
more than one characteristic time scale involved in the
motion. Only at the beginning of the motion can a
frequency (4�J) be de�ned for three periods. This fre-
quency again corresponds to the local �eld at the site
of the modi�ed spin at t = 0.

In step (II) we obtain the sample-averaged corre-
lation function (SACF) for a given excitation energy.
The SACF is calculated by evaluating the scalar prod-
uct of Ŝi(0) and Ŝi(t) for each individual spin and
then averaging over the entire lattice. Here, unlike in
step (I), we excite the system by slightly disorienting
each spin on the lattice from its ground state direction.
The new orientation is chosen randomly within a small
solid angle (
) centered around the original spin direc-
tion. The energy of excitation (�E) is controlled by
the choice of 
. In Fig. 36 we show the SACF with this
type of collective excitation (�E = 4J). The di�erence
between the square and the kagom�e lattice is obvious,
but there is also a substantial di�erence between thep
3�p3 and the q = 0. We discuss the three cases in

the framework of a damped harmonic oscillator. The
SACF of the square lattice, shown in Fig. 36a, exhibits
a clearly de�ned frequency (0:01J) with a zero damp-
ing rate. On the other hand, the SACF in the excited
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Figure 35: The time evolution of bSz in three cases:
(a) the excited square lattice; (b) the excited

p
3�p3

state on the kagom�e lattice; (c) the excited q = 0 state
on the kagom�e lattice. The excitation of the system is
achieved by rotating one spin into a direction perpen-
dicular to the plane of the ground state. In each casebSz(t) for both the modi�ed spin and another, initially
unmodi�ed spin, is shown.

p
3 � p3, shown in Fig. 36b, has a very large damp-

ing rate and oscillations occur on various time scales.
Finally, the excited q = 0, shown in Fig. 36c, is an
intermediate case in which the frequency, like that of
the square lattice, is well de�ned ( 0:007J), but the
damping is �nite like that of the

p
3�p3.

In step (III) we perform the temperature average
following the procedure of Wysin and Bishop using a
combination of Monte Carlo (MC) simulation and the
RK integration.[45] The underlying equation which we
evaluate isD

Ŝ(0) � Ŝ(t)
E
=
X
IC

e(�E=T )

Z

h
Ŝ(0) � Ŝ(t)

i
IC

(63)

where IC stands for Initial Conditions, E is the total
energy of the system with a given IC, T is the temper-
ature, and Z is the partition function. The evaluation
of Eq. 63 is done in a cyclic procedure: �rst the sys-
tem is warmed from the T = 0 con�guration by MC;
next, the �nal con�guration of the MC procedure is

Figure 36: Sample averaged correlation functions for
the collectively excited (a) square lattice, (b)

p
3�p3

state on kagom�e lattice, and (c) q = 0 state on kagom�e
lattice.

taken to be the initial con�guration for the equations
of motion; the RK integration is then used to obtain a
correlation function, and the �nal con�guration of the
motion is fed back into the MC for a new choice of ini-
tial conditions. We average the correlation functions
over 18 cycles at low temperatures and 6 cycles at high
temperatures. For the Monte Carlo selection of states
we use 10000 lattice sweeps in the standard Metropolis
algorithm.[44] In this algorithm the present spin con-
�guration of the system (with energy Ep) is changed
to a new con�guration by �rst randomly generating
a temporary spin state (energy Et). The temporary
state is obtained by modifying only one spin in the
present con�guration. The temporary state is then ac-
cepted as the new system con�guration with probabil-
ity exp(�(Et�Ep)=T ). In the kagom�e case, the T = 0
state is taken as the

p
3�p3.

In Fig. 37 we show the TACF for the kagom�e lattice

at T = 0:01 J . We see that
D
Ŝ(0) � Ŝ(t)

E
has a zero

derivative at t = 0, as predicted by several authors, [46]
and that it is overdamped. We also show in this �gure
the TACF for several values of non-magnetic impurity
concentration (x). It is clear that the initial relaxation

rate of the
D
Ŝ(0) � Ŝ(t)

E
is nearly independent of the

impurity concentration, even for values of x larger than
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the percolation threshold (1 � pc = 0:3473).[33] This
result indicates that the dynamics of the kagom�e lattice
are mostly governed by local excitations and do not
involve collective motion of spins on the lattice.

Figure 37: The spin-spin correlation function for vari-
ous values of the non-magnetic impurity concentration
x. The broken line demonstrates a �t to an exponential
at late times with which we obtain the terminal value
of this function. The inset shows the terminal value as
a function of x.

We also see that the terminal value of the tempera-
ture averaged correlation function (hŜ(4000) �Ŝ(0)i) in-
creases as x increases. This behavior is expected since
as x increases, more and more spins become isolated
and stay correlated at all times. In the inset of the
�gure we show the terminal value of the TACF as a
function of x. This value is determined by �tting theD
Ŝ(0) � Ŝ(t)

E
at late time to an exponentially relaxing

function, as demonstrated by the broken line for the
x = 40% case. At an impurity concentration smaller
than the percolation threshold, the terminal value of
the TACF is consistent with zero, but as we cross the
threshold this value goes up dramatically.

At the end of the temperature averaging we obtain
the spectral density ~�(!). Since we don't know the
muon site (or the matrix A used in Eq. 35) we de�ne

~�0(!) = 2

1Z
0

dt cos(!t)
D
Ŝ(0) � Ŝ(t)

E
; (64)

and evaluate this Fourier transform using a FFT algo-
rithm. The weak damping rate in the oscillations of the
square lattice case hinders the Fourier transform and
we have to smooth the spectra with a gaussian. The
details of the shape of ~�0(!) therefore depend on the
choice of gaussian and the simulation time. However,
the quantity which is of major concern to us, ~�0(0),
only depends weakly on the transformation procedure.

In the kagom�e case, there is no di�culty in obtaining
the Fourier transform.

In Figs. 38a, b, and c we show ~�0(!) for the square
lattice at three temperatures: 1, 0.1, and 0.02J . The
reader should note the di�erent timescales of the ab-
scissa. As the temperature decreases from 1.0 to 0.1,
the scale of the spectral density narrows and ~�0(0) in-
creases. In addition, a number of spin wave-like peaks
appear in the spectra. The narrowing of the spectral
density with decreasing temperature is characteristic of
a paramagnetic phase. Upon further cooling to 0.02J ,
~�0(0) decreases and only one narrow peak centered at
! > 0 is observed. This behavior is characteristic of
an ordered phase and can be qualitatively understood
from the results of step II. At low temperatures, only a
narrow range of low energy excitations are accessible to
the system; the correlation function is therefore com-

bined from a number of
h
Ŝ(0) � Ŝ(t)

i
which resemble

each other. The SACF shown in Fig. 36a is a typ-

ical example of one such
h
Ŝ(0) � Ŝ(t)

i
. It results in a

hŜ(0)�Ŝ(t)i which can be described as an underdamped
oscillator and a spectral density with a peak at ! > 0.
At high temperatures a wide range of high energy ex-
citations are accessible to the system; the correlation
function is expected to be overdamped and the max-
imum of ~�0(!) is expected at ! = 0. In the kagom�e
lattice the situation is fundamentally di�erent, as can
be seen from Figs. 38d, e, and f. Although there is a
narrowing of the spectral density, ~�0(0) continuously
increases upon cooling. In other words, no phase tran-
sition is seen as T ! 0. This behavior can also be
understood from step II; the SACF in the

p
3 � p3

shown in Fig. 36b is strongly damped even at very low
excitation energies. It is therefore not surprising that
hŜ(0) � Ŝ(t)i is overdamped and that ~�0(!) is peaked at
zero frequency for all temperatures.

Figure 38: Spectral density ~�0(!) in the square lattice
obtained at (a) T = 1:0J , (b) T = 0:1J , and (c) T =
0:02J , and in the kagom�e lattice obtained at (d) T =
1:0J , (e) T = 0:1J , and (f) T = 0:01J .
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We can now de�ne the correlation time � = ~�0(0).
In Fig. 39 we show � (normalized by the value of � at
T = 10J) as a function of temperature for the kagom�e
and square lattices. The error bars are estimated from
the variation of � between di�erent cycles. In this �g-
ure we also show simulation results for a kagom�e lattice
with 675 (L = 15) spins and 108 (L = 6) spins. In the
square lattice we see a maximum in � at T = 0:1J ,
while in the kagom�e lattice, � increases monotonically
with decreasing temperature. In addition, we see a
very weak lattice-size dependence in the kagom�e case.

The peak of � in the square case is not surprising,
since at T � 0:5 J the correlation length reaches the
lattice size and the system is e�ectively ordered.[47]
However, the continuous increase of � in the kagom�e
case, even for a small system, is not trivial, especially
in view of the increase in the order parametermp

3 with
decreasing lattice size at T ! 0.[23] It suggests that the
di�erence between the square and kagom�e lattices is
due to the local motion of spins in the kagom�e system,
namely, the zero modes.

Figure 39: The correlation time � normalized by the
value of � at T = 10:0J is plotted against temperature
in units of J . The normalization factors are: 1.12/J
in the square with L = 30 spins, 2.40/J in the kagom�e
with L = 18 spins, 2.36/J in the kagom�e with L = 15
spins, and 1.17/J in the kagom�e with L = 6 spins. The
solid lines are guides for the eye. The inset shows the
experimental result for the �+ spin-lattice relaxation
as a function of temperature in SrCr8Ga4O19.[5]

The correlation time � , is intimately related to the
spin-lattice relaxation rate of the muon, as we have
seen in chapter 2. The relation, when the static lo-
cal �eld is small (!s ! 0), is given by 1=T1 � B2�
(see Eq. 31).[12] From our simulation we therefore an-
ticipate the absence of a T1 minimum in the kagom�e
lattice. Indeed, such an absence is observed in the �SR
measurement of both the SrCr8Ga4O19 and KCr3(OH)6(SO4)2
presented in section 3.2 and 3.3.[5] The experimental

results in SCGO, normalized by J = 60 K,[20] are
presented in the inset of Fig. 39. It should be noted
that some di�erences between these simulations and
the �SR experiment on SCGO and CrJ are anticipated:
SCGO contains 14% nonmagnetic impurities on the
kagom�e plane, as well as magnetically active triangular
planes, while CrJ could have some 3D interactions. It
also should be noted that, at very low temperatures,
quantum e�ects should also play an important role in
the dynamics of these systems, although the fact that
the spins are moderately large (3/2) favors the use of
a classical model.

The data shown in Fig. 39 is too noisy to be ac-
curately �tted to a speci�c model of critical dynamics.
Nevertheless, the diagonal line in the kagom�e case be-
low T = 0:5 is plotted using � / T��z where �z = 1.
As can be seen, this line is in agreement with the sim-
ulation results and also with the critical exponents
� = 1=2 and z = 2. These exponents arise in sev-
eral models of critical dynamics where the correlation
length diverges near the critical temperature.[48] How-
ever, the weak lattice size dependence of � encourages
us to believe that it is the local modes which are re-
sponsible for � (T ) in the kagome lattice. This possibil-
ity will be explored in the next chapter.

We have found that the kagom�e lattice has a very
strong inuence on the evolution of Heisenberg spins.
Between the two kagom�e ground states discussed here,
the q = 0 is more stable against small excitations. In
the

p
3�p3 state the system forgets its initial con�gu-

ration relatively quickly. Our simulations demonstrate
that in the kagom�e lattice the spectral density con-
tinuously narrows with no transition down to T = 0.
This is in agreement with both experimental results
and thermodynamical simulations.[22]

3.5 Conclusion and Discussion

3.5.1 Summary of Experimental results

Clearly, our experiments and simulation show funda-
mental di�erences between the kagom�e lattice and other
magnetic compounds. This is manifested in four ef-
fects:

(I) No peak in the muon relaxation rate. Indeed,
the Cr spin slows down as the temperature is lowered,
but the spectral density at low energy continuously
increases down to low temperatures. In the �SR ex-
periment, the relaxation rate saturates at low temper-
atures, while in the numerical simulation of classical
Heisenberg spins the relaxation rate increases all the
way to T ! 0. As was demonstrated in section 2.3
and by the simulation results in the square lattice, this
behavior cannot result from collective excitations.

(II) No di�erence in the �tted correlation time ��t

at temperatures below 7 K. Although there is a dif-
ference in the depolarization rates of the muon in the



3 THE KAGOM�E LATTICE 32

SCGO samples with x = 0 and x = 1:5, we �nd that
after taking into account the di�erence in the local

�eld, ��t is nearly the same in both samples. The
weak impurity dependence of the correlation time in
the kagom�e system is also supported by the numer-
ical simulations and coincides with the weak depen-
dence of the heat capacity in SCGO on dilution. This
phenomenon is in contrast to our basic assumption of
critical dynamics. Close to the critical point of a mag-
net we would expect the correlation length � and the
correlation time � to be related via � � �z, where z
is the dynamical exponent. Thus, we would expect a
shorter correlation time in the diluted system than in
the concentrated system since it must have a shorter
correlation length, at a given temperature, by virtue
of its missing ions. This basic assumption of critical
dynamics doesn't seem to hold for the kagom�e lattice
leading us to speculate, again, that the dynamics of
this lattice do not involve the long range correlations
of spins.

(III) The Gaussian line shape in a LF-�SRmeasure-
ment indicates a small internal �eld (100 G) but does
not decouple, even with a very strong external �eld.
This e�ect cannot be accommodated with the relax-
ation theories described up to now. This line shape
is observed in both the SCGO and CrJ, rendering it
a seemingly intrinsic property of the dynamics in the
kagom�e lattice with Cr ions. When other methods are
used to evaluate the order of magnitude of the internal
�eld, a much higher value is found (10 kG). Faced with
the discrepancy between our theories and experiments,
we look back on our models of muon spin relaxation
and realize that these models stem from the assump-
tion of Markovian dynamical processes. Therefore, we
speculate that the dynamics in SCGO and CrJ are not
described by these types of processes.

(IV) The energy scale of the single ion anisotropy
in SCGO (if it exists) is on the order of 0.1 K and
is much smaller than Tg. Therefore this anisotropy
is most likely not responsible for the observed di�er-
ence between �eld cooled and zero �eld cooled mea-
surements in this system.

These four e�ects are observed for the �rst time,
as far as we know, in kagom�e lattices and con�rm our
expectations of unique dynamical behavior in these sys-
tems. In what follows we o�er some ideas as to how the
observed dynamical phenomena in the kagom�e lattice
may come to be.

3.5.2 Speculations on Dynamics in the Kagom�e
lattice

In order to explain the discrepancy in the �SR the-
ory we came up with two possible scenarios. The �rst
one concerns the muon as a probe. It is possible that
the long range order is locally broken and the dynamic
uctuations are triggered by the presence of the muon.

The introduction of a muon breaks the time symme-
try and could lead to non-Markovian processes. Al-
though this scenario could possibly explain the line
shape, it cannot explain the temperature dependence of
the correlation time since the interaction of the system
with the muon can be viewed as local heating which
would then slightly increase the temperature locally.
We would therefore still expect a 1=T1 maximum in
this scenario.

The other model is based on the symmetry of the
kagom�e lattice. We have already shown that the col-
lective modes cannot be responsible for the observed
behavior in the kagom�e lattice. We therefore �rst ex-
amine the inuence of the local modes on the spectral
density. Let us, for purposes of demonstration, evalu-
ate the spectral density resulting only from initial con-
ditions that lead to a rigid motion of the 6 spins on
an hexagon in the

p
3 � p3 state. The same motion

was used by von Delf and Henly to calculate tunneling
probabilities in the quantum kagom�e lattice.[27] The
IC are obtained by keeping spins A and B (see Fig. 40)
on the same plane with spin C, placing them symmet-
rically on both sides of it. The angle between spins
A and B is taken to be 2�. In this con�guration the
vector [ŜA(0) + ŜB(0)] is parallel to ŜC(0), and the
excitation energy is

E(�) = 3(2 cos(�) � 1)2:

The equations of motion are

dŜC
dt

= ŜC � (ŜA + ŜB + ŜA0 + ŜB0 ) (65)

dŜA=B

dt
= ŜA=B � (2ŜC + 2Ŝb=a) (66)

where the vectors ŜA0 and ŜB0 are neighbors of ŜC
which are not shown in the �gure. Their sum (ŜA0 +
ŜB0) is �xed in time and is also parallel to ŜC(0). The
last equation can be rewritten as

d(ŜA + ŜB)

dt
= 2(ŜA + ŜB)� ŜC (67)

d(ŜA � ŜB)
dt

= 2(ŜA � ŜB)� (ŜC + ŜA + ŜB):(68)

Given our special initial conditions, we see from Eq. 65
and 67 that

dŜC
dt

= 0 (69)

d(ŜA + ŜB)

dt
= 0: (70)

From Eq. 68, we �nd that the vector (ŜA � ŜB), and
therefore ŜA and ŜB, oscillate around the vector 2[ŜC(0)+
ŜA(0) + ŜB(0)] with a frequency

!(�) = 2[1� 2 cos(�)]: (71)
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This result leads to the spin-spin correlation function

Ŝ(t) � Ŝ(0) = cos 2(�) + sin 2(�) cos(!(�)t) (72)

for spins A and B.

Figure 40: The inital condition which lead to a rigid
local motion of spins on the kagom�e lattice

Since � = lim!!0
~�0(!), we are only interested in

~�0(!) in the limit ! ! 0. After eliminating the static
terms we �nd

~�0(!) /
�Z

0

exp(�E(�)=T )
Z

sin2(�)�(! � !(�))d�

=
(12 + 4! � !2)

1
2 exp(�3!2=4T )

16Z
: (73)

where the partition function Z is given by

Z =

Z
d� exp(�E(�)=T ):

Since E(�) / �4, to lowest order in �, we �nd Z / T 1=4

at low temperatures.
Equation 73 has two consequences: (I) in the limit

! ! 0 we �nd that the correlation time (or spectral
density) increases as � / T�1=4. (II) at very low
frequencies we expect ~�0(!) = � (1 + !=6), and the
spectral density increases with ! before it starts to de-
crease. Although in this model we �nd a mode which
could result in an increasing correlation time as T ! 0,
the critical exponent obtained here is di�erent from the
one we �nd in the simulation, and the initial increase
of the spectral density shown in Fig. 38f is too rapid.
In addition we know that the system has a tendency
towards coplanarity. This tendency does not exist in
our simple model. We must then conclude that this
mode is oversimpli�ed.

We therefore go one step further and suggest that
there are two additional time scales involved in the
problem: the �rst one, �1, is the time scale in which
the system relaxes into a

p
3�p3 state (in the vicin-

ity of the probe) once it as been excited out of it. The
second, �2, is the time scale in which it takes the sys-
tem to �nd itself in a con�guration which can lead to
a local motion. Since the

p
3�p3 state is the most fa-

vorable, these time scales are not equal, and they both
depend on the size of the area which is to be moving.
This type of motion is usually what we expect from
non-ergodic systems. In such systems the degrees of
freedom become con�ned to a small region of phase
space and only rarely travel to other areas of phase
space because of an entropy wall. However, once the
system has traveled and arrived in a new area of phase
space, it remains there for some time before embark-
ing on a new journey. In our model the system is only
weakly locked in a particular coplanar state and will
often visit other coplanar states since the entropy wall
is relatively small. Unfortunately, at this point, we
can not o�er a solution for the spectral density in this
model. However, we can show that some of the fea-
tures observed in our experiment could be understood
in light of it.

Figure 41: The local �eld in the domain ip model.
The inset shows a spin con�guration which leads to a
local �eld at the center of a triangle.

Let us imagine a situation in which the �eld at the
muon site is zero for the

p
3 � p3 state but di�erent

from zero for another coplanar state. This situation
can occur if the muon resides in the center of a trian-
gle. For example, in the inset of Fig. 41 we show a spin
con�guration near a muon which is obtained from thep
3�p3 by interchanging two spins (marked in bold).

The �eld at the muon site in this case is not zero. An
example for the time evolution of the local �eld at the
muon site according to this model is shown in Fig. 41.
In this situation the evolution of the muon polariza-
tion will be governed by a stochastic process with two
di�erent types of time segments. During the segments
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of time in which the local �eld is zero, there will be
no evolution of the polarization whatsoever, while dur-
ing the time segments in which the local �eld is non-
zero, the polarization will evolve in a manner similar
to the one described in section 2. It was �rst noticed
by Uemura et al.[49] that the measured muon polariza-
tion function, taking both the zero and non-zero �eld
time segments into account (P 2S

z (t)), is the same as
the polarization function obtained by cutting out the
zero �eld segments and considering only the non-zero
�eld segments (P 1S

z (t)). However, the time has to be
re-scaled as t ! r � t where r is the portion of time
the muon experience a �nite �eld. In the language
of the local mode excitations r = �1=(�1 + �2). This
time-rescaling is a consequence of the fact that in a LF
experiment the muon polarization evolves in time only
where there is a local source of magnetic �eld. There-
fore, in any interval of time dt, only during the portion
r � dt does the polarization relax.

If we now look at our LF-�SR experiment in SCGO
or CrJ, with the minute LF ofHL = 100 G, we see that
the root mean square of the local �eld � is mostly
determined by the depolarization at early time where
Pz(t) = P 2S

z (t) � exp(��2t2). However, this polariza-
tion is exactly

P 2S
z (t) = P 1S

z (r � t) = exp(�[�1S � r � t]2)

where �1S is the RMS of the �eld taking only the non-
zero �eld segment into account. Thus, according to this
model � = r ��1S and the local �eld, when it is not
zero, is 1=r times larger than what we have concluded
it to be from our measurements at low LF. We can now
understand the unexpected weak decoupling. In order
to make P 2S

z = 1 we must make P 1S
z = 1. Assuming

that the uctuation 1=�1 � �1S we must have for this
decoupling HL ' 5�1S = 5�=r. If, for example, r =
0:05 in the x = 0 SCGO sample, only a �eld � 1 T
would decouple the spectra as roughly observed in the
experiment.[49]

Recently, Cherepanov considered a dynamicalmodel
which is based on domain formation and regional ips.
However, he only provides estimates for dynamical ex-
ponents and not for the actual time scales. Therefore,
we cannot test the applicability of his model to our
measurements as yet.

This model could account for the weak dependence
of dynamical properties on dilution (and lattice size in
the simulation), and could possibly explain the temper-
ature dependence of the correlation time; it could also
explain the decoupling problem. Its weakness is in the
necessary assumption of a muon site which could not
be the same for a variety of compounds. It would be
interesting to see if this model could give rise to a T 2

dependence of the heat capacity and to the observed
data in neutron scattering. It should also be pointed
out that the question of why the correlation time sat-

urates at low temperatures remains open. This satu-
ration could follow from some other interaction which
becomes important at low temperatures, or, as Uemura
et al. suggested, from quantum e�ects.[49]

4 The \In�nite Layer" Cuprate

Antiferromagnets

4.1 Introduction

The discovery of high-temperature superconductivity
in cuprate systems has generated considerable inter-
est in the magnetic properties of their undoped par-
ent compounds.[50] This is partly based on the widely
accepted conjecture that the superconductivity of the
high-Tc cuprates is intimately related to the magnetic
interactions within the CuO2 planes. Another source
of interest comes from the fact that some of the parent
antiferromagnets, such as La2CuO4, represent nearly
ideal 2-dimensional Heisenberg spin systems.[51] The
so-called 123 compound YBa2Cu3O7 is perhaps the
most extensively studied among the various cuprates.
The 123 system has a layered perovskite structure,
shown in Fig. 42, with three copper-oxygen layers stacked
along the tetragonal ĉ axis. Two of these layers have
oxygen ions between the copper ions in both the â and
b̂ directions, and thus are called CuO2 plane layers.
The third layer, called the CuO chain layer, has oxygen
ions only along the b̂ axis: YBa2Cu3Oy with y = 7:0
has complete CuO chains, while some oxygen atoms
are missing and the chains are fragmental for materi-
als with y < 7:0. Since the CuO2 plane and the CuO
chain represent two important building blocks of high-
Tc cuprate compounds, it is useful to study their mag-
netic behavior separately. In this chapter and the next
one we present such a study. Here we concentrate on
Ca0:86Sr0:14CuO2 with the CuO2 layers structure, and
in chapter 5 we investigate compounds with the CuO
chain structure.

The layered compound Ca0:86Sr0:14CuO2 is charac-
terized by the highest density of CuO2 planes among
the various cuprate systems, with no other layers sand-
wiched between the CuO2 planes (see Fig. 42).[52]
Systems with this structure are often called \in�nite
layer" (ILy) compounds. The �rst in�nite layer mate-
rial was reported by Roth.[53] At ambient pressure the
structure of Sr1�xCaxCuO2 can only be stabilized with
x � 0:1,[52] but compounds with x ranging up to 1 can
be synthesized at high pressure and temperature.[54]
The present system is also the undoped parent com-
pound of several cuprate superconductors having the
same crystal structure; recently Azuma et al. [55] re-
ported the synthesis of (Sr1�xCax)1�yCuO2 with Tc
up to 110 K, and Smith et al. [56] obtained electron-
doped ILy superconductors (Sr1�xNdx)1�yCuO2 and
(Sr1�xLax)1�yCuO2 with Tc � 50 K.
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Figure 42: Crystal structures of YBa2Cu3O7,
Sr2CuO3, and Ca0:86Sr0:14CuO2. The exchange cou-
plings along layers and chains are emphasized by the
solid lines.

Our specimen of Ca0:86Sr0:14CuO2 was prepared by
calcinating stoichiometric ratios of CaCO3, SrCO3, and
CuO for 12 hours in air. After several repetitions of cal-
cination and regrinding, the powder was pressed into
pellets which were �nally sintered at 980 �C for 12
hours. The specimen was checked by X-ray di�raction;
it was found that the Ca0:86Sr0:14CuO2 has a tetrago-
nal structure with lattice constants a = 3:8611 �A and
c = 3:1995 �A, and contains no apical oxygen atoms.
We could not �nd any impurity peak with an intensity
greater than 1% of the (011)-peak height of the ILy-
structure. Simple valence counting yields a valence of
+2 for the copper ions.

In our �SR experiments we �nd antiferromagnetic
order in this system. The N�eel temperature TN =
540 � 5 K found by �SR is in agreement with the
value TN = 537 � 5 K obtained by neutron scattering
measurements.[57] We also measure the order param-
eter as a function of temperature and compare it with
the order parameters of other cuprates systems with
larger layer separation. This comparison demonstrates
the inuence of dimensionality on the magnetic prop-
erties of the cuprates. In addition to studies of various
intrinsic magnetic properties, we also present results on
the muon site and di�usion in the ILy system. The sim-
plicity of its crystal structure makes this system nearly
ideal for such studies. Ca0:86Sr0:14CuO2 orders mag-
netically at a temperature high enough for muons to
hop between interstitial sites within the antiferromag-
netically ordered state. We can study the temperature
dependence of the hopping rate via the fast dephasing
of the muon spin precession, using the phenomenolog-
ical treatment described in section 2.4. Results on the
di�usion rate may be compared with models involving
the electrostatic potential at the muon site. In order
to look for possible muon sites in ILy, we compare the
muon spin rotation frequency observed at low temper-
atures with a model calculation for the local �eld as-
suming a dipolar interaction.

This chapter is organized as follows: In section 4.2,

we present �SR results on Ca0:86Sr0:14CuO2 and com-
pare them with neutron scattering measurements.[57]
Muon di�usion in this system is discussed in section
4.3. The muon site in this system is treated in sec-
tion 4.4. In section 4.5, we compare the present re-
sults in Ca0:86Sr0:14CuO2 with previous �SR results for
La2CuO4,[58] Sr2CuO2Cl2,[51] and discuss di�erences
in their magnetic properties within the framework of a
quasi 2-dimensional Heisenberg model.

4.2 �SR Measurements

The �SR experiments were performed at the M15 sur-
face muon channel at TRIUMF. Several pieces of sin-
tered polycrystalline specimens, each approximately 5�
5 � 0:5 mm, were mounted in a He gas ow cryo-
stat which operates in a temperature region from 3.0
to 300 K. An oven was used to obtain higher tem-
peratures. Fig. 43 shows typical time spectra of the
muon polarization observed in Ca0:86Sr0:14CuO2 be-
tween 400 K and 545 K. A large increase in the muon
spin depolarization rate is seen between 545 K and
535 K. The relaxation at 545 K is characteristic of
nuclear magnetic moments, whereas the relaxation at
535 K is due to the freezing of electronic moments.
The N�eel temperature TN = 540�5 K, estimated from
Fig. 43, is in very good agreement with TN = 537�5 K
found in neutron scattering measurements.[57] Another
indication of magnetic order comes from magnon Ra-
man scattering at room temperature in which a fairly
strong but broad Raman band around 3000 cm�1 has
been attributed to spin-pair (two-magnon) excitations.[59]

Fig. 44 shows time spectra at 102, 245 and 360 K.
At 102 K and 245 K spin precession is evident and the
signal has a characteristic exponential decay. This in-
dicates the existence of static magnetic order at those
temperatures. Fourier transforms of the spectra at two
temperatures are shown in the insert of Fig. 45. At
102 K, two frequencies are present, but only one fre-
quency exists at 245 K. Such a splitting of the preces-
sion frequency was also seen in Sr2CuO2Cl2 and can
be the result of either a unique muon site that lacks
the symmetry of the magnetic system, or two di�erent
muon sites both having the symmetry of the magnetic
system. Muon hopping, with a rate increasing with in-
creasing temperature, may then be responsible for the
merging of the two frequencies into one. In that case
some intermediate frequency will be measured when
the hopping rate is much larger than the frequency at
each site. [60, 61] For further discussion of the two
frequencies, see section 4.3.

The �SR data below 300 K is analyzed with Eq. 10:
we use two �nite frequencies below 225 K and only one
above 225 K. The high precession frequency indicates
a strong local �eld due to the electronic moments, and
the e�ect of nuclear moments becomes insigni�cant, as
long as the determination of precession frequency is
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Figure 43: Corrected asymmetry above and below the
N�eel temperature in Ca0:86Sr0:14CuO2.

concerned. We therefore assume 1=TG = 0 in the anal-
ysis at low temperatures. Since our data cannot re-
solve di�erent spin-lattice relaxation times, we assume
a single T1 for the non-precessing signal in our analysis.
Unlike the frequency, the values obtained for T1 were
not well determined and depended on the details of the
�tting scheme; therefore we do not present them here.
The �tted asymmetry of the precessing component is
approximately 44% of the total asymmetry; the di�er-
ence from the ideal case of 2/3 may be ascribed to some
non-precessing background component and/or a possi-
ble missing precessing component having a very high
frequency or relaxation rate. Fig. 45 (solid circles) il-
lustrates the temperature dependence of the muon pre-
cession frequency in Ca0:86Sr0:14CuO2 normalized by
17.93 MHz. Below 225 K the curve splits into two lines
centered around 16MHz (Hloc=1.2 kG) with the higher
frequency approaching 17.9(1) MHz (1.32(1) kG) and
the lower frequency approaching 14.3MHz (1.06(1) kG).
The precession frequencies depend only very weakly on
the temperature below 0:5TN .

In most non-metallic magnetic systems, the per-
turbation caused by the �+ to the magnetism of the
host material is known to be minimal. We can expect
the muon spin precession frequency f(T ) to be pro-
portional to the sublattice magnetization Ms(T ), as
long as the muon site in the crystal is not altered. In
neutron di�raction experiments, one measures the in-
tensity of an antiferromagnetic Bragg peak, which is
usually proportional to M2

s (IB / M2
s ). In Fig. 45 we

Figure 44: Corrected asymmetry deep in the magneti-
cally ordered state. The solid curves are �ts to Equa-
tions 10 and 55 as described in the text.

also included the normalized
p
IB obtained by Vaknin

et al. [62] The two magnetization curves match rea-
sonably well in the intermediate temperature range. A
power law (M (T ) / (1 � T=TN )0:26) and molecular
�eld magnetization curves are also displayed: the for-
mer �ts the results well only near TN while the latter
�ts only at low temperatures.

4.3 Muon Di�usion

As shown in Fig. 44, the oscillations in the time spec-
tra fromCa0:86Sr0:14CuO2 start to disappear above 300
K, and are not observed at all at 400 K, even though a
large static �eld (B � 1 kG) should exist at this tem-
perature at the muon site. We attribute this strong
dephasing of the muon spin precession to muon hop-
ping between sites of opposite magnetic �eld directions
(due to the two sublattices in the ordered state of an
antiferromagnet). In fact, such �+ hopping has been
observed in the 123 system.[63] Equation 55 is used to
�t the �SR time spectra between 306 K and 460 K
assuming that the transverse relaxation caused by the
hopping is much larger than any other sources of T2.
At 500 K and above, the relaxation is caused by the
combination of hopping and the slowing down of the
Cu spins in the critical regime. The relaxation behav-
ior in this temperature range is beyond the scope of
our model and is not discussed here.

The temperature dependence of the deduced hop-
ping rate is shown in Fig. 46, where the results are com-
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Figure 45: The temperature dependence of the muon-
spin precision frequency in zero-�eld along with neu-
tron scattering data[57] observed in Ca0:86Sr0:14CuO2.
Below 225 K two frequencies are seen. The solid lines
are a power lawM (T ) / (1�T=TN )

0:26 and a molecu-
lar �eld curve. Fourier power spectra are shown in the
insert.

pared with an Arrhenius law � = �0 exp(�Ea=kBT ).
The results agree reasonably with a straight line char-
acterized by an activation energy Ea = 0:39(1) eV and
an asymptotic hopping rate �0 = 1:8(8)� 1013 sec�1.
These are the �rst quantitative results for muon di�u-
sion and the associated energy barrier in cuprates. The
measured activation energy can be compared with the
numerical calculations performed by Li et al. of the
electrostatic potential in 123.[64] According to their
calculation, a muon trapped in a site between the two
CuO2 layers needs roughly 0.5 eV to escape from its
site.

Figure 46: Hopping rate as a function of temperature
in Ca0:86Sr0:14CuO2.

4.4 Muon Sites

In the antiferromagnetic state of an insulator, we as-
sume that the magnetic �eld seen by the muon is given
by the dipolar �eld

H(R�) =
X
i

��Cu(ri �R�)2 + 3[�Cu � (ri �R�)](ri �R�)

j ri �R� j5
(74)

where ri and R� are the position of the ith Cu+2 ion
and muon respectively, and �Cu is the e�ective mag-
netic moment of the Cu+2 ion. Neutron scattering and
susceptibility measurements[57] indicate that an e�ec-
tive moment of 0.51 �B=Cu lies in the âb̂ plane (in the
ordered state of the ILy). Here we assume that the mo-
ments make an angle of 45� with the â axis in the âb̂
plane, as was found in LaCuO4 and Sr2CuO2Cl2. [62]
Since this moment does not involve any orbital com-
ponent, the electrostatic interactions determining the
muon site should not be di�erent between the para-
magnetic and ordered states. It is then reasonable
to assume that the muon site preserves the tetrago-
nal symmetry of the crystal lattice. In contrast, the
magnetic �eld in the cell at the ordered state has lower
symmetry; i.e., the �elds in two crystallographically
equivalent sites are not necessarily equal.

To account for possible muon sites which could cor-
respond to the two observed frequencies, we search
for sites, according to the restriction H = 1:32(1) or
H = 1:06(1) kG, and obtain their coordinates (x; y; z)
in the unit cell. Then the �eld for the crystallograph-
ically symmetric site (x,b-y,z) is calculated. If the re-
sulting �eld is either 1.32(1) or 1.06(1) kG, such a site
is a candidate. Otherwise, we should have seen a dif-
ferent frequency than the observed ones. There are
two di�erent types of sites: we refer to all sites where
H(x; y; z) = H(x; b� y; z) as type-A sites. There are
two kinds of type-A site; Ahigh where H = 1:32(1)
and Alow where H = 1:06(1) kG. If the muon occupies
a type-A site we need to assume the existence of two
crystallographically non-equivalent muon sites to ob-
tain two frequencies. The other type is when H(x; y; z)
and H(x; b� y; z) are not equal to each other, but one
is 1.32(1) and the other is 1.06(1) kG. We call such a
site type B. Only one crystallographic site of type-B is
needed in order to account for the two frequencies.

We performed a calculation of the local �eld in a
lattice consisting of 83 unit cells, which gives an error in
the calculated �eld comparable to the measured ones.
A grid of 5003 points is used to scan within the unit
cell. Type A sites are found only in the sides of the
tetragon and in a plane passing through the Sr ion and
midway between two adjacent Cu ions. Half of the ĉb̂
plane and a plane passing through the Sr ion are plot-
ted in Fig. 47. Since electrostatic arguments suggest
that muon sites are roughly 1 �A away from an oxygen
ion,[65] we highlighted this sphere by a solid line, in the
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�gure. We found Ahigh (solid circle) and Alow (empty
circle) sites roughly 1 �A away from the oxygen ion and
very close to each other: the closest distance between
Ahigh and Alow is 0.25 �A. If a muon stops randomly at
either of these two type-A sites at low temperatures,
two frequencies will be observed. One can then explain
the merging of the two frequencies at elevated temper-
atures by assuming that the muon starts to hop from
one site to the other. [60, 61] In that case, the increase
of the low frequency and the increase of the error bars
of that frequency as seen in Fig. 45, suggest that the
site with low frequency is metastable.

Figure 47: Possible muon sites; only half of the ĉb̂
plane and a plane passing through the Sr ion and be-
tween two Cu ions are plotted. On these planes, only
type-A sites were found.

We also found several type-B sites, which exist at
a reasonable distance from an oxygen ion: the closest
distance to oxygen is 1.25 �A. If the muon resides in any
of these type-B sites at low temperatures a splitting of
the frequency will be seen due to the lower symmetry
of the magnetic lattice. However, the measured ratio
between the muon precession asymmetry of the high
frequency signal to the low frequency signal is roughly
6 at low temperatures. If the muon stops in a type-B
site, this ratio is expected to be 1. In addition, with-
out rapid hopping between adjacent type-B sites, two
frequencies are expected at any temperature. Hopping
between two type-B sites is less likely because we would
then expect a symmetric change in the frequency as
the temperature increases, in contrast to the observed
change. We therefore consider that the muon sites in
Ca0:86Sr0:14CuO2 are probably type-A sites.

4.5 Discussion

Figure 48 shows the sub-lattice magnetization curves
of three compounds, all containing CuO2 plane layers,

with di�erent inter-layer distances dCuO: Ca0:86Sr0:14CuO2

(dCuO = 3.1995 �A), La2CuO4�0:015 (dCuO = 6.595 �A)
[66] and Sr2CuO2Cl2 (dCuO = 7.765 �A) [67]. We see
that the sub-lattice magnetization decreases most quickly
with temperature when the interlayer separation is great-
est. This can be attributed to a decrease in the e�ective
dimensionality for systems with larger dCuO. For an-
tiferromagnetic spin waves with linear dispersion, the
density of states is given as n(!) / !2 in 3D systems,
while n(!) / ! in 2D systems. Consequently, systems
with lower dimensionality have a larger spectral weight
of low energy thermal magnon excitations. The sublat-
tice magnetization is more easily destroyed by thermal
excitations in 2D systems than in 3D systems. We see
in Figure 48 that increasing the inter-layer distance
dCuO takes the cuprate antiferromagnets closer to an
ideal 2-dimensional magnetic system (as one would ex-
pect).

To consider this behavior more quantitatively, we
compare the experimental results with calculations for
a simpli�ed quasi two-dimensional Heisenberg model
previously studied by Lines.[68] It is known that ideal
two-dimensional Heisenberg systems do not undergo
magnetic order at �nite temperatures. To account for
the deviation from the 2D Heisenberg situation, this
model introduces a uniaxial anisotropy �eld HA which
stabilizes the magnetic order. The Hamiltonian is then
given by

H =
X
NN

JSu�Sd�
X
u

g�BHAS
z
u+
X
d

g�BHAS
z
d (75)

where the subscript u(d) labels spins on \up" (\down")
sites in the ordered phase, and the �rst summation runs
over all nearest-neighbor spin pairs. The solution for
M (T )=M (0) was given by Lines[68], using a random-
phase Green's function approximation. This solution
depends on the parameter D = g�BHA=4sJ which is
proportional to the ratio of the anisotropy energy to the
exchange energy. We calculated M (T )=M (0) for vari-
ous values ofD, as described in Ref. [51], and show the
results with the solid lines in Fig. 48. The temperature
dependence of the sub-lattice magnetization is very
sensitive to the inclusion of a small anisotropy term:
M decays very quickly with increasing T for small D
values. We should note that, in the three cuprate sys-
tems mentioned above, the real mechanism for devia-
tion from the ideal 2D Heisenberg interaction may be
di�erent from the uni-axial anisotropy assumed in the
model Hamiltonian. In fact, an inter-layer magnetic
coupling, i.e., a small three dimensional interaction, is
more likely in our systems. Comparison of the model
calculation and the observed results, however, allows
us to roughly estimate the e�ective energy scale of the
additional term to the ideal 2D Heisenberg interaction.
Figure 48 demonstrates that an increasing inter-layer
distance dCuO results in a very rapid reduction of such
an additional anisotropy and/or a 3D term. This is
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quite reasonable if the 3D inter-layer magnetic coupling
plays a predominant role in the cross-over from 3D to
2D behavior. Thus, Ca0:86Sr0:14CuO2 is more appro-
priately described by a 3D model whereas Sr2CuO2Cl2
is a very good example of a quasi 2D Heisenberg sys-
tem.

Figure 48: Comparison of M (T ) determined by �SR
for compounds with three di�erent layer separations.
The solid lines represent a quasi two-dimensional
Heisenberg model. The parameter D is given by
D = g�BHA=4sJ where HA is the anisotropy �eld.

The exchange interaction within the CuO2 planes
in Ca0:86Sr0:14CuO2 system was estimated to be J �
1000 K from susceptibility measurements, [57] and two
magnon Raman scattering.[59] This value is in agree-
ment with the J2d of La2�xCuO4�y determined from
neutron scattering.[69] The expected N�eel temperature
from mean �eld theory is ZJ , where Z is the nearest
neighbor coordination. Thus the suppression factor
of the ordering temperature S = TN=ZJ > 0:1. As
we shall see in the next chapter, systems with lower
dimensionality, i.e. spin chains, have a much smaller
suppression factor.

5 The \In�nite-Chain" Cuprate

Antiferromagnets

5.1 Introduction

The subject of one-dimensional (1D) spin 1/2 chains
has drawn considerable theoretical and experimental
attention in the past few years.[70, 71] However, this
research is restricted by the di�culty of �nding systems
in which the magnetic interaction is approximately 1D.
Consequently, there is considerable interest in new ma-
terials which could better serve this study. Because
of their crystal structure the \In�nite Chain" (ICh)
compounds R2CuO3 (R is Sr or Ca) are possibly such

materials. In the orthorhombic lattice of the ICh com-
pounds, shown in Fig. 42, the CuO chains lie along the
b̂ axis (b = 3:49 �A), while along the â axis (a = 3:91 �A)
there are no oxygen atoms to carry the superexchange
interaction. The distance between the Cu atoms along
the ĉ axis (c = 12:70 �A) is roughly three times as large
as this distance along the â or b̂ axis.[72, 7] This struc-
ture leads us to anticipate 1D behavior in the ICh sys-
tems.

In addition, R2CuO3, has a structure resembling
the chain layer of the 123 system, as shown in Fig.
42. Comparison of these two systems could help us
understand the role of dimensionality in the magnetic
properties of cuprates. To date, no information has
been available on the magnetic properties of R2CuO3,
except for the fact that two-magnon Raman scattering
was not seen in this system at room temperature.[72]
Chemical charge counting arguments suggest that R2CuO3

has CuO chains without free charge carriers.
Our �SR measurements in R2CuO3 �nd antiferro-

magnetic long range order. We also con�rm the low
dimensionality of the ICh by comparing the N�eel tem-
perature obtained by the �SR technique with the ex-
change interaction deduced from two magnon Raman
scattering and susceptibility experiments. We �nd in
this system that TN=ZJ1d < 0:01. This ratio is smaller
than any other prototypical 2D [73] or 1D [74] spin sys-
tem known to us. The �SR experiment is also used to
determine the magnetic properties of the R2CuO3 in
the ordered state. What follows is a detailed presenta-
tion of our data, divided into two separate subsections
concerning the Ca2CuO3 and the Sr2CuO3, followed
by a discussion.

5.2 The Ca2CuO3 system

The Ca2CuO3 sample is prepared by a sintering process
similar to that used for the Ca0:86Sr0:14CuO2 sample.
Powders of CaCO3 and CuO are mixed with the ra-
tio of 2:1 and are calcined at 960-970 �C for 12 hours
in air. The powder is then pressed into pellets and
sintered at 1000�C for 12 hours. The X-ray di�rac-
tion pattern is characterized by the peaks of the ICh
structure, except for several small peaks of unknown
origin with intensities less than 2.5% of the (011)-peak
intensity.

5.2.1 �SR measurements

Fig. 49 shows Zero Field (ZF) �SR time spectra mea-
sured in Ca2CuO3. At 13 K we �nd only muon spin
relaxation, while at 11 K we �nd muon spin oscilla-
tions, which indicate a static local �eld. Therefore, the
N�eel temperature lies in the range 11 < TN < 13 K.
The critical region of less than 2 K is rather small and
is consistent with a �rst order phase transition. The
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increase of oscillation amplitude at low temperatures
indicates the onset of long range magnetic order.

Figure 49: Zero �eld �SR data in Ca2CuO3. The inset
shows both the corrected susceptibility � � �dia (in
unites of emu/G-mole), and the corrected susceptibility
with a Curie term subtracted as described in the text.
The inset also shows the expected susceptibility in a
one-dimensional model.[75]

In longitudinal �eld �SR measurements shown in
Fig. 50, no dynamical uctuations are found around
TN or at low temperatures. An external LF of the
same strength as the internal �eld easily decouples the
spectrum. This indicates that the main source of muon
spin relaxation is static �eld modulations.

After several attempts we �nd that the best �t to
the �SR data is achieved with the form

A(t) = Ade
�t=TL + e�(t=TG)

2

[A1 cos(2�f1t)(76)

+ A2 cos(2�f2t)]:

The three amplitudes are �xed, and the contribution to
the relaxation from nuclear moments and background
is deduced from the high temperature data. It should
be noted that the values we obtain for the frequencies
depend very weakly on the �tting scheme. The pres-
ence of two frequencies could be a result of two muon
sites, or a unique crystallographic site, which is not
symmetric with respect to the magnetic lattice. That
the observed asymmetries are di�erent { A1 = 0:008
and A2 = 0:0175 (with Ad = 0:11) { supports the �rst
possibility. Interestingly, the muon relaxation function
in Ca2CuO3 is very similar to the one observed in the
metallic spin density wave system (TMTSF)2-X, even
though the ICh is insulating.[76]

Figure 50: LF-�SR data in Ca2CuO3 (a) near the crit-
ical region and (b) at low temperature.

The temperature dependence of the two �tted fre-
quencies is shown in Fig. 51. We see a fast reduc-
tion in the frequencies with increasing temperature,
expected for the sub-lattice magnetization of a low
dimensional spin system. The same behavior is ob-
served in the sister compound Sr2CuO3.[7] The similar
temperature dependence of the two frequencies sup-
ports the assumption that they result from two dif-
ferent muon sites. In the inset of this �gure we show
the parameters 1=TL and 1=TG as a function of tem-
perature. The absence of rapid dynamical uctuations
at low temperatures in a LF-�SR measurement sug-
gests that the TL relaxation originates from a random
component of the local �eld which is static or at most
slowly uctuating (on a time scale of 1 MHz). The
increase in 1=TL as T ! 0 is ascribed to an increase
in the RMS of this random �eld. The relaxation of
the oscillating part, 1=TG, could also result from static
�eld inhomogeneity.

5.2.2 Susceptibility Measurements

The dc-susceptibility measurements were made using
a commercial SQUID magnetometer between 5 K and
300 K. The susceptibility data appearing in the in-
set of Fig. 49 are obtained after subtracting core dia-
magnetism (�dia = �78 � 10�6 emu/G-mole) from
the measured values.[77] In this �gure we also plot
the susceptibility after subtracting a magnetic impu-
rity contribution, which was assumed to follow a Curie
law. The estimated magnetic impurity density, assum-
ing Cu+2 impurities, is 0.13%. In addition, in the in-
set of Fig. 49, we compare the susceptibility measure-
ment with a model calculation for the 1D Heisenberg
spin chain, consisting of S = 1=2 moments coupled
antiferromagnetically, as given by Bonner and Fisher.
[75] The model was solved numerically for the nearest
neighbor exchange interaction between N moments on
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Figure 51: The temperature dependence of the two
frequencies in Ca2CuO3. The inset is the relaxation
rates given by Eq. 76.

a ring; the exact solutions for N ranging between 3 and
11 were extrapolated to N !1. The temperature de-
pendence of the theoretical dc-susceptibility is shown
for several values of the exchange interaction J1d. Ac-
cording to this theory, J1d in Ca2CuO3 is of the order
103 K.

5.2.3 Magnon Raman Scattering

The �SR determination of TN is completely unam-
biguous. On the other hand, there is a certain sys-
tematic ambiguity in the estimate of J from uniform
susceptibility, due to the subtraction of an impurity
Curie and diamagnetic terms. Therefore, it is impor-
tant to estimate J from more direct measurements.
For that purpose, Tajima and collaborators performed
a two magnon Raman Scattering experiment at SRL
Tokyo.[78] In this experiment a laser light of a given fre-
quency impinges on the sample and the number of pho-
tons emitted in nearby (shifted) frequencies is counted.
They found a very broad peak in the frequency shift at
T = 7 K centered at �E = 2200 cm�1 (see Fig. 52) and
spreading over �2000 cm�1. For comparison a phonon
peak would be only 100 cm�1wide.

Since no frequency shift is seen at room temper-
ature, it is attributed to scattering of light from the
magnetic system in the ordered state. The interaction
of the photon magnetic �eld with the ionic moment is
too weak to produce such scattering and this e�ect is
usually understood within the realm of the two magnon
Raman scattering theory. In this theory the light is
coupled electrically to the electrons of the oxygen. The
scattering process begins with the absorption of an in-
coming photon by one of the oxygen electrons, exciting
it to a higher level. Next, the excited oxygen, which
now has a magnetic moment, interacts with the neigh-
boring Cu moments producing two symmetric magnons

traveling left and right. Finally, the electron of the
oxygen decays while emitting an outgoing photon of
energy lower than that of the incoming photon. Since
the magnons are symmetric, their momentum disap-
pears from the kinematic equation and scattering is
allowed for a large range of photon frequency shifts,
giving rise to the wide peak. This theory predicts that
the peak is centered at E � 3J , indicating an exchange
constant J in the order of 103 K in Ca2CuO3.[79]

Figure 52: Frequency shift in Raman scattering on
Ca2CuO3.

The combination of the �SR results with the sus-
ceptibility and two magnon Raman scattering mea-
surements demonstrates that Ca2CuO3 is a very good
quasi one-dimensional compound with a suppression
ratio S = TN=ZJ1d � 0:01. This ratio indicates that
the exchange interaction between the CuO chains is
extremely small, though �nite. For comparison, in
the \In�nite-Layer" system CaCuO2, in which oxygen
atoms are placed along both the â and b̂ axis (CuO2

planes) and the interaction is roughly 3D S � 0:1 (see
chapter 4).[7]

5.3 The Sr2CuO3 system

The data in Sr2CuO3 is very similar to the data in
Ca2CuO3 and is therefore presented somewhat briey.
The preparation of the sample is done in a way similar
to the preparation of Ca2CuO3.

5.3.1 �SR Measurements

Fig. 53 shows �SR time spectra measured in Sr2CuO3.
A large increase in the muon spin depolarization oc-
curs between T = 6.0 K and 5.5 K, which can be at-
tributed to the slowing down of spin uctuations, or
to the appearance of a random static �eld. Muon spin
oscillations, indicating a static local �eld, appear only
at 4.15 K and therefore the N�eel temperature can be
determined as 4:15 < TN < 6 K. This is consistent
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with the absence of magnon Raman scattering peaks
in Sr2CuO3 at room temperature.[72]

Figure 53: Corrected asymmetry above and below the
N�eel temperature in Sr2CuO3.

Our measurement at low temperature indicates that
the magnetic order in Sr2CuO3 involves the majority
of the sample volume. The observed oscillation signal
is characteristic of uniform magnetic ordering. There-
fore, we conclude that the observed transition is due
to the onset of magnetic long range order in the CuO
chain. The �SR data is analyzed with Eq. 10, using
two �nite frequencies. The contribution to the relax-
ation from nuclear moments is deduced from the high
temperature data and we assume a single spin-lattice
relaxation time. Here again we present only the fre-
quencies, since they are independent of the �tting pro-
cedure. The temperature dependence of the two ob-
served frequencies is shown in Fig. 54. We see a fast
reduction in the frequencies with increasing tempera-
ture, expected for the sub-lattice magnetization of a
low dimensional spin system.

5.3.2 Susceptibility Measurements

The susceptibility measurements are made using a Quan-
tumDesign SQUID dc-magnetometer withH = 10 kOe
between 5 K and 400 K. The susceptibility data appear-
ing in Fig. 55 is obtained after subtracting core diamag-
netism and magnetic impurity contributions from the
measured values; the magnetic impurity susceptibility
is assumed to follow a Curie law. The impurity Curie
term in Sr2CuO3 is sensitive to the annealing condi-

Figure 54: The temperature dependence of the muon-
spin precision frequency in zero-�eld, observed in
Sr2CuO3.

tions { time, temperature, and atmosphere { as well as
to sample age.[80] Some samples of Sr2CuO3 showed
a Curie term corresponding to up to a 3% impurity
density.

Figure 55: Susceptibility measurements after the Curie
and diamagnetic terms have been subtracted compared
with 1D model as described in the text.

In Fig. 55 we also compare the susceptibility mea-
surement in Sr2CuO3 with the Bonner and Fisher model
for 1D antiferromagnetic Heisenberg spin 1=2 chain.[75]
The temperature dependence of the dc-susceptibility,
for several values of the exchange interaction J1d, is
shown in the �gure. It is clear that J1d in Sr2CuO3 is
on the order of 103 K, two orders of magnitude higher
than the N�eel temperature.
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5.4 Discussion

In the in�nite chain system R2CuO3, the magnetic ex-
change interaction J1d � 1000 K, inferred from uni-
form susceptibility measurements and Raman scatter-
ing, is very high, while the present �SR study revealed
that magnetic order occurs only below T � 10 K. The
large ratio of kTN=J1d � 0:01 is quite remarkable, it is
smaller than those ratios in most of known prototypical
2D [73] and 1D [74] spin systems. This ratio indicates
that the exchange interaction between the CuO chains
is extremely small but �nite. Detailed study of such
systems could provide interesting results in testing the-
ories for highly correlated 1D charge/spin chains, such
as the 1D Hubbard model. In view of this, there is an
ongoing e�ort to dope charge carriers in R2CuO3. [80]

As for the 123 superconductor, the CuO chains in
the 123 system YBa2Cu3Oy have oxygen atoms miss-
ing for y < 7:0; complete chains exist only for y = 7:0.
Furthermore, the CuO chain in the 123 system serves
as a charge reservoir, and the average charge per Cu
is often di�erent from that of the Cu2+ ions in the
insulating chains in R2CuO3. In PrBa2Cu3O7, for ex-
ample, Takenaka et al. [81] performed an optical study
and found that there are 0.5 holes per Cu in the CuO
chain. The same number is expected in the CuO chain
of YBa2Cu3O7. Therefore, it is not appropriate to
make a direct comparison between R2CuO3 and the
CuO chains in the superconducting 123 systems.

On the other hand, there exist experimental results
indicating that the chains in the 123 systems exhibit
a quasi one-dimensional nature. Two examples are:
a) the low ordering temperature of the chain Cu mo-
ments; Li et al. [82] performed neutron scattering mea-
surements in NdBa2Cu3O6:35 and showed that the Cu
moments in the CuO2 planes order at TN1 = 230 K,
while those in the CuO chain order at the lower temper-
ature TN2 = 10 K. b) the tendency of holes, doped into
the 123 chains, to be localized at low energy and low
temperatures, as demonstrated [81] in PrBa2Cu3O7.
These features are most likely due to the geometrical
structure of the CuO chains in these 123 compounds,
characterized by the absence of an oxygen atom be-
tween adjacent Cu atoms in the â-direction. In this
sense these 123 systems and Sr2CuO3 share a common
origin for their quasi 1D behavior.
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A The McMullen and Zaremba

Formula

Our aim in this appendix is to derive Eq. 21 using
perturbation theory. In order to do so we break the
Hamiltonian

H = Hc � � �B: (77)

into two terms
H = H0 +H0 (78)

where
H0 = Hc � � �Bs (79)
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and
H0 = �� �Bd (80)

as in chapter 2. The �elds Bs and Bd represent the
static and dynamic components of the �eld at the muon
site respectively. The ẑ direction is chosen as the di-
rection of Bs. We further de�ne any operator (O) with
explicit time dependence as

O(t) = exp(iH0t=�h)O exp(�iH0t=�h) (81)

and thus

��(t) = ��e�i!st; (82)

�z(t) = �z: (83)

The time propagation operator for the states of the
combined system (muon and crystal) is given by

U (t) = exp(� i

�h
H0t)[1� i

h

Z t

0
dt0H0(t0) (84)

� 1

h2

Z t

0

dt0
Z t0

0

dt00H0(t0)H(t00) + : : :]

We also de�ne the density matrix for the combined
system as

� = �0�� (85)

where

�0 =
e��Hc

Tre��Hc
; (86)

�� =
1 +P � �

2
; (87)

(88)

andP is the initialmuon polarization. The temperature-
averaged polarization as a function of time is given by

P(t) = h�i = Tr�U y(t)�U (t): (89)

This leads to the perturbation series

P(t) = h�(t)i(0) + h�(t)i(1) + h�(t)i(2) + ::: (90)

where

h�+(t)i(0) = P+e
�i!st (91)

h�z(t)i(0) = Pz: (92)

and

h�(t)i(1) =
i

�h

Z t

0

dt0h[H0(t0);�(t)]i (93)

h�(t)i(2) = � 1

�h2

Z t

0
dt0
Z t0

0
dt00 (94)

� h[H0(t00); [H0(t0);�(t)]]i:
In these equations !s = m j Bs j, h i indicates a trace
with respect to the initial density matrix �, and [ , ] is
the commutator.

The lowest order terms represent the �+ spin pre-
cession in the static �eld Bs; the linear term in H0

contains the expectation value hBdi which by de�ni-
tion is zero at all times; the third term h�+(t)i(2) is
given by

h�+(t)i(2) = �
2
m

2
e�i!t

Z t

0

dt0
Z t0

0

dt00 (95)�
P+hfBd

z (t
0); Bd

z (t
00)gi0 + 1

2
P+hf ~Bd

+(t
0); ~Bd

�(t
00)gi0

�1

2
P�hf ~Bd

+(t
0); ~Bd

+(t
00)gi0 � PzhfBd

z (t
0); ~Bd

+(t
00)gi0

+h[ ~Bd
+(t

0); Bd
z (t

00)]i0 � h[ ~Bd
z (t

0); Bd
+(t

00)]i0
�

and

h�z(t)i(2) = �
2
m

4

Z t

0

dt0
Z t0

0

dt00 (96)�
Pzhf ~Bd

+(t
0); ~Bd

�(t
00)gi0 + Pzhf ~Bd

�(t
0); ~Bd

+(t
00)gi0

�P�hf ~Bd
+(t

0); Bd
z (t

00)gi0 � P+hf ~Bd
�(t

0); Bd
z (t

00)gi0
+h[ ~Bd

�(t
0); ~Bd

+(t
00)]i0 � h[ ~Bd

+(t
0); ~Bd

�(t
00)]i0

�
where

~Bd�(t) = e�i!tBd
�(t)

Bd
�(t) = Bd

x(t)� iBd
y (t) (97)

Bd(t) = eiH0t=�hBde�iH0t=�h

and where h , i0 indicates a trace with respect to �0.
Here we are only interested in the longitudinal con-

�guration; therefore, we take P+ = P� = 0 and eval-
uate h�z(t)i(2). We can see from Eq. 96 that the last
two terms will contribute to h�z(t)i(2) even if P = 0
and these terms can generate polarization out of a non-
polarized ensemble. Since the equilibrium polarization
at 10 mK and a typical internal �eld of 1 kG is only
0.03 these terms must cancel or be very small; there-
fore, we ignore them. Now, with the help of Eq. 97 we
obtain Eq. 21

h�z(t)i(2) = �
2
m

4
Pz

Z t

0
dt0
Z t0

0
dt00 � (98)

ei!s(�)�+�(� ) + e�i!s(�)��+(� )

where � = t0 � t00 and

���0(t
0� t00) = hBd

� (t
0)Bd

�0(t
00)+Bd

�0(t
00)Bd

� (t
0)i0: (99)

In the last equation we made the assumption that the
correlation function depends only on the time di�er-
ence. This assumption stems from time translation
symmetry. We can now eliminate one of the integrals
and arrive at Eq. 24

Next we wish to demonstrate that the relaxation
rate in the fast limit is given by the spectral density at
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the Larmor frequency (~���0(!s)) as in Eq. 31. To do
so we �rst de�ne the spectral density using the Fourier
transform

���0(!) =

1Z
�1

���0(� )e
i!�d� (100)

which leads to

h�z(t)i(2) = t

Z
d!

2�
ft(! � !s)�+�(!) (101)

where

ft(!) =
sin 2(!t)

!2t
(102)

and
lim
t!1

ft(!) = ��(!): (103)

If we now write P (t) = P (0) exp(�t=T1), expand in
powers of t=T1, and compare with Eqs. 21 and 101,
after the integration with the delta function we arrive
at Eq. 31.

B The Fermi Golden Rule

The method developed in appendix A is very general
and applicable in a variety of limits. In the fast limit
(t!1) it can be directly connected to the well-known
Fermi Golden Rule. In order to understand this con-
nection, we denote: the eigenstates of the system by
j ii, the eigenvalues by Ei, and the matrix element
Bd
fi = hf j Bd j ii. Inserting the closure relation

1 =
X

j iihi j
between any two operators in Eq. 98, keeping in mind
that

expiH0t=�h j ii = eiEit=�h j ii;
and performing the time integrals we obtain:

h�z(t)i(2) = �(�hm)2Pz
X
if

e��Ei

z

�
�
Bd
+ifB

d
�fi

sin2[(Ei �Ef + �h!s)t=2�h]

(Ei �Ef + �h!s)2
(104)

+ Bd
�ifB

d
+fi

sin2[(Ei � Ef � �h!s)t=2�h]

(Ei � Ef � �h!s)2

�
:

At times longer than the Larmor period 2�=!s we can
make the replacement

sin2[(Ei �Ef + �h!)t=2�h]

(Ei �Ef + �h!)2
=

�t

2�h
�(Ei�Ef+�h!) (105)

arriving ultimately at the temperature-averaged Fermi
golden rule

1

T1
=

��h

2
2m
X
if�

e��Ei

z
� j Bd

�if j2 �(Ei �Ef � �h!):

(106)

C Spin-Wave Theory

The starting point is the Hamiltonian

H = �J
X
i>j

Si �Sj

and the spin commutation relation

[Sj�; S
j
�] = i���S

j
 :

For the antiferromagnetic case where two sublattices
exist, an exact representation of the spin operators in
terms of Bose creation and destruction operators may
be given by:

Si+ = (2S � ayiai)
1=2ai Sj+ = byj(2S � byjbj)

1=2

Si� = ayi (2S � ayiai)
1=2 Sj� = (2S � byjbj)

1=2bj

Siz = S � ayiai Sjz = S � byjbj

where the operator a creates spin deviation on the �rst
sublattice, namely, ai jni =

p
n jn� 1i, n runs from S

to �S and n = S means spin fully up. The operator b
creates spin deviation on the other sublattice but this
time n = S means spin fully down. The operators also
obey:

aia
y
i0 � ayi0ai = �ii0

ayia
y
i0 � ayi0a

y
i = 0

aiai0 � ai0ai = 0

and the same for the b operators. The a and b operators
commut. In the harmonic oscillator approximation we
keep only �rst terms in 1=S expansion. We therefore
have

Si+ = (2S)1=2ai Sj+ = (2S)1=2byj
Si� = (2S)1=2ayi Sj� = (2S)1=2bj
Siz = S � ayiai Sjz = S � byjbj:

(107)

Next, we introduce the Fourier transforms of the cre-
ation and destruction operators of spin deviations

ak = (2=N )1=2
P

i ai exp(�ik � ri)
bk = (2=N )1=2

P
j bj exp(�ik � rj)

where ri and rj are lattice vectors of the ith and jth
site on the appropriate sublattices and k belongs to
the �rst Brillouin zone (with two magnetic ions in the
primitive cell). Now we can write the Hamiltonian in
terms of spin waves

H0 = E0 � 2JZS
X
k

(aykak + bykbk) + k(a
y
kb
y
k + bkak)

(108)
where E0 is a constant, Z is the number of near neigh-
bors, and

k =
1

Z

X
nn

exp(ik � rnn)

where rnn is the vector connecting a given spin with
its nearest neighbor. The harmonic Hamiltonian is not
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yet diagonal. It can be diagonalized, however, by the
canonical transformation

ak = ukM1k + vkM
y
2k bk = vkM

y
1k + ukM2k

ayk = ukM
y
1k + vkM2k bk = vkM1k + ukM

y
2k;
(109)

where Mpk and M y
pk are Bose creation and destruc-

tion operators of a magnon with polarization p and
wavevector k, and uk and vk are functions of k. In
order to maintain the commutation relation

MikM
y
ik �M y

ikMik = 1;

we must have
u2k � v2k = 1: (110)

By substituting 109 in 108 we get

H0 = E00 +
X
k

f[M y
1kM1k +M y

2kM2k] (111)

� [(u2k + v2k)(�2JSZ � 4ukvkJSZk)]

+ [M y
1kM

y
2k +M1kM2k][�4ukvkJSZ

� 2(u2k + v2k)JSZk ]g
which can now be simpli�ed by taking

� 4ukvkJSZ � 2(u2k + v2k)JSZk = 0: (112)

We thus arrive at two equations for uk and vk which
give

uk = �k[�
2
k � 4(JSZk)

2]�1=2

vk = 2JSZk [�
2
k � 4(JSZk)

2]�1=2 (113)

�k = 2JSZf[1� 2k]
1=2 � 1g:

The diagenalized Hamiltonian is given by

H0 =
X
p;k

�h!k(npk + 1=2)

where npk = M y
pkMpk and

E(k) = �h!k = 2JZS(1 � 2k)
1=2:

In the long wavelength limit we have

E(k) = �N bk (114)

where �N is of the order of kBTN , b depends only on the
geometry of the lattice and is equal to

p
1=3c for the

three cubic structures, and c is the nearest neighbor
separation. The eigenstates of H0 are denoted by j
fnkpgi where nkp is the number of excitation or spin
waves in the mode pk.

For practical purposes it is convenient to express
the spin operators S in terms of the creation and an-
nihilation operators M y

pk and Mpk of spin waves

Si+ = 2(S=N )
1
2

X
k

exp(�k � ri)(ukM1k + vkM
y
2k)(115)

Sj+ = 2(S=N )
1
2

X
k

exp(�k � rj)(vkM1k + ukM
y
2k)

and to note that in the long wavelength limit we have

limk!0 uk � 1
k1=2

limk!0 vk � 1
k1=2

:

these equations are used in sections 2.3. For a more
detailed review see Ref. [83]

D Spin Glass

In a spin-glass such as CuMn or AuFe, the magnetic
impurities are located randomly in the sample.[36] The
random distance between the muon and the impurities
result in a distribution of second moments. Therefore,
we treat the parameter � as a statistical variable. As
an example, let us consider the case of a dilute spin-
glass at temperatures above the freezing temperature
Tg. In this case, Uemura et al.[36] demonstrated that
the distribution of � can be approximated by

�(�) =
p
2=�

a

�2
exp

�
� a2

2�2

�
: (116)

The spin-glass relaxation function is obtained by aver-
aging Eq. 27 with respect to �. In order to maintain
the condition � < �, the parameter a must satisfy
a < �. The resulting Uemura function is

PSG
z (t) =

Z 1

0

exp(��(t)t)�(�)d� (117)

= exp
�
�
p
2a2(t)t

�
where

(t) � �(t)=�2:

Using �(t) from Eq. 30 we see that in the fast limit the
relaxation has a root-exponential shape. �(t) given by
Eq. 32 leads to an exponential relaxation in the early
time limit. In Fig. 56 we show the polarization func-
tion obtained with Eq. 117 for � = a. From the �gure
we observe that, in the spin glass case, the LF is less
e�ective in recovering the polarization than in the case
of a �eld distribution with a unique width. This slow
recovery is a consequence of the high �eld tail resulting
from the convolution of the �eld distribution and Eq.
116. We also note, in Fig. 56, the exponential relax-
ation at the early times and the presence of oscillations
with frequency !L near �t! 0.
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