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Electronic Floquet gyro-liquid crystal
Iliya Esin 1,2✉, Gaurav Kumar Gupta1, Erez Berg 3, Mark S. Rudner 4 & Netanel H. Lindner 1

Floquet engineering uses coherent time-periodic drives to realize designer band structures

on-demand, thus yielding a versatile approach for inducing a wide range of exotic quantum

many-body phenomena. Here we show how this approach can be used to induce non-

equilibrium correlated states with spontaneously broken symmetry in lightly doped semi-

conductors. In the presence of a resonant driving field, the system spontaneously develops

quantum liquid crystalline order featuring strong anisotropy whose directionality rotates as a

function of time. The phase transition occurs in the steady state of the system achieved due

to the interplay between the coherent external drive, electron-electron interactions, and

dissipative processes arising from the coupling to phonons and the electromagnetic envir-

onment. We obtain the phase diagram of the system using numerical calculations that match

predictions obtained from a phenomenological treatment and discuss the conditions on the

system and the external drive under which spontaneous symmetry breaking occurs. Our

results demonstrate that coherent driving can be used to induce non-equilibrium quantum

phases of matter with dynamical broken symmetry.
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Quantum systems that are driven far from thermal equi-
librium have been shown to support a wide variety of
exotic phases of matter, with properties that have no

analogues in equilibrium. Examples include quantized charge
pumping1–4, spatio-temporal symmetry breaking (as in time
crystals)5–11, and topological phases with unconventional types of
edge states that defy the equilibrium bulk-edge
correspondence12–23. Realizing many of these examples requires
highly engineered setups and strong isolation from the environ-
ment. Here, we find an intrinsically non-equilibrium phase that
can be naturally realized in a steady state of an optically driven
semiconductor. The transition to this phase is signaled by a
unique combination of a change of topology of the Fermi surface,
accompanied by a rotating orientational (ferromagnetic-nematic)
order parameter.

From a mechanistic point of view, in equilibrium, strongly
correlated electronic phases emerge from the competition
between the potential energy savings and kinetic energy costs of
developing correlations that allow electrons to avoid each other.
In materials with band structures that feature large densities of
states (DOSs), the kinetic energy costs that oppose the formation
of correlations are small. Such materials, therefore, provide a rich
platform for realizing exotic phases of matter where interparticle
interactions crucially alter the ground-state properties of the
system. Since the concept of a ground state does not apply to
driven quantum systems, it is an interesting question whether an
analogous mechanism can lead to strongly correlated non-
equilibrium phases.

Here, we address this question in the context of two-
dimensional (2D) electron systems. A prominent route to
achieving high DOS bands in 2D is through the application of
strong out-of-plane magnetic fields, which gives rise to flat
Landau levels. At certain rational filling fractions, the resulting
macroscopic degeneracy is lifted by the formation of strongly
correlated fractional quantum Hall states24,25. Recently, a rich
phase diagram of correlated states arising from flat band forma-
tion has also been uncovered for twisted bilayer graphene, when
the twist angle between layers is tuned close to the “magic
angle”26–31.

Two-dimensional systems in which the minimum of the single-
particle dispersion occurs along a ring in momentum space
(rather than at a single point, as for a standard parabolic dis-
persion), provide an alternative route for achieving large DOSs
and exotic correlated phases32–45. This occurs, for example, in
two-dimensional materials with strong Rashba-type spin-orbit
coupling46,47. The ring-minimum in such systems leads to a large
degeneracy and a divergent DOS at energies approaching the
bottom of the band. At low densities, inter-particle interactions
may lead to a plethora of possible symmetry-broken phases. In
particular, for short-ranged interactions, electronic liquid-
crystalline ground states were predicted in ref. 39. These phases
exhibit spontaneously broken rotational symmetry, with highly
anisotropic Fermi surfaces and related susceptibilities.

Here, we present a “Floquet engineering”48–77 approach for
inducing non-equilibrium liquid crystalline phases by subjecting
2D electron systems to optical driving fields. The non-equilibrium
phase transition that we describe results from an interplay
between coherent driving, electron–electron interactions, and
dissipative dynamics due to the system’s coupling to its
environment78–92. The coherent drive is used to produce a Flo-
quet band structure that features a ring-like minimum analogous
to that of the Rashba system described above. In turn, the
interactions and dissipative dynamics determine the steady state
of the system and the symmetry breaking that it exhibits. Intri-
guingly, we find that the system spontaneously develops strong
anisotropy, with a directionality that rotates periodically in time.

We refer to this exotic order as gyro-ferromagnetic nematic
(GFN) order.

Results
Physical mechanism and theoretical approach. A ring-like dis-
persion minimum is natural to obtain in a direct band gap system
subjected to a coherent drive, where the drive frequency Ω is
larger than the system’s band gap (Fig. 1a). The structure of the
modified (Floquet) bands is most easily visualized in a rotating
frame. Starting from the original bands as depicted in Fig. 1a, we
transform to a rotating frame in which the energies of all states in
the valence band are rigidly shifted upwards by ħΩ67. In the
rotating frame, the (shifted) valence and conduction bands cross
along a continuous “resonance ring” of points in momentum
space where the original conduction and valence bands were
separated by ħΩ (see green curves in Fig. 1a). After transforming
to the rotating frame, the driving field obtains a static (co-rotating)
part, and a component that oscillates with integer multiples of the
drive frequency Ω. Within the rotating wave approximation we
keep only the static part of the drive in the rotating frame, and
discard the oscillating components. As we show in detail below,
under appropriate conditions on the material’s band structure and
the form of the drive, the co-rotating part of the drive opens a
“Floquet gap” all the way around the resonance ring. The minima
and maxima of the resulting upper and lower Floquet bands
correspondingly occur along a ring in momentum space (Fig. 1b),
yielding a DOS for the Floquet bands, DF(ε), with square-root
divergences near the two-band extrema (Fig. 1d). Along these

b

d

Δ

ℏΩ

a

( )

0

c

Fig. 1 Floquet band structure near the Γ-point. a The band structure of the
non-driven semiconductor. The resonance rings of the external drive are
indicated by the green curves. b, c Floquet quasienergy bands arising from
the semiconductor’s band structure and the resonant drive around ε= 0.
The yellow area represents the occupation of the upper Floquet band in the
“ideal” distribution scenario, analogous to the zero-temperature Gibbs state
for the quasi-energy spectrum. Black arrows represent the pseudospin
direction of the Floquet states near the resonance ring. The texture of the
pseudospins arises from the pseudospin-momentum locking induced by the
semiconductor. In addition, each pseudospin rotates in the x-y plane with
the frequency of the periodic drive as is indicated on the figure by the light-
gray thin arrows attached to each pseudospin. In the symmetric phase,
b due to rotational symmetry, the Floquet states near the resonance ring
are uniformly occupied, as is indicated below panel b. Panel c demonstrates
the single-particle Floquet bands in the broken symmetry phase. In this
case, the resonance ring is tilted towards a spontaneously chosen direction.
The occupation of the bands is then biased toward this direction, signaling a
ferromagnetic alignment of the pseudospins. d The density of Floquet
states as a function of the quasi-energy around ε= 0 in the paramagnetic
phase. The density of states features square-root Van Hove singularities in
each Floquet band, i.e., DF(δε) ~ δε−1/2 in the upper Floquet band, where
δε≡ ε−ΔF/2. A similar relation holds for the lower Floquet band.
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ring-extrema, the Floquet-Bloch states may be characterized by a
pseudo-spin with a non-trivial winding, see Fig. 1b, in close
analogy to the spin winding that occurs around the ring minimum
of a Rashba-type band structure.

Our goal is to find the conditions under which the divergence in
the DOS promotes spontaneous symmetry breaking in the electronic
steady-state of the system. Throughout this paper we study a system
lightly doped above half filling. To preview the considerations
involved, consider first an ideal situation where the steady-state is a
zero-temperature Gibbs state of electrons in the band structure
obtained in the rotating wave approximation93. In the absence of
electron–electron interactions this zero temperature state corresponds
to a full lower Floquet band and an annulus-shaped Fermi sea at the
bottom of the upper band, as indicated in Fig. 1b. At low-doping
density, the DOS at the Fermi energy is strongly enhanced due to the
divergence at the band bottom. Sufficiently strong electron–electron
interactions make it energetically favorable for electrons to change the
topology of the Fermi sea from an annulus to a single pocket
centered around a spontaneously chosen point on the resonance ring.
The symmetry broken state is ferromagnetic as the pseudospins of
the electrons are predominantly aligned along one direction, see
Fig. 1c. This leads to a reduction in the potential energy (as the
electronic wavefunction overlaps are suppressed for parallel pseu-
dospins due to Pauli exclusion). As a consequence the mean-field
band structure in the symmetry broken phase acquires a tilt along the
spontaneously chosen momentum direction. Interestingly, due to the
periodic time-dependence of the Floquet states, the emergent
pseudospin magnetization vector rotates in time at the frequency
of the drive (in the lab frame), giving rise to the GFN order.

The discussion above, based on the rotating wave approxima-
tion and a zero-temperature Gibbs-type steady state, captures the
essence of the symmetry-breaking transition. However, the non-
equilibrium nature of the setup implies that the steady-state
cannot be described by a simple Gibbs state. Even when the
electronic system is coupled to a zero-temperature heat bath,
unavoidable scattering processes create electron–hole excitations
in the Floquet bands. These excitations may suppress the
tendency towards ordering. In this work, we introduce a self-
consistent treatment of coupled kinetic and Floquet-Hartree-Fock
equations that capture the interplay between the steady state of
the system and its renormalized Floquet band structure, with the
possibility of spontaneously broken symmetry. Using this
treatment, we will obtain the non-equilibrium phase diagram
for different doping densities, interaction strengths, and proper-
ties of the external heat baths.

Model system and problem setup. To study the phase transition
in the steady-state of a periodically driven direct bandgap semi-
conductor, we introduce an effective model that describes the
single-particle electronic states near the semiconductor’s Γ-point.
We consider a two-band, two-dimensional (2D) system, with
topologically trivial bands. (This model, which lacks time-reversal
symmetry, may be taken to represent half of the degrees of
freedom of a time-reversal symmetric semiconductor67,94.) We
assign a common effective mass m* for the electrons in the
conduction band and holes in the valence band, and denote the
gap separating these bands by Eg, see Fig. 1a. The Hamiltonian
describing the electronic system and the time-periodic drive, near
the Γ-point, reads

ĤðtÞ ¼ ∑
k
ĉyk½H0ðkÞ þ HdðtÞ�ĉk þ∑

q
Vqρ̂qρ̂�q: ð1Þ

Here H0(k)= E0+ (ħ2∣k∣2/2m*+ Eg/2)σz+ λ0 k ⋅ σ, where
k= (kx, ky) is the two-dimensional momentum, ĉyk ¼ ð̂cyk"; ĉyk#Þ is
the two-component spinor for the pseudospin degree of freedom,

Vq describes an effective short-ranged electron–electron interac-

tion, ρ̂q ¼ ∑k ĉ
y
kþqĉk , and E0 is an energy offset. We denote the

pseudospin-orbit coupling by λ0 and use σ= (σx, σy), where σα,
α= x, y, z, is a Pauli matrix in the pseudospin space. The band-
structure of the system in the absence of the drive is given by the
spectrum of H0. We denote the energies of the valence and
conduction band by Ev(k) and Ec(k), respectively.

We consider a uniform driving field that couples to the electrons
through σz, HdðtÞ ¼ V cosðΩtÞσz , with an above-gap frequency
ħΩ= Eg+ δE, where δE is much smaller than semiconductor’s full
bandwidth. More realistic time-dependent electromagnetic fields can
be incorporated in this model, see ref. 67. The Floquet state solutions
of ĤðtÞ for Vq ¼ 0 satisfy i_ ∂

∂t � H0ðkÞ �HdðtÞ
� �

ψkνðtÞ
�� � ¼ 0,

with ψkνðtÞ
�� � ¼ e�iεkν t=_ ϕkνðtÞ

�� �
. Here ϕkνðtÞ

�� � ¼ ϕkνðt þ T Þ
�� �

is
periodic with period T ¼ 2π=Ω and ε is the quasienergy (which is
periodic in ħΩ). Throughout, we use the convention− ħΩ/
2 ≤ ε < ħΩ/2. For convenience we take E0= ħΩ/2 such that ε= 0
at the center of the Floquet gap (Fig. 1d).

The drive resonantly couples valence and conduction band
states along a ring in momentum space for which ħΩ= Ec(k)−
Ev(k). We denote the radius of this ring by kR. At the resonance
ring, a gap of magnitude ΔF= 2λ0kRV/ℏΩ opens in the Floquet
quasienergy spectrum. This gap separates the “upper Floquet”
(ν=+) and “lower Floquet” (ν=−) bands, corresponding
respectively to ε > 0 and ε < 0. Here, we will focus on the
parameter regime ΔF≪ δE, where the ring minimum is well
developed. Each of the bands has a ring of degenerate states
associated with square-root van Hove singularities in the density
of Floquet states: near the bottom of the upper Floquet band, the

density of states takes the form DFðδεÞ � m�
2π_2

ffiffiffiffi
ΔF
δε

q
, where

δε= ε− ΔF/2, see Fig. 1. A similar expression holds for
quasienergies near the top of the lower Floquet band. Below we
show how these van Hove singularities promote spontaneous
symmetry breaking in the driven system.

Order parameter and Floquet mean field approach. In this work
we will look for spontaneous symmetry breaking that emerges in
the steady state of the driven system. The steady state arises from
an interplay between the time-periodic drive, electron–electron
interactions, and the coupling of the electrons to the electro-
magnetic and phononic modes of their environment. In this
interplay, the electron–electron interactions play a dual role, as
they lead to formation of order parameters as well as to inco-
herent scattering which may suppress the tendency
towards order.

In order to capture the coherent part of the electron–electron
interaction, which leads to order parameter formation, we use a
mean-field approximation in which we assume that the steady
state is Gaussian (i.e., obeys Wick’s theorem). We assume
translation invariance is maintained, and consider a mean-field
decoupling of the Hamiltonian Eq. (1) with ferromagnetic
nematic order parameter

hkðtÞ ¼ �∑
k0
Vk�k0 hĉyk0σ ĉk0 iMF

: ð2Þ
The expectation value in Eq. (2) is taken with respect to the time-
periodic steady-state of the system. The corresponding mean-field
Hamiltonian is given by ĤMFðtÞ ¼ ∑k ĉ

y
kHMFðk; tÞĉk , where

HMFðk; tÞ ¼ H0ðkÞ þHdðtÞ þ hkðtÞ � σ: ð3Þ
Note that if hk(t) has the same time-period as the drive, ĤMFðtÞ is
also time-periodic and therefore defines a new Floquet problem.

The time-periodic steady state used in Eqs. (2) and (3) is
determined self-consistently by solving the kinetic equation for
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the populations of electrons in the Floquet bands of ĤMFðtÞ.
These populations are defined as f kνðtÞ � hϕ̂ykνðtÞϕ̂kνðtÞi, where
ϕ̂
y
kνðtÞ is a creation operator corresponding to the Floquet state
ϕkνðtÞ
�� �

. Note that the meaning of the index ν and the values of
populations fkν depend on the order parameter, hk(t), as it
determines the Floquet bandstructure of HMFðk; tÞ. The kinetic
equation includes scattering rates due to electron–phonon
interactions, I skν , radiative recombination, I‘kν , and
electron–electron collisions, Ieekν , and is given by

_fkν ¼ I skνð f
� �Þ þ I‘kνð f

� �Þ þ Ieekνð f
� �Þ; ð4Þ

where the steady state is determined by _f kν ¼ 0. The notation { f }
refers to the full set of populations over all momenta and band
indices.

In writing the kinetic equation in terms of the populations fkν
we have assumed that the Gaussian steady state is approximately
described by a single-particle density matrix which is diagonal in
the Floquet basis. This condition is satisfied when the scattering
rates in the steady state are small, ħ/(τscatΔF)≪ 182. Here 1/τscat is
the total scattering rate of the electrons.

The scattering rates I skν and I‘kν describe scattering processes in
which a boson (phonon, s, or photon, ℓ) is emitted or absorbed by
the electronic system. The corresponding rates are determined by
the dispersions of these bosons, and the form of the electron-
boson coupling.

We denote by b̂
y
pq the operator creating an acoustic phonon

(for p= s) or a photon (for p= ℓ) with the three-dimensional
(3D) momentum q= (q∥, qz) and frequency ωq= vp∣q∣. Here q∥ is
the component of q within the plane of the 2D electronic system
and vs(vℓ) is the speed of sound (light). Note that the phonons
propagate in the 3D substrate of the 2D electronic system.

The electron-boson coupling is described by the Hamiltonian95

ĤHB ¼ ∑
k;p;q

ĉykMpðqk;ωqÞĉkþqk
ðb̂yp;q þ b̂p;�qÞ þ h:c:; ð5Þ

whereMpðqk;ωqÞ is the coupling matrix in pseudospin space. We
consider a diagonal electron–phonon coupling matrix in the {↑, ↓}
basis, which captures the conservation of the pseudospin in small-
momentum-transfer electron–phonon interactions. In contrast,
photon emission requires changing the electronic angular
momentum. We account for this by taking an electron-photon
coupling matrix that is strictly off-diagonal in the {↑, ↓} basis, as
these two basis states have opposite parity. Throughout the
manuscript, we will assume that the phonons and photons are in
thermodynamic equilibrium at zero temperature.

The rates I skν and Ikν in Eq. (4) can be computed through
Floquet-Fermi’s golden rule96 using the electron-boson coupling
in Eq. (5). Similarly, Ieekν is computed using Floquet-Fermi’s
golden rule and the electron–electron interactions appearing in
Eq. (1). Explicit expressions for these rates appear in Supple-
mentary Eq. (120).

We argue that despite the non-equilibrium nature of the
system we study, the application of a mean-field treatment of
interactions can be justified at a similar level as for an equilibrium
system. To this end, we identify a limit in which the system we
study maps to an equilibrium system. This limit is realized when
the gap of the semiconductor, and hence the driving frequency, is
large compared to the Rabi frequency (driving amplitude). In this
situation, and for the moment neglecting electron–hole radiative
recombination, one can apply the rotating wave approximation to
the full many-body dynamics including the system-bath coupling.
In the rotating frame the system then exactly maps to an
equilibrium problem with a static Hamiltonian describing
interacting electrons with a new bandstructure and system-bath

couplings82,93. Therefore, the steady state of the system would be
a Gibbs state with respect to this static Hamiltonian. Here, the
mean-field approach can be used to study the properties of this
Gibbs state and map out a phase diagram, with the same level of
justification as in equilibrium.

Away from the above limit, the many-body dynamics involves
additional processes which are not present in equilibrium and
which lead to a deviation from the exact Gibbs state discussed
above. These processes are often called Floquet-Umklapp
processes (see below), since the total initial quasi-energy of the
electrons and excitations in the environment differs from the final
value by an integer multiple of the driving frequency. The rates
for these processes are suppressed in powers of the ratio of the
driving amplitude to the driving frequency (in addition, radiative
recombination is naturally a slow process relative to
electron–phonon and electron–electron scattering), see “Discus-
sion” and Supplementary Note 3d. Therefore, in the system we
study, the rates for Floquet-Umklapp processes are small
compared with the rates for processes that relax the system to
the Gibbs state exhibited by the system in their absence. Our
expectation is that the steady state and the order parameter that it
exhibits evolve smoothly as the rates of these processes are
increased from zero. Therefore, the mean-field approach remains
a good approach for studying symmetry breaking even when
Floquet-Umklapp processes are present.

GFN steady states. Before presenting the full steady-state solu-
tion to Eqs. (2), (3), and (4), we introduce a phenomenological
model which we will use to characterize the phase diagram of the
system. The model includes the key processes required for
obtaining the steady-state distribution for the electrons. Our goal
is to identify the conditions on the electronic system and its
environment under which spontaneous symmetry breaking may
occur. A key quantity for describing the steady state is the density
of electrons in the upper Floquet band, defined as ne ¼

R
d2k
ð2πÞ2 f kþ.

Likewise, the density of holes in the lower band, nh, is computed
by integration over 1− fk−. In what follows, we discuss the
generation and annihilation rates of electron–hole pairs (in the
Floquet basis) resulting from collision processes [see Eq. (4)]. We
refer to these as heating and cooling processes, respectively. Of
particular importance are Floquet-Umklapp processes, in which
the energies of the electrons and bosonic modes in the initial and
final states differ by ħΩ. At zero bath temperature, these processes
provide the only mechanism for heating.

We will be interested in the situation in which the system is
doped slightly above half filling. In the absence of Floquet-
Umklapp processes and at zero bath temperature, the steady-state
is a zero-temperature Gibbs distribution of electrons in the
(mean-field) Floquet bands93. Specifically, in this situation, the
steady-state features a completely filled lower Floquet band, and a
low-density Fermi sea of electrons in the upper Floquet band. In
the presence of Floquet-Umklapp processes, this ideal distribu-
tion is perturbed by the creation of (inter-Floquet-band)
electron–hole pairs. We will focus on the regime where the
densities of electrons and holes in the upper and lower Floquet
bands are low: ne; nh � AR, where AR � πk2R is the area in
reciprocal space enclosed by the resonance ring.

The pair creation rate in almost empty upper and almost full
lower Floquet bands is approximately independent of the
densities of electrons and holes in the respective bands. We
denote the total pair creation rate due to collisions with both
phonons and photons by _nejph ¼ Γph. Similarly, the pair creation
rate due to electron–electron collisions is denoted by _nejee ¼ Γee.
The parameter Γee depends on V2

q at q corresponding to the
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inverse interparticle distance in the nearly filled band. The
processes contributing to _nejee are of the Floquet-Umklapp type,
and are suppressed by (V/ħΩ)2. In addition, electron–electron
scattering gives rise to quasienergy conserving processes, causing
thermalization of the populations within each band without
changing the electron and hole population densities. These
processes therefore do not contribute to _nejee. Moreover, as in
equilibrium, these elastic scattering processes all together preserve
the form of the distribution when the electrons are distributed
according to the Fermi-function over the quasienergy spectrum.

Once excited, the electrons (holes) rapidly relax to the bottom
(top) of the Floquet band through multiple low-energy phonon
emissions. The electron–hole pairs then annihilate through inter-
Floquet-band scattering processes mediated by phonons. The
electron–hole pair annihilation processes predominantly occur
near the resonance ring, where the electrons and holes are
concentrated. Note that for these momenta the Floquet states are
equal superpositions of the conduction and valence bands [see
Eq. (9)], and these states are efficiently coupled by acoustic
phonons. The rate of the pair annihilation processes, _nejcool, is
proportional to the product of the densities of electrons and
holes. Therefore, we estimate _nejcool ¼ �Λinternenh, where Λinter is
independent of the populations. Note that for this essential
cooling process to occur, the Debye frequency of the phonons
needs to be larger than the Floquet gap ΔF.

Summing up the cooling and heating rates we obtain a rate
equation for the density of electrons in the upper Floquet band,

_ne ¼ Γph þ Γee � Λinternenh: ð6Þ
In the steady-state ( _ne ¼ 0), Eq. (6) leads to nenh= κ, where we
define the “heating parameter” κ≡ κph+ κee, with κph≡ Γph/
Λinter, κee≡ Γee/Λinter. Furthermore, the difference between
electron and hole excitation densities is fixed by the electron
doping, Δn, measured relative to half-filling, ne− nh= Δn. Using
this relation, together with the steady-state solution to Eq. (6) we
obtain

ne=h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δn=2
	 
2 þ κ

q
±Δn=2; ð7Þ

where the plus (minus) sign on the right hand side corresponds to
the density of electrons (holes). Note that in the absence of drive-
induced heating processes (κ= 0), the ideal steady-state with no
holes in the lower band and density Δn in the upper band is
obtained. In what follows, we focus on the electron-doped regime,
Δn ≥ 0 (similar considerations apply in the hole-doped regime).

Having established the steady-state densities of electrons and
holes (concentrated near the Floquet band extrema at the
resonance ring), Eq. (7), we are well-positioned to address the
conditions for spontaneous breaking of rotational symmetry in
the system. In the following, we assume contact interactions
described by a constant in q interaction strength, Vq ¼ U=ϖ, and
k-independent magnetization h(t)= hk(t) [see Eq. (2)], where ϖ is
the area of the system. In the steady state, h(t) is time periodic
with the same time period as the drive. Therefore, we expand h(t)
in terms of its Fourier harmonics,

hðtÞ ¼ Re h0 þ h1e
iΩt þ � � �� �

: ð8Þ
Here h0 and h1 are vectors of complex magnitudes, representing
the constant and the first harmonic components of the mean-
field, respectively, and “⋯ ” represents higher harmonics. The
values of the coefficients {hi} are determined self-consistently via
Eqs. (2), (3), and (4).

Crucially, a nonvanishing magnitude of the “in-plane” (x-y)
component of the magnetization h(t), which we denote by h(xy)

(t), does not respect the rotational symmetry of the microscopic
Hamiltonian ĤðtÞ, see Eq. (1). Therefore, ∣h(xy)(t)∣ serves as the

order parameter for the GFN phase that we study. In contrast, a
non-vanishing z component of h(t) respects the symmetry.
Generically, we expect a non-vanishing z component of h(t) in
both the symmetry broken and unbroken phases. In particular,
we expect a large static z component of h0 (with magnitude on the
order of U) even in the absence of the drive. This static field
simply renormalizes the parameters of H0 in Eq. (1), and
therefore we do not treat it self-consistently in our analysis.

For simplicity, in the analytical treatment below we take hn= 0
for n ≥ 2 since these harmonics are suppressed by powers of V/
(ħΩ) for V/(ħΩ)≪ 1. Furthermore, we note that when the in-
plane (x-y) components of h0 are small, jhðxyÞ0 j � Eg, their effect
on the Floquet band structure via Eq. (3) is negligible. To facilitate
the analysis we thus also take h0= 0, thereby focusing our
attention on the behavior of h1, which describes the component
of the magnetization that oscillates at the same frequency as the
drive. In the next section, we will present numerical results in
which all harmonics are allowed to freely develop.

In order to understand the expected form of h1, it is helpful to
examine the Floquet states near the resonance ring. These states
are created by the operators

ϕ̂
y
k ± ðtÞ ¼ ðe�iΩt ĉyk" 	 eiθk ĉyk#Þ=

ffiffiffi
2

p
þO V=_Ω

	 

; ð9Þ

where ∣k∣= kR and θk � arctanðky=kxÞ. The pseudospins of these
states form a rotating-in-time “vortex” in the x-y plane, see
Fig. 1b. In the low-doping limit (Δn→ 0) and in the regime
where cooling dominates over heating processes (κ≪ Δn2), the
upper Floquet band has a significant population only near the
band’s bottom. Above a critical interaction strength, we expect
the self-consistent solution to converge to a GFN steady-state
where the electrons localize around a single spontaneously chosen
momentum on the ring (Fig. 1c). Subsequently, due to the time-
dependent pseudospin-momentum locking in Eq. (9), the
pseudospins of the electrons will be synchronized. This implies
that the “in-plane” (x-y) components of h(t) should take the form
of a rotating (circularly polarized) field, with its dominant
harmonic given by hðxyÞ1 � h1ðx̂ � iŷÞ= ffiffiffi

2
p

. In our analysis we use
jhðxyÞ1 j as the diagnostic for spontaneous symmetry breaking.

We note that in both the symmetry broken and un-broken
phases, the system exhibits an oscillating z-component of the
magnetization h(t). The z-component of the harmonic h1
renormalizes the amplitude and phase of the drive [see text
below Eq. (1)]. As we will show below, throughout the parameter
regime of interest this renormalization remains weak. Therefore,
in estimating the critical interaction strength below, we neglect
this component and keep only hðxyÞ1 .

We now seek the minimal interaction strength, Uc, required to
achieve spontaneous symmetry breaking for finite values of κ and
Δn. To make progress, we approximate the distribution of electrons
in the upper Floquet band by a Fermi-Dirac distribution with an
effective chemical potential, μe, measured from the bottom of the
upper band, and temperature (measured in energy units), Te.
Analogously, we parametrize the hole distribution in the lower
Floquet band by an effective chemical potential μh, measured from
the top of the lower band, and temperature Th. Such a fit well-
approximates the distributions in the limit of low density (see ref. 91

and Supplementary Fig. 9). Note that the electron and hole
populations are generically described by finite effective tempera-
tures, even when the baths are at zero temperature.

In Eq. (7) above, we found the total densities of electrons and
holes in the upper and lower Floquet bands, ne and nh,
respectively. However, a given pair of values for ne and nh can
be obtained for a continuous family of choices of μe/h and Te/h.
Below we first derive a general result for the critical interaction
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strength Uc, parametrized by the chemical potentials and
temperatures that are realized. Later, we will discuss how to
determine the values of μe/h and Te/h in the steady-state.

To find Uc, assuming the transition is continuous, we solve Eq.
(2) by expanding the expectation value on its RHS to linear order
in the amplitude of the in-plane (x-y) component of the
magnetization, jhðxyÞ1 j, which we take to be circularly polarized.
Note that the RHS of Eq. (2) depends on h(t) through the steady-
state distribution, fkν, defined in the basis of the eigenstates of
HMF [which also depend on h(t)], see Eq. (3). Given that the
effective temperature and chemical potential weakly depend on
hðxyÞ1 , the dominant dependence of fkν on hðxyÞ1 arises from the
eigenstates and eigenvalues of HMF.

Expanding the RHS of Eq. (2) to linear order in h1 yields three
terms: (i) a contribution corresponding to a full lower Floquet
band, and the contributions of (ii) the electrons and (iii) the holes
in the upper and lower Floquet bands, respectively. We use the
assumed Fermi-Dirac distribution functions for electrons and
holes to evaluate each of the terms analytically (for the full
derivation see Supplementary Note 2), yielding an expression for
the critical interaction strength:

~U
�1
c ¼ ~U

�1
fb þ ~U

�1
ex

~Θðμe=TeÞ
~ne

þ
~Θðμh=ThÞ

~nh

� �
: ð10Þ

Here ~Uc ¼ ARUc=δE, ~ne ¼ ne=AR, and ~nh ¼ nh=AR are the
normalized interaction strength and population densities, respec-
tively. (Recall that AR is the area in reciprocal space enclosed by
the resonance ring and δE= ħΩ− Eg.) The dimensionless
function ~Θ will be defined below. The contribution to the inverse

of ~Uc of type (i) above is given by ~U
�1
fb . For a hypothetical state

with a full lower Floquet band and an empty upper Floquet band,
the critical interaction strength would be equal to ~U fb. The

contributions to ~U
�1
c of types (ii) and (iii) are captured by the

terms proportional to ~U
�1
ex in Eq. (10). At finite doping, and/or

with a finite density of electron–hole excitations, these terms
reduce the critical interaction strength. In the derivation of Eq.
(10) we obtain explicit expressions for these coefficients, ~U ex ¼
4π4δE=ΔF and ~U fb ¼ 2π2 log 8EBWδE

Δ2
F


 �
� 1

h i�1
, where EBW is a

high-energy cutoff representing the bandwidth of the semicon-
ductor, see Supplementary Note 2.

The enhancement of the density of states at the ring extrema of
the Floquet bandstructure affects ~Uc through the terms of type (ii)
and (iii) in Eq. (10). The unitless function ~ΘðxÞ that appears in
this term has the form of a “smeared” step function that drops to
zero when its argument is negative, and saturates to 1 in the
opposite limit, with a smooth cross-over whose width is Oð1Þ.
Therefore, the contribution of type (ii) is governed by a
competition between two effects: on the one hand, for this term
to be significant, a small density of electrons is required. On the
other hand, to achieve ~Θðμe=TeÞ � 1 the distribution of the
electrons in the upper Floquet band is required to have a sharp
Fermi surface (which is realized for μe/Te≫ 1). When these
conditions are met, the critical interaction strength is suppressed
due to the divergence of the DOS at the ring minimum. Similar
considerations hold for the contribution of type (iii) arising from
holes in the lower Floquet band.

Equation (10) is a non-equilibrium analogue of the Stoner
criterion97,98, which gives the critical interaction strength for
spontaneous symmetry breaking in the steady-state of the system.
The criterion crucially depends on the effective chemical
potentials and temperatures of electrons and holes in the steady
state, which are controlled by the interactions both within the

system and between the system and its environment. As discussed
above, when the electrons in the upper band form a low-density
population with a sharp Fermi surface (such that ~Θ � 1), the
critical interaction strength Uc may be reduced. Such a
suppression of Uc is particularly important for ensuring the
possibility that a low-temperature symmetry-broken steady-state
can arise in the non-equilibrium system, as the heating rate due to
electron–electron scattering scales as U2 [see Eq. (6)]. In the next
section, we will analyze the phase diagram of the system using
both numerical simulations and further analysis based on the rate
equation approach.

Phase diagram and numerical simulations. In this section, we
introduce a lattice model whose effective description for momenta
near the Γ-point is given by Eq. (1). Our motivation is to demonstrate
symmetry breaking from a full self-consistent solution of the coupled
kinetic and Floquet mean-field equations in Eqs. (2)–(4). In addition,
we seek to validate the suppression of Uc due to the enhanced density
of states near the resonance ring [exhibited by the term proprotional

to ~U
�1
ex in Eq. (10)]. To this end, we extend the Hamiltonian in Eq.

(1) to the entire Brillouin zone of a square lattice with primitive lattice
vectors a1= (a, 0) and a2= (0, a). We consider nearest and next
nearest neighbor hopping, described by the modified Hamiltonian
H0(k)= d(k) ⋅ σ, where d= (dx, dy, dz), with dxðyÞðkÞ ¼ A sin
ðakxðyÞÞ þ A0½sinðr1 � kÞ± sin ðr2 � kÞ�, dzðkÞ ¼ Eg=2�B½cosðakxÞ
þ cosðakyÞ�2�, and Hubbard interaction Vq ¼ U=ϖ. The coeffi-
cients A0 and B0 denote the next-nearest neighbor hopping along the
vectors r1;2 ¼ aðx̂ ± ŷÞ. In the numerical simulations we set A0 ¼
A=4 and B0 ¼ B=4. Such a fine-tuning of the next-nearest neighbor
hopping parameters helps to minimize the terms that break the U(1)
symmetry of the resonance ring to C4 due to lattice effects. These
effects lift the degeneracy at the resonance ring, thus cutting off the
divergence of the DOS. Note that the form of H0(k) used for the
numerical simulation agrees with the Hamiltonian H0(k) in Eq. (1)
for momenta near the Γ-point, with A= 2λ0/3a, and B= 2ħ2/3m*a2.
We consider the case Eg, B > 0 (such a choice provides non-inverted
bands of the semiconductor), and restrict ħΩ > Eg/2+ 4B to ensure
that 2ħΩ is larger than the total bandwidth, such that there are no
second and higher order resonances in the numerical simulation.

Using the lattice model within the mean-field approximation,
we numerically solved the rate and the mean-field equations for
the steady state in a self-consistent manner according to the
procedure described between Eqs. (2)-(4). To this end, we
computed the occupation function fkν and the scattering rates I skν ,
I‘kν , and Ieekν using a non-uniform grid of 8008 points in
momentum space, with enhanced resolution in the vicinity of
the resonance ring. We evaluated the scattering rates using
Fermi’s golden rule with the electron–phonon coupling matrix
Msðqk;ωÞ ¼ gsjqkj=

ffiffiffiffi
ω

p
, and electron-photon coupling matrices

for two orthogonal photon polarizations, Mð1Þ
‘ ¼ g‘σ

x and

Mð2Þ
‘ ¼ g‘σ

y . The DOSs for spontaneous emission of acoustic
phonons (p= s) and photons (p= ℓ), traced over the out-of-plane

momentum, are given by ρpðω; qkÞ ¼ ρ0p ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � jvpqkj2

q
when

ω > vp∣q∥∣ and ρp= 0 otherwise, where ω is the frequency of the
emitted phonon or photon and q∥ is the in-plane component of
its momentum. The constants gs(ℓ) and ρ0sð‘Þ are material-
dependent parameters. In the simulations we tune gs(ℓ) and ρ0sð‘Þ
to explore their roles in determining the steady states, and to
effectively tune the heating parameter κ for comparison with our
analytical results. In the numerical results presented in the main
text, we focus on the regime κee≪ κph, where Floquet-Umklapp
electron–electron scattering processes do not significantly
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contribute to the heating rate. We obtain qualitatively similar
results in the regime of κee≳ κph, see Supplementary Note 6.

In each iteration of the algorithm, we numerically compute the
magnetization h(t) via Eq. (2). To improve the precision of the
momentum integral, we first fit the electron and hole distributions
to Fermi functions, then perform the integration using the fits
interpolated to a finer grid. In the simulations, we allow for the
magnetization to develop components up to the fifth harmonic of
the driving frequency. As discussed below Eq. (2), we discard the
constant in-time component in the z direction, which simply
renormalizes the parameters of the underlying band structure.

In Fig. 2a we show the non-equilibrium phase diagram of the
system in the plane of doping, Δn, and interaction strength, U.
The bath parameters are fixed with values that yield κ0a4 ≈ 10−9,
where the bare heating parameter, κ0, denotes the value of the
heating parameter κ at U= 0 and half-filling (see Supplementary
Note 5a for details). The color scale in Fig. 2a indicates the
magnitude of spontaneous magnetization, jhðxyÞ1 j, for a lightly
electron-doped system. The figure shows two distinct phases: a
symmetric phase (blue), jhðxyÞ1 j ¼ 0, and a broken-symmetry
phase (yellow), jhðxyÞ1 j>0.

We present characteristic particle distributions well-inside of
each phase in the insets to Fig. 2a. In the paramagnetic
(symmetry-preserving) phase, the electron and hole popula-
tions exhibit uniform occupation of states around the resonance
ring. In the GFN (broken symmetry) phase, the electron and
hole populations are concentrated on one side of the resonance
ring. The magnitudes of the harmonics of h(t) for the same
representative states in the two phases are shown in Fig. 2b.
Here it is evident that in the broken symmetry phase the first
harmonic h1 gives the dominant contribution, yet the DC
component and second harmonic are substantial. Although
present, as discussed below Eq. (8), these harmonics do not
significantly affect the Floquet mean-field band structure.

The boundary between the phases occurs at a critical
interaction strength Uc. The dependence of Uc on the doping
Δn can be explained using Eq. (10). However, to use Eq. (10)
we first need to know how μe(h)/Te(h) and ne(h) depend on Δn
and other parameters of the model. The electron and hole
densities ne(h) found from the phenomenological rate equation
treatment are given in Eq. (7). We now seek two additional
equations to fix the ratios μe/Te and μh/Th for these electron
and hole populations, respectively. (Recall that the same
values of ne and nh can be obtained from a continuous family
of values of μe/Te and μh/Th.) Note that μe(h)/Te(h) and ne(h)
depend on U through their dependence on κ. Therefore, the
RHS of Eq. (10) implicitly depends on Uc. For simplicity, as in
the numerical simulations that lead to Fig. 2, here we focus on
the case of κee ≪ κph, where the heating parameter κ can be
treated as a U independent parameter (see text below Eq. (6)
for definitions).

Connecting back to Uc given by Eq. (10), recall that
~Θðμe=TeÞ ¼ Oð1Þ when μe/Te > 1, leading to a suppression of
Uc. In this situation, the population of electrons in the upper band
exhibits a sharp Fermi surface. We refer to such a state as a
degenerate electronic Floquet metal (EFM). Alternatively, if μe/
Te < 0, the effective chemical potential lies in the Floquet gap and
the electronic distribution corresponds to a non-degenerate Fermi
gas. We refer to such a state as an electronic Floquet insulator
(EFI). In this state, ~Θðμe=TeÞ is small.

We now discuss the factors that determine the value of μe/Te
and which phase (EFM or EFI) is achieved in the steady state. The
EFM phase is established when the intraband cooling of excited
electrons is more efficient than the relaxation of electrons from
the upper to the lower Floquet band. In this case, electrons
excited from the lower to the upper Floquet band via Floquet-
Umklapp processes quickly relax to the bottom of the upper
Floquet band, where a Fermi sea is formed. The flow of electrons
into the Fermi sea in the upper Floquet band is balanced by
phonon-assisted annihilation of electrons in the Fermi sea with
holes in the lower Floquet band. The balance between these
interband and intraband rates can be analyzed by extending the
rate equation treatment, expressed in Eq. (6), to include an
energy-resolved treatment of the electron and hole populations,
see ref. 91 and Supplementary Note 3b.

Deep in the EFM phase, and for U≲Uc, the extended rate
equation treatment yields μe=Te � x1=4e , where xe � ζn6e=ðv3sκÞ,
and we estimate ζ � C_5=ðΔFm

4
�k

3
RÞ, where C is a constant of

Oð10�3Þ (see Supplementary Notes 3h,3i for the full details).
Since the EFM phase corresponds to large μe/Te and therefore
large xe, this phase is favored at large electron density (large
doping), small sound velocity vs, and low values of the heating
parameter κ. In particular, lower sound velocities facilitate
intraband cooling, as this leads to an enhancement of the density
of states for low-frequency phonons.
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Fig. 2 Floquet phase diagram. a Spontaneous magnetization strength,
jhðxyÞ1 j, obtained from the self-consistent mean-field calculation, as a
function of a normalized electron doping, Δ~n � Δn=AR and normalized
interaction strength, ~U � ARU=δE. The dashed white line represents the
phase boundary, corresponding to the critical interaction strength ~Uc,
calculated from Eq. (10). The insets show the electron and hole steady-
state distributions (respectively fk+ and �fk� � 1� fk�) in the momentum
domain near the resonance ring, for Δ~n ¼ 0:004, ~U ¼ 0:44, indicated by a
green square, in the symmetric phase, and Δ~n ¼ 0:004, ~U ¼ 2:66,
indicated by a red square, in the symmetry-broken phase. b Harmonics of
the self-consistent magnetization hðtÞ ¼ Re ∑l;αêαh

ðαÞ
l eilΩt

h i
, where

êα ¼ x̂; ŷ; ẑ. We plot jhðαÞl j=U corresponding to the first five harmonics
(l= 0, 1, 2, 3, 4) at the two points on the phase diagram indicated by the red
and green squares in panel a. The heights and the colors of the bars
respectively indicate the amplitudes and phases of the harmonics. The color
scale for the phase is shown at the top of the panel. Note that we omit jhðzÞ0 j,
which is responsible for the bandgap renormalization of the system in the
absence of the drive, see main text.
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The EFI phase is obtained in the opposite limit, where interband
relaxation is more efficient than intraband cooling. In this case, the
extended rate equation treatment yields eμe=Te � x1=5e . The extended
rate equation treatment can also be used to characterize the hole
population in the lower Floquet band. We find that for electron
doping, Δn > 0, the holes form a non-degenerate Fermi gas for all
parameter values within our model. Fast, quasienergy-conserving
electron–hole scattering processes tend to equalize the electron and
hole temperatures, Te and Th.

Figure 3 shows a comparison of μe/Te and Uc extracted from
numerical simulations (data points), to the analytical estimates
obtained from the extended rate equations discussed above. We
obtain Uc using a numerical analogue of the procedure leading to

Eq. (10). Specifically, we compute the expectation value on the
RHS of Eq. (2), using the steady state obtained from Eq. (4) for a
system whose electronic Hamiltonian corresponds to ĤMFðtÞ in
Eq. (3). In this procedure for obtaining Uc, we use a prescribed
form of h(t) with a single non vanishing harmonic hðxyÞ1 of small
magnitude in ĤMFðtÞ, see Eq. (8). The dashed white line in Fig. 2a
shows Uc extracted using the above procedure on top of the phase
diagram obtained from the full self-consistent numerical simula-
tions for the same parameters.

In Fig. 3a we show μe/Te as a function of doping Δn for several
values of phonon sound velocity vs. We extract μe and Te from the
numerical simulations described in the previous paragraph by fitting
the electron steady-state distribution in the upper Floquet band to a
Fermi function with respect to the quasienergies of the mean-field
Hamiltonian [Eq. (3)]. The fit lines correspond to the analytical
forms for μe/Te obtained from the extended rate equation treatment.
The solid and dashed lines correspond to the forms for μe/Te in the
EFM and EFI regimes, respectively. The only freedom in these fits is
the parameter ζ in the definition of xe, which was given the same
value across all of the curves shown. The extracted value of ζ is of the
same order of magnitude as the analytical estimate given above.

In Fig. 3c we again show μe/Te as a function of Δn, this time
highlighting the dependence on the value of the bare heating
parameter κ0. In this plot, the fit lines are given by a function that
interpolates between the analytical results for the asymptotic
behavior in the EFM and EFI regimes: F j λðμe=TeÞ

� � ¼ xηe , where
F j is the complete Fermi-Dirac integral, η= 0.174, j=−0.3, and
λ= 0.871. These parameter values are fixed by demanding that
μe/Te displays the correct dependence on xe deep in the EFI
ðeμe=Te 
 x1=5e Þ and EFM ðμe=Te 
 x1=4e Þ phases. The value of ζ
used in xe is the same as used in Fig. 3a.

In Fig. 3b, d we show Uc as a function of Δn for different values
of vs and κ0. The data points are obtained from the numerical
procedure discussed above. To obtain the fit lines, we use the
interpolated values of μe/Te in Eq. (10). We additionally use ~Uex

and ~U fb as fitting parameters. The same values of these
parameters were used in all curves shown. The values used for
the fits are close to those obtained from the formulas given below
Eq. (10). For the contribution of the holes, we used the same
interpolating function, with xh replacing xe. Here xh is defined in
the same manner as xe, but with nh replacing ne (with the same
value of the parameter ζ). Note that holes are in the analogue of
the EFI phase for any Δn > 0, and hence the value of ~Θðμh=ThÞ is
small throughout the regime studied.

As is evident in the phase diagram in Fig. 2a, Uc obtains a minimal
value at an optimal value of the doping, which we denote Δn*. Using
the extended rate equation treatment, we estimate

Δn� ¼ C�ðv3sκ=ζÞ1=6, where C* is a constant of Oð1Þ, see
Supplementary Note 3j. The corresponding minimal interaction

strength is given by ~U
min
c � ~UexΔn�=AR for κ � k4R. For Δn >Δn*,

electrons in the upper band are in the EFM phase, and exhibit a
sharp Fermi surface (note the corresponding values of μe/Te in
Fig. 3a). As explained below Eq. (10), the existence of a Fermi surface
tends to reduce the critical interaction strength. However, as the
doping increases, the phase transition requires stronger interactions
as the density of states at the Fermi surface decreases. Below the
optimal doping, Δn <Δn*, the electrons in the upper Floquet band
are in the EFI regime, which has no Fermi surface. Thus, the
suppression of Uc is lost for Δn <Δn*.

Discussion
In this work, we demonstrated a mechanism for realizing elec-
tronic liquids crystals in two-dimensional electronic systems
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Fig. 3 Phase boundary and crossover from EFM to EFI regimes. a
Numerically obtained ratio of effective chemical potential to temperature of
the electronic population in the upper Floquet band, as a function of the
normalized doping (data points). The data are extracted from the steady-
state solution to Eq. (4) for κ0a4≈ 10−9 and four values of speed of sound,
vs. Solid and dashed lines represent the results of the extended rate
equation treatment for the EFM and the EFI phases, respectively. The full
set of curves is generated using the same value of the single fit parameter ζ
(see text for definition). The shaded area indicates the EFI-to-EFM
crossover range where the ~Θ-function in Eq. (10) rises from 0 to 1. Inset:
Zoom-in on the low-doping regime (enclosed by a black frame in the main
panel). Solid lines correspond to the analytical curves for the EFI phase.
b Critical interaction strength Uc extracted for the same data set as in panel
a (data points). Solid lines represent Uc calculated from Eq. (10), where for
the values of μe/Te we used a function that interpolates between the
analytical results deep in the EFM and EFI phases. We use the same value
of ζ as in panel a, and two additional fitting parameters ~Uex and ~Ufb.
c, d Results for μe/Te and Uc, extracted in the same manner as in panels
a and b (data points), for vs= 0.0086ΔF/ℏkR, and four values of κ0. Solid
lines in the two panels show the interpolated values of μe/Te and the
resulting Uc. All fitting parameters are the same as in panels a and b.
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through time-periodic driving. The phase that we find exhibits
GFN order associated with the spontaneous breaking of U(1)
symmetry in both pseudospin and orbital degrees of freedom.
Above the critical interaction strength, the Fermi sea becomes
highly anisotropic and occupies a limited sector of the ring
minimum of the Floquet bands, see Figs. 1 and 2. Due to
pseudospin-momentum locking, the Fermi sea in the symmetry
broken phase exhibits a finite magnetization that rotates with the
frequency of the drive [cf. Eq. (8)]. We note that the system
Hamiltonian is only nearly U(1) symmetric as it is defined on a
lattice with C4 symmetry. We verified that the terms that reduce
the symmetry to C4 do not affect the mean-field phase diagram by
comparing the lattice model to the fully U(1)-symmetric analy-
tical model. Even when these terms are weak, at energies of
interest they serve as a relevant perturbation that will pin the
location of the Fermi pocket on the resonance ring, and suppress
long-wavelength fluctuations of the order.

Our analysis has been carried out on a model system with a
two-component pseudospin degree of freedom, whose band-
structure is described by H0(k), see Eq. (1). For Eg > 0, the model
H0(k) lacks time-reversal symmetry. The model can also be taken
to describe half of the degrees of freedom of a time-reversal
invariant system. Our analysis can be straightforwardly extended
to include the relevant time-reversal partner degrees of freedom.
In this situation, there are many more possibilities for how the
system may order. As one example, in Supplementary Note 4 we
describe a mean-field treatment that shows an instability towards
an order in which the magnetizations of the two time-reversal
partners are aligned, which yields a breaking of the time-reversal
symmetry. We leave a more elaborate study of this interplay, as
well as other possible phases39,41, for future investigation.

For simplicity, throughout the paper, we considered a driving
whose form is described below Eq. (1). It is interesting to consider
driving with circularly polarized light, which, like the drive we
studied, preserves the U(1) symmetry of the system and uniformly
opens a gap all the way around the resonance ring. Depending on
the handedness of the drive, the pseudospin may wind twice or zero
times around the resonance ring67. In the case of double winding,
each direction of the pseudospin in the x-y plane corresponds to
two momentum points on the resonance ring. Therefore, in this
case, an analogous GFN phase would exhibit two electron pockets
occupying opposite sectors of the ring minimum.

Here, we considered a model with short-ranged interactions.
Long-ranged interactions such as Coulomb or dipole interactions
may lead to additional possibilities for the steady state, such as
phases with broken translation symmetries similar to Wigner
crystals12 or quasicrystals99. It would be interesting to investigate
the possibility that the order parameter may exhibit a more exotic
temporal structure, such as oscillations with a frequency that is
different than the frequency of the drive100,101.

We now put our results in an experimentally relevant context.
To this end, in the following we will make several estimates, using
model parameters which are given in Supplementary Note 7. We
first estimate the value of the heating parameter κ, employing the
definition of κ appearing below Eq. (6). We base our estimate on
typical scattering rates measured in semiconductors102. We start
with the phonon-assisted interband scattering rate, which tends
to reduce the number of excited electrons in the upper Floquet
band. This is estimated in Supplementary Eq. (65) as
Λinter � _=ðτ2ΛΔFABZÞ. Here ABZ is the reciprocal-space area of
the Brillouin zone and τ2Λ ¼ _2=ð12π3g2sρ

0
sk

2
RÞ. The primary

source of heating is radiative recombination, which pre-
dominantly occurs between states with inverted band indices, i.e.,
inside the resonance ring. We estimate this rate by Γ‘ � AR=τ‘,
where AR is the area inside the resonance ring and τℓ is a typical

time for the radiative recombination which is on the order of 1 ns.
In addition, electron–phonon scattering also contributes to
heating through Floquet-Umklapp scattering processes. However,
in the Supplementary Note 3d we show that these processes lead
to a negligible contribution to the dynamics. Likewise, for small
V/(ℏΩ) electron–electron interactions also give a sub-dominant
contribution to the heating dynamics (see below). Assuming
V ~ 10 meV, and AR=ABZ � 4 ´ 10�3, and for typical semi-
conductor phonon parameters (see Supplementary Note 7), we
estimate κ � Γ‘=Λinter � 3 ´ 10�7A2

BZ.
As stated above, the electron–hole pair generation (heating)

rate Γee due to photon-assisted electron–electron scattering is
small when V/(ħΩ) is small. To lowest order in (V/ħΩ)2, these
processes predominantly excite a pair of electrons from the lower
to the upper Floquet band, accompanied by the absorption of one
photon from the driving field. Due to the pseudospin structure of
the Floquet states the dominant scattering processes involve one
electron that is scattered from the interior of the resonance ring to
the exterior, and vice versa for the other electron. Therefore, we
expect the scattering rate to be proportional to the squared area of
the resonance ring. After averaging over initial and final
momenta, we estimate ΓeeðUÞ ¼ A2

Rm�U
2

2π4_3
V
_Ω

	 
2
. Here m* is the

effective mass of the semiconductor [Eq. (1)].
Given that the heating rate depends on the interaction strength, it

is important to check how the critical interaction strength is affected
by the presence of Floquet-Umklapp scattering due to
electron–electron interactions. The critical interaction strength is not
significantly changed when κee(Ufb)≪ κph, where κee(U)= Γee(U)/
Λinter [see Eq. (10) and Supplementary Note 6 for supporting
numerical simulations] and κph is the value of κ for Γee= 0. The
estimate for Γee, whenAR is small, shows that for realistic parameter
choices, the above conditions can be indeed satisfied. We note that
short-range interactions corresponding to this regime can be
obtained using screening gates placed near the 2D electronic system.

We next estimate the total energy flux density transferred to the
phonon and photon heat baths. We approximate this energy flux
density by W= ΓℓħΩ. In turn, the energy dissipated to photons
and phonons is given by Wℓ= ΓℓEg and Ws= Γℓ(ħΩ− Eg),
respectively, such that W=Wℓ+Ws. (Here, Eg is the band gap of
the semiconductor.) Using the same parameters as above and
assuming a sample of area L2, where L= 5 μm, we arrive at
WℓL2 ≈ 4mW and WsL2 ≈ 60 μW. The power emitted to phonons
can be dissipated by standard cryogenic refrigerators operating at
temperatures of a few degrees of Kelvin.

Finally, we estimate the upper and lower bounds for the drive
intensity for realizing the GFN phase. The lower bound is found
as the value at which the Floquet gap equals the scattering rate,
Δmin ¼ _=τscat. Below this value, the diagonal ensemble of Floquet
states is not a proper fixed point for the steady state
distribution82. In the regime discussed above, for which the
heating rate is dominated by radiative recombination, we estimate
τscat using Eq. (6). This yields τ�1

scat � Γ‘=ne, see Supplementary
Note 7. We obtain ne from Eq. (7). For a system at half-filling, this
gives τ�1

scat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ‘Λinter

p
. The Floquet gap then equals the scatter-

ing rate for Δmin � 0:2 meV.
We estimate the upper bound on the Floquet gap as the value at

which heating due to electron–electron interactions becomes domi-
nant over that resulting from radiative recombination, i.e., beyond
Γee= Γℓ. Beyond this point, the heating rate grows rapidly with the
driving amplitude. For ~U � 3, we arrive at Δmax � 0:2 eV. The
corresponding applied field strength and intensity for circularly
polarized light67 are given by E � 4 ´ 107 V=m and
I � 2 ´ 1012 W=m2, respectively, compatible with recent experi-
ments on Floquet engineered materials63,69. Note that compared to
these experiments, in the setup that we propose heating is reduced by
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working in a more favorable frequency regime. Specifically, we
consider a frequency comparable to the band gap of a wide-gap
semiconductor (rather than working at much lower mid-infrared
frequencies). For a fixed value of the Floquet gap, Floquet-Umklapp
scattering due to electron–electron and electron–phonon interactions
is suppressed at large frequencies.

The phenomenon we discussed can be realized in 2D Dirac
systems such as transition metal dichalcogenides and semi-
conductor quantum wells. To ensure that Floquet-Umklapp
processes are suppressed, it is beneficial to use large bandgap
materials. In gapless Dirac system such as graphene, driving may
induce similar ring-like Floquet-band extrema73. We leave the
exploration of particle dynamics and symmetry breaking in such
systems to future studies. The use of periodic driving to create
ring extrema in Floquet bands may be utilized to study exotic
phases of fermions and bosons in cold atom systems23,45,66. In
particular, it would be interesting to investigate the possibility to
use buffer gases in cold atom systems to serve as the heat baths
needed for stabilizing the broken-symmetry phases discussed in
this work.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that supports the findings of this study is available from the corresponding
author upon reasonable request.
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