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The hallmark property of two-dimensional topological insulators is 
robustness of quantized electronic transport of charge and energy 
against disorder in the underlying lattice1. That robustness arises 
from the fact that, in the topological bandgap, such transport can 
occur only along the edge states, which are immune to backscattering 
owing to topological protection. However, for sufficiently strong 
disorder, this bandgap closes and the system as a whole becomes 
topologically trivial: all states are localized and all transport 
vanishes in accordance with Anderson localization2,3. The recent 
suggestion4 that the reverse transition can occur was therefore 
surprising. In so-called topological Anderson insulators, it has been 
predicted4 that the emergence of protected edge states and quantized 
transport can be induced, rather than inhibited, by the addition of 
sufficient disorder to a topologically trivial insulator. Here we report 
the experimental demonstration of a photonic topological Anderson 
insulator. Our experiments are carried out in an array of helical 
evanescently coupled waveguides in a honeycomb geometry with 
detuned sublattices. Adding on-site disorder in the form of random 
variations in the refractive index of the waveguides drives the system 
from a trivial phase into a topological one. This manifestation of 
topological Anderson insulator physics shows experimentally that 
disorder can enhance transport rather than arrest it.

In parallel to investigations into electronic topological insulators, the 
recent demonstration of photonic topological insulators5–7 has shown 
that topological phenomena are not limited to the motion of electrons 
in solid-state materials. In fact, topological protection is a general wave 
phenomenon that applies equally well to many wave systems, including 
electromagnetic waves5–15, acoustic waves16,17, mechanical waves18,19 
and cold atoms20,21. Among these, photonic topological systems have 
been found to be useful in demonstrating effects that would otherwise 
be unreachable in the context of condensed-matter physics, such as 
Anderson localization22,23, very strong strain24, non-Hermitian behav-
iour25 and the concept of topological bound states in the continuum26. 
Furthermore, topological photonic systems provide a complementary 
set of potential technological applications, including new mechanisms 
for integrated optical isolation and general robustness to imperfections 
in the fabrication of photonic devices.

Here we demonstrate a topological Anderson insulator. Our exper-
iments are carried out in a photonic platform, as proposed theoreti-
cally27, based on a two-dimensional time-reversal-symmetry-broken 
Floquet topological insulator. In particular, when sufficient disorder is 
introduced, we enter the topological phase and observe unidirectional 
edge transport. Our key result, which demonstrates the possibility of 
inducing a topological phase using disorder, is universal and carries  
over to different dimensions28 and to symmetry-protected topo-
logical phases4,35. The experimental platform that we use is an array of  
evanescently coupled helical waveguides29, where the diffraction of 
light through the system is described by the paraxial wave equation, 
which is mathematically equivalent to the Schrödinger equation. A 
closely related system has been used for the observation of Floquet 
photonic topological insulators5.

To explain the mechanism that underlies our photonic topological 
Anderson insulator, we start with a honeycomb lattice of helical wave-
guides5, which is a photonic Floquet topological insulator. The equation 
that describes the diffraction of a paraxial beam of light in this lattice 
can be written, under the tight-binding approximation, as
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where z is the distance of propagation along the waveguide axis, ψi is 
the envelope function of the electric field in the ith waveguide, c is  
the coupling strength between waveguides, A(z) =  kRΩa 
(cos(Ωz), sin(Ωz), 0) is the gauge field induced by the helicity, k is the 
wavenumber of the light in the medium (fused silica), R is the radius 
of the helix, Ω is the longitudinal frequency associated with the helix, 
a is the nearest-neighbour spacing and ri,j is the displacement vector 
pointing from waveguide i to waveguide j. The honeycomb lattice com-
prises two triangular sublattices. The parameter δi takes the value 1 in 
one sublattice and −1 in the other, such that the on-site energies of the 
two are separated by the detuning 2mδ. Equation (1) defines Ĥ z( ) as 
the Hamiltonian at propagation distance z, and the summation therein 
is taken over nearest-neighbour waveguides. This is exactly the 
Schrödinger equation, where z takes the role of time. Because A(z) is 
z-dependent and periodic, solutions to equation (1) can be obtained 
by using Floquet’s theorem. Thus, the band structure can be obtained 
by diagonalizing the unitary evolution operator for one period30. 
Detuning the two triangular sublattices breaks the inversion symmetry 
of the structure and opens a trivial bandgap. This can be quantified with 
a mass mδ associated with the effective Dirac equation of the honey-
comb lattice in the absence of the periodic driving. In the undetuned 
case (mδ = 0), the Dirac-cone dispersion is equivalent to that of massless 
relativistic particles. Such detuning can be realized experimentally in 
waveguide arrays by allowing the two honeycomb sublattices to have 
different refractive indices.

The mechanism according to which we realize the photonic topo-
logical Anderson insulator is depicted schematically in Fig. 1a. The 
band structure of the honeycomb lattice with straight and identical 
waveguides, so that the induced gauge field A(z) = 0 and mδ = 0, is 
shown in Fig. 1b. This band structure corresponds to that of a ribbon  
(associated with the zigzag edge of graphene31). As known in graphene 
physics, the ribbon band structure exhibits two Dirac cones (red ellip-
ses in Fig. 1b) that are connected by a flat band of edge states31. When 
the waveguides follow a helical trajectory such that A(z) is non-zero 
(Fig. 1c), the z-reversal symmetry is broken and a bandgap opens. In 
this case, each valley acquires an opposite mass: mτ and −mτ for the 
left and right valleys, respectively. These opposite masses imply that 
the edge states cross the bandgap, with each edge state localized to 
opposite sides of the ribbon. Therefore, the bandgap is topological; 
the edge states form a single backscattering-free chiral edge state that 
is localized to the edge of the structure. This is the essence of a Floquet 
topological insulator in the honeycomb system5.
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Consider now what happens when the sublattices of the Floquet 
topological insulator are detuned so that the two sublattices exhibit 
different refractive indices. Introducing non-zero detuning breaks the 
inversion symmetry of the lattice, which adds a positive mass term 
mδ to each valley. If the detuning is large enough (mδ > mτ), then the 
masses mτ + mδ and −mτ + mδ in both valleys become positive and the 
bandgap becomes trivial (Fig. 1d). In other words, the outcome of a suf-
ficiently detuned honeycomb lattice of helical waveguides is a topolog-
ically trivial system with broken inversion and time-reversal symmetry. 
This is where disorder comes into play: as was recently proposed27, 
this system can be brought into a topologically non-trivial phase 
using disorder. More specifically, it has been shown27 (using the Born 
approximation) that introducing on-site disorder, which is achieved by 
randomizing the refractive-index contrasts of the waveguides, causes 
an effective decrease in the detuning mδ. The decrease in mδ grows 
stronger as the strength of the disorder is increased. Therefore, upon 
introducing disorder and increasing its strength, the mobility gap closes 
when mτ = mδ and reopens for mτ > mδ. When the gap reopens, the 
system is topological (Fig. 1e). This is precisely the effect of photonic 
topological Anderson insulators: adding disorder brings the system 
from being topologically trivial (mδ > mτ) to topologically non-trivial 
(mτ > mδ).

A schematic depiction of the waveguide configuration is shown 
in Fig. 2a. In this setting, it is essential to control which states are 
excited. We do that by adding a one-dimensional auxiliary array—a 
‘straw’—through which we selectively excite the modes of the system 
at a fixed energy (kz). More specifically, in a one-dimensional wave-
guide array, tilting the phase front of the wave that illuminates the 
input facet determines the momentum of the excited Bloch mode. 
Here, such selective excitation is especially important because we 
would like to excite states entirely within the gap, to determine 
whether the gap exists and whether it is trivial or topological. By 
controlling the tilt angle of input of the beam, we can control kx, the 
Bloch wavevector in the horizontal direction. The band structure 
(kz versus kx) of the straw is shown in the inset in Fig. 2a. We fix kz 
(the Floquet quasienergy) by choosing kx, and kz is conserved as the 
beam travels through the straw and enters the honeycomb array. 
Thus, simply by changing the incidence angle of the beam, we can 
tune the quasienergy of the modes that are excited in the structure. 

The bandwidth in kz of the straw depends on kx and is relatively wide 
(determined by the number of sites in the straw and input beam), 
limiting our ability to perform precise spectroscopy. However, it 
remains a highly useful tool for selective excitation of wave packets 
in the honeycomb lattice.

We first consider a system that breaks z-reversal symmetry (mτ ≠ 0) 
with identical (non-detuned) waveguides (mδ = 0), and repeat the  
previous realization of a Floquet topological insulator5 (see Methods for 
details). Owing to the helicity of the waveguides, the system has a topo-
logical bandgap at quasienergy kz = 0, and we expect to find a chiral edge 
state in this bandgap (the Floquet band structure is shown in the inset to 
Fig. 2a). This is precisely what we see. In Fig. 2b we show the output facet 
of the array in the case where kz lies in the bandgap (top) and the case 
where it lies in the band (bottom). When kz is in the gap, a chiral edge 
state is excited: the optical wave packet is launched from the straw and 
couples to the chiral edge state, where it propagates unidirectionally 
upwards in a clockwise direction around the honeycomb lattice, but 
does not penetrate into the lattice. On the other hand, when kz lies in 
the band, the wave packet couples to bulk states; hence, it penetrates 
into the lattice and spreads into the array, so does not stay confined 
to the edge. The evolution of the edge state is shown in Fig. 2c. As the 
input beam is brought closer to the array, the edge state travels farther 
along the edge until it passes the top corner. The fact that it moves only 
upwards, and stays confined to the edge, is a signature of the chirality 
of the edge state. We note that for the choice of parameters of the wave-
guide array used in the experiment the longitudinal frequency of the 
helix Ω is smaller than the total bandwidth (6c) in the absence of the 
helix. This results in an additional topological gap, which opens at a 
quasienergy of around kz = Ω/2 and hosts chiral edge states, as shown 
in Fig. 2a. However, by using the selective excitation through the straw, 
in this experiment we always excite states with quasienergies close to 
kz = 0 and do not probe states with quasienergy near kz = Ω/2.

We now describe the probing of a series of helical photonic lattices, 
where we introduce detuning between the sublattices (mδ ≠ 0) of the 
honeycomb structure by making their refractive indices different. In 
practice, this is done by changing the speed of the laser-writing beam 
during the fabrication process (a higher writing speed results in a lower 
refractive index of the waveguides). In a series of six waveguide arrays, 
we systematically increase this detuning, decreasing the gap size as 
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Fig. 1 | Floquet topological Anderson insulator in a detuned 
honeycomb lattice. a, Mechanism for realizing the topological insulator 
phase in a photonic waveguide lattice. The white arrows indicate the 
trajectory through the phase diagram in the experimental protocol. The 
parameters for the band-structure calculations are chosen for illustration 
purposes. b, Band structure for a trivial honeycomb lattice with straight 
waveguides. The red ellipses indicate the Dirac cones. c, Time-reversal 

symmetry is broken by helical waveguide trajectories, opening a 
topological bandgap. d, Breaking the parity symmetry of the structure by 
detuning the sublattices sufficiently causes a trivial bandgap to form.  
e, Sufficiently strong disorder suppresses the effect of the parity-symmetry-
breaking terms and moves the system into the topological Anderson 
insulator phase. The band structure shown in this case is for illustration 
purposes; there is no well defined band structure in the disordered case.
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mδ increases, and examine how much the wavefunction launched 
through the straw penetrates into the lattice (plotted in Fig. 3). To 
do that, we choose kx = π/(2a), where the Bloch wavenumber in the 

straw corresponds to the value of kz in the centre of the bandgap of the 
honeycomb lattice. For sufficiently strong detuning mδ, we observe a 
sharp decrease in the penetration of light along the edge, which corre-
sponds to the closing of the topological bandgap and the reopening of 
the trivial bandgap at kz = 0. This observation constrains mδ to be larger 
than 1.57 cm−1, although precise determination of the on-site wave-
guide propagation constants within the array is not possible (owing to 
the exponential sensitivity of the refractive index to write speed and 
the effect of the lattice environment on the individual waveguides). 
Indeed, in the trivial gap, no states are present, and there is a dramatic 
drop in the penetration into the array along the edge. The inability to 
couple to edge states establishes that we have introduced sufficiently 
strong detuning, mδ, to have opened the trivial bandgap, which does not  
support edge modes.

Next, we introduce on-site disorder and demonstrate the formation 
of the photonic topological Anderson insulator by observing whether 
the mid-gap excitation gives rise to coupling to a topological edge state. 
The disorder enters equation (1) on the right-hand side via an addi-
tional term, wriψi, where ri is a uniformly distributed random variable 
between −0.5 and 0.5 and w is the strength of the disorder. We find 
that for sufficiently strong disorder (corresponding to a maximum 
variation in laser write speed of 8 mm min−1), the mid-gap excitation 
is able to couple into the lattice, staying largely confined to the edge 
(see Fig. 4a–c). As we move the input beam closer to the array, the light 
coupled into the array propagates farther along the edge, much as in 
the non-disordered topological system (with mδ = 0) of Fig. 2c. The 
beam moves up along the left edge, implying the presence of a chiral 
edge state (that was not present when the system was not disordered). 
We find the group velocity of the edge state to be 21 μm cm−1. We fit 
the profile of the excited wavefunction and find that it decays expo-
nentially away from the edge, consistent with having excited predom-
inantly the edge states (see Methods). For comparison, we show the 
same scenario but with no disorder and with the same mδ in Fig. 4d–f. 
When no disorder is present, there is no observable edge excitation 
and minimal bulk penetration; that is, the beam launched into the 
topologically trivial photonic bandgap is reflected. The small amount 
of bulk penetration seen in Fig. 4d–f probably arises from the finite 
bandwidth of the input beam in kz. The appearance of the chiral edge 
state when the disorder is sufficiently strong is evidence of the photonic 
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Fig. 2 | Set-up and functionality of the lattice system. a, Hybrid structure 
composed of a one-dimensional straw and a two-dimensional honeycomb 
lattice of helical waveguides (top), along with the corresponding dispersion 
relations (bottom). b, Determining the correct input angle for the  
incident light, such that a chiral edge state in the topological gap is excited.  
Two experimental images are shown, for kx = π/(2a) and kx = 3π/(4a);  

the excitation in the dispersion relation is sketched in the bottom plots 
of a. If the launch angle does not correspond to excitation in the gap, 
extensive coupling into the lattice bulk is observed. a.u., arbitrary units.  
c, Changing the input position (indicated by the white arrows) facilitates 
the observation of the evolution of the edge states as they propagate along 
the edge and pass the upper corner, never penetrating into the bulk.
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Fig. 3 | Engineering the topologically trivial phase. For sufficiently 
strong detuning between the sublattices of the honeycomb lattice, a trivial 
gap opens, such that the chiral edge state ceases to exist and all incident 
light is reflected back into the straw. The experiments show the light-
intensity pattern as it exits the helical waveguide array (insets; colour 
scale as in Fig. 2) and the measured integrated intensity at the boundary 
as a function of detuning (main panel; in units of translation velocity of 
the writing laser). For zero detuning, the incident light resides only on 
the edge (indicating the topological insulator phase). When the detuning 
is small, the system is still in the topological phase and almost all the 
incident light resides on the edge. When the detuning is increased further, 
the system becomes topologically trivial and the incident light does not 
penetrate along the edge. There is no disorder in this lattice. The error bars 
indicate measurement uncertainty, and the confidence interval is about 
0.06 of the maximum intensity observed (normalized to unity).
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topological Anderson insulator phase27. In Fig. 4g we show a phase dia-
gram that indicates the topological invariant that counts the number 
of edge states at quasienergy kz = 0 as a function of detuning mδ and 
disorder strength w (a full description of the topological invariant32,33  
that we use is provided in Methods). The phase diagram shows that 
adding sufficiently strong disorder to the detuned lattice in the trivial  
phase necessarily takes the system into the topological phase. For con-
siderably stronger disorder, localization sets in, making the system 
Anderson-localized4.

The experiments presented here demonstrate the observation of a 
topological Anderson insulator using a photonic platform. Specifically, 
we have shown that a topologically trivial system can undergo a tran-
sition and become topological when disorder is added. This was 
carried out by observing the emergence of a chiral edge state upon 
introducing sufficiently strong disorder (where there was none with 
no disorder). The topological Anderson insulator phase is a clear 
example of the complex relationship between topology and disorder: 
it goes beyond the usual notion whereby sufficiently strong disorder 
destroys topologically protected transport1. It shows that disorder is 
a key variable in probing topological phases, in the sense that even 
in trivial systems topological behaviour can emerge when disorder is 
introduced at sufficient strengths. We expect that our experimental 
realization of this phase will stimulate a range of theoretical and exper-
imental studies to explore the role of disorder in topological systems. 
This prompts various important questions, such as what happens to the 
topological Anderson insulator phase in the presence of interactions 
in optical, atomic and condensed-matter systems, and whether there 
is a topological Anderson insulator phase in the quantum many-body 
regime. The answers to these questions are now being brought within  
experimental reach.

After this paper was submitted, a related paper34 appeared on arXiv 
that reported the observation of a topological Anderson insulator in 
one-dimensional atomic wires.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
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MEthods
Details of the fabricated lattice. In our waveguide structures, we use a helix pitch 
of Z = 1 cm, a radius of R = 10 μm and a nearest-neighbour spacing of a = 14 μm; 
at our probe wavelength (λ = 633 nm), this corresponds to a dimensionless gauge 
field strength of |A| = kRΩa = 1.26, with k = 2πn0/λ, Ω = 2π/Z, an ambient refrac-
tive index n0 = 1.45 and a = 14 μm nearest-neighbour spacing, which gives rise to 
a nearest-neighbour coupling strength of 1.8 cm−1. The waveguides are written at 
an average writing speed of 90 mm min−1. A broad input probe beam is incident 
on the straw, with a beam waist of approximately 100 μm.
Discussion of the topological invariant that characterizes the photonic topo-
logical Anderson insulator phase. The topological invariant that characterizes 
the non-interacting two-dimensional periodically driven systems (in the absence 
of any additional symmetry besides particle number conservation) is the winding 
number Wkz, which depends on the quasienergy kz. For each quasienergy kz, the 
value Wkz is equal to the number of chiral edge states at that quasienergy32, 33. To 
compute the winding number for kz = 0, we first compute the Bott index of the 
Floquet band27, which lies in the quasienergy interval 0 ≤ kz ≤ Ω/2. This Bott index 
essentially counts27 the number of chiral edge states that traverse the gap at kz = Ω/2 
less the number of chiral edge states that traverse the gap at kz = 0. In addition, we 
verify that for the range of mδ shown in Fig. 4 (mδ > 1.4 cm−1), the gap at kz = Ω/2 
hosts a single chiral edge state for the entire range of parameters with no disorder. 
Therefore, we conclude that, throughout the range of parameters shown in  
Fig. 4g, a Bott index of 0 corresponds to a topological gap at kz = 0 and a Bott index 
of 1 corresponds to a trivial gap at kz = 0.
Decay length of the edge state. We extract the decay length of the edge state from 
the experimental data. To achieve this, we analyse the intensity profile of the light 
propagating along the edge. To average over the disorder potential, we integrate the 
intensity per pixel along a direction parallel to the edge, and obtain the averaged 
intensity as a function of distance from the edge. The intensity profile (Extended 
Data Fig. 1a) decays with increasing distance from the edge, with peaks at the 
waveguide positions. We fit the envelope of the intensity profile to an exponential 
decay, which results in a decay length of the edge state of 47 μm (Extended Data 
Fig. 1b). This length scale is much smaller than the system size (158 μm). This 
result demonstrates that the system is sufficiently large for us to have observed 
the edge state. We do not observe any light at the far edge of the sample (the edge 
opposite the point at which the straw meets the sample), which indicates that the 
system size is sufficiently large that there is no considerable coupling between edge 
states on opposite sides.

We compare the experimentally obtained value of the decay length of the edge 
states with theoretical values obtained from a numerical simulation of a tight-binding  
model. The simulations are run for lattices with 60 × 30 unit cells with periodic 

boundary conditions along y and open boundary conditions along x for a 
total time of N = 30 periods of rotation of the helices. The parameters for the 
tight-binding model are chosen as c = 1.8 cm−1, cnnn = 0.234 cm−1, mδ = 1.6 cm−1, 
Ω = 2π cm−1, kRΩa = 1.26 and w = 1.6 cm−1, where cnnn is the next-nearest- 
neighbour hopping strength. To extract the decay length from the numerical  
simulation, we numerically compute the Green’s function GN(r0, r, NT) =  
〈r|U(t = NT, 0)|r0〉, where U(t = NT, 0) is the evolution operator over N periods. 
From the Fourier transform of the Green’s function in time, we compute gN(r0, 
r, ε) = 〈|GN(r0, r, ε)|2〉, where the angle brackets denote averaging over multiple 
realizations of the disorder. (For more details on the definition of these quanti-
ties, see ref. 27; in short, U(t, t0) is the time-dependent propagator from time t0 
to t, |r0〉 and |r〉 are position eigenstates and ε is the quasienergy, equivalent to 
kz in the experiment.) For initial positions r0 localized on the edge and ε in the 
mobility gap (near quasienergy ε = 0), the function gN(r0, r, ε) shows propaga-
tion along the edge and an exponentially localized profile confined to the edge. 
We integrate gN(r0, r, ε = 0), averaged over 100 realizations, along the direction 
parallel to the edge (that is, we integrate over the y component of r). We extract 
the decay length from the decay profile of the result (which is a function of only 
the distance from the edge). The results (Extended Data Fig. 1c) give a decay 
length of 7a.

From our numerical simulations, we can also extract the group velocity along 
the edge. This is achieved by examining the dependence of gN, averaged along the 
x direction (perpendicular to the edge), as a function of time. The spread of this 
function along the y direction (parallel to the edge) can be quantified using a 
typical length scale36 Λ N( )y

typ , which is obtained by examining the inverse partici-
pation ratio of the disorder-averaged Green’s function (integrated over the x direc-
tion)3. In the inset of Extended Data Fig. 1c, we show the dependence of Λ N( )y

typ  
on N, which clearly shows a linear growth indicating the ballistic nature of the edge 
state. The slope gives the velocity, which is 1.2a cm−1.

From the numerically obtained disorder-averaged Green’s function, we also 
extract the localization length of the bulk states. We take an initial position r0 
in the bulk of the system and plot the corresponding function gN(r0, r, ε) =  
〈|GN(r0, r, ε)|2〉 (Extended Data Fig. 1d). This yields a bulk localization length of 
4a. Our numerical analysis thus shows that quasienergies near ε = 0 are indeed in 
a mobility gap. Furthermore, the bulk localization length in the mobility gap near 
ε = 0 is indeed sufficiently smaller than the system size.
Data availability. All data generated or analysed during this study are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Experimental and numerical results for the 
disordered system. a, The averaged intensity profile of the edge state, 
which peaks at the waveguide positions. b, A fit through the waveguide 
peak intensities decays exponentially, with a decay length of 47 μm. c, The 
function gN(r0, r, ε), integrated along the edge, showing a decay length of 

about 7a. The inset shows the simulated displacement of the wavefunction 
along the edge for the parameters listed in Methods, from which the group 
velocity can be extracted. d, The function gN(r0, r, ε), for an initial position 
r0 deep in the bulk of the system, showing that the bulk localization length 
is approximately 4a.

© 2018 Springer Nature Limited. All rights reserved.
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