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Abstract

Superconductivity in the Iron-chalcogenide FeSeTe was discovered in the last two
decades. Its critical temperature rises up to 15 K at ambient pressure for optimal
doping.

Superconducting stiffness ρs and coherence length ξ are usually determined from
the penetration depth λ of a magnetic field and the upper critical field Hc2 of a super-
conductor (SC), respectively. However, in magnetic SCs, e.g., part of the iron-based,
this could lead to erroneous results since the field couples to the magnetic moments. To
overcome this problem in FeSeTe, we measure both quantities with the Stiffnessometer
technique. In this technique, one applies a current in a thin and long excitation coil.
This current creates a rotor-free vector potential A to a superconducting ring held in its
center. According to London’s equation j = −ρsA, current density emerges j which is
measured via the ring’s magnetic moment M using a superconducting quantum inter-
ference device (SQUID). ρs and ξ are determined from London’s equation and its range
of validity. This method does not suffer from demagnetization factors complications or
the presence of vortices and is particularly accurate close to the critical temperature
Tc. This work contains a comparison between measurements by several techniques, sur-
prising results such as unexpected and intended heating of the superconductor and the
appearance of a peculiar knee. We find longer ρs and ξ than previously thought, and a
phase transition which agree better with expectations based on the Ginzburg–Landau
theory.
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Abbreviations and Notations

ARPES : Angle-Resolved Photoemission Spectroscopy
EC (ec) : Excitation Coil
FeSeTe : Ferrum, Seleniom and Tellurium
GL : Ginzburg-Landau
IBS/FeBS : Iron/Ferrum-Based Superconductor
µSR : Muon Spin Relaxation
PDE : Partial Differential Equation
PL (pl) : Pickup-Loop
RF : Radio Frequency
SC (sc) : Superconductor
SQUID : Superconducting Quantum Interference Device
STM : Scanning Tunneling Microscope
VSM : Vibrate Sample Magnetometer
ZFC : Zero Field Cooling
ZGFC : Zero Gauge-Field Cooling
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A : Vector Potential
B : Magnetic Induction
D : Demagnetization Factor
e∗ : Charge Carrier
g : Calibration Constant
H : External Magnetic Field
Hc1 : First Superconducting Critical Field
Hc2 : Second Superconducting Critical Field
I : Current
Ic : Critical Current
j : Superconducting Density Current
J : Normalized Magnetic Flux
M : Magnetic Moment
m∗ : Charge Carrier Mass
mρ : Critical Exponent of the Stiffness
mξ : Critical Exponent of the One Over ξ
n : Winding Density of the Excitation Coil
n∗

s : Charge Carrier Density
T : Temperature
Tc : Superconducting Critical Temperature
Ts : Nematic Transition Temperature
V : Volume
χ : Measured Magnetic Susceptibility
χ0 : Specific Magnetic Susceptibility
µ0 : Vacuum Permeability
λ : Penetration Depth
ϕ : Phase of the Complex Order Parameter
Φ : Magnetic Flux
Φ0 : Flux Quanta
ψ : Complex Order Parameter Magnitude
Ψ : Complex Order Parameter
ρs : Superconducting Stiffness
φ̂ : Azimuthal Direction
ξ : Ginzburg-Landau Coherence Length

4



Chapter 1

Introduction

1.1 Superconductivity

Superconductivity is a particular phase characterized by many unique phenomena such
as zero resistance and perfect diamagnetism (Meissner Effect). Classical superconduc-
tor (SC) can be explained by the BCS theory (named after John Bardeen, Leon Cooper,
and John Robert Schrieffer), which considers attractive interaction between electrons
through electron-phonon occupying. It is common to think of the charge carriers of a
SC as pairs of electrons called Cooper-Pairs, rather than individual electrons. The crit-
ical temperature Tc refers to the transition temperature between the superconducting
and the normal phases.

The coherence length ξ is the shortest length scale over which the phase of the
complex order parameter can vary. It is also common to think of ξ as the size of a
flux vortex radius. When applying a magnetic field, the SC will reject it by creating
supercurrents that screen the external magnetic field. If we increase the external field,
the supercurrents will also increase. But although the field is expelled from the bulk, it
penetrates along the edges with an exponential decay with some characteristic length
known as the penetration depth λ.

Superconducting materials can be divided into two types, depending on the ratio
of ξ and λ. Type-I SC have λ < ξ/

√
2 and type-II SC have λ > ξ/

√
2. A type-I SC

will hold the magnetic field outside until it reaches its critical field Hc. Above Hc, the
material gives up and transforms back to the normal state letting all the magnetic flux
going through it. Type-II SC will stay field-free up to some critical field Hc1. Beyond
this value, some magnetic flux manages to penetrate as vortices. The core of the vortex
will be in the normal state phase, but outside the vortex, the material will remain
superconducting. When we increase the field, more and more vortices will penetrate
until they cover the entire material in the second critical field Hc2.
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1.2 FeSeTe

The highest Tc measured in bulk Iron-based superconductors (IBSs), in ambient pres-
sure, is 56 K [1], higher than some cuprates. Consequently, they have been at the
forefront of research in the solid-state community. Out of all IBSs, the crystalline
structure of the FeSe is the simplest see Fig. 1.1. By partially replacing Se with Te
atoms, the critical temperature increases up to 15 K, obtained at x = 0.45 y ≃ 0 in
the formula Fe1+ySexTe1−x. As summarized in Ref. [2], the material also possesses sur-
prising properties such as highly anisotropic electronic properties (nematic effects) and
evidence for topologically non-trivial bands and superconductivity. In light of these
properties, it is important to characterize FeSeTe as accurately as possible.

Bulk DC superconducting properties, such as the stiffness ρs, were measured by
transverse field muon spin rotation (µSR) [3, 4]. AC measurements were done by RF
tunnel diode [5, 6] and cavity perturbation [7] techniques. Coherence length measure-
ments of FeSeTe with x = 0.45 were done by vortex size ξ using a scanning tunneling
microscope (STM) [8], angle-resolved photoemission spectroscopy (ARPES) [9], and
resistivity measurements [10]. However, due to the presence of Fe in the structure and
residual magnetism, these measurements might not provide a clear in-site into the su-
perconducting properties since the applied field interacts with a magnetic moment in
addition to the superconducting currents. In this work, we measure DC superconduct-
ing properties in a zero-applied field to avoid contamination from magnetism.

Figure 1.1: Illustration of the crystal structure of FeSe0.5Te0.5. The data was taken
from Ref. [11].

The crystal structure of FeSexTe1−x, with the P4/nmm symmetry, is illustrated
from two different angles in Fig. 1.1. In this symmetry, the Se and Te atoms share the
same site. The gold-colored balls are iron atoms, and the maroon/blue are Se/Te ones.
The iron atoms form a square lattice, each is connected to four Se/Te atoms. Its unit
cell, marked in a black box frame, is tetragonal (lattice parameters: a = b = 3.792 Å,
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c = 3.792 Å), and contains two iron atoms and two Se/Te atoms. The Fermi surface of
the FeSe0.5Te0.5 consists of two small hole pockets around γ and two electron pockets
around the M -point of the Brillouin zone [2].

1.3 London equation

The superconducting stiffness ρs is defined via the gauge-invariant relation between
the current density j, the total vector potential Atot from all sources, and the complex
order parameter Ψ(r) = ψ(r)eiϕ(r) with ψ(r) > 0, according to

j = −ρs(Atot − Φ0
2π

∇ϕ) , (1.1)

where Φ0 = 2πℏ/e∗ is the superconducting flux quanta,

ρs = ψ2e∗2

m∗ , (1.2)

is the stiffness, e∗ and m∗ are the carrier’s charge and mass, respectively. An extended
mathematical description of the gauge-invariant London equation appears in Appx. A.1.
This equation contains two degrees of freedom. One is the gauge field, and the other
is the multiple branches of the order parameter phase ϕ. Both are determined such
that the free energy is minimal. Therefore, when cooling the SC with Atot = 0 in the
London gauge, ∇ϕ = 0 and, according to the second Josephson relation, it can only
change by dissipating energy. Thus, Eq. 1.1 becomes the London equation

j = −ρsAtot . (1.3)

This relation holds as long ∇ϕ does not change. The stiffness, in turn, is related to the
penetration depth via

ρs = 1
µ0λ2 . (1.4)

However, every superconductor has a critical current density jc determined by the
penetration depth λ and coherence length ξ. When Atot exceeds a certain value, it is
worthwhile for the SC to change ∇ϕ so as to keep j below jc everywhere in the SC
while dissipating energy in the process. When this happens, the relation between j and
Atot is no longer linear, and the system’s rigidity breaks. We used these properties to
measure both ρs and ξ in FeSeTe.
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Chapter 2

Stiffnessometer Principles

In this chapter, we will explain our technique’s operation principles. We called it
Stiffnessometer because it is used to measure superconducting stiffness. In order to
investigate the SC, we shape it into a ring and place it in the center of a long excitation
coil (EC) (ideally, it is infinitely long). When we apply current I through the excitation
coil, a magnetic field is generated only inside the coil. Nonetheless, there is a rotor-free
vector potential outside the coil A = µ0nIr2

ec
r φ̂, where n is the winding density and r is

the distance from the coil’s symmetry axis. If we cool the sample Bellow Tc without any
magnetic field or current in the excitation coil, the vector potential is zero A = 0. This
cooling process is called Zero Gauge-Field Cooling (ZGFC). When cooling in this way,
there is nothing in the system that can accelerate currents in the ring. So for Eq. 1.1
to hold, ∇ϕ = 0 is required, and the London equation (Eq. 1.3) is obtained. However,
when the sample is superconducting, a change in ϕ has an energy cost. Consequently,
the linear relation j = −ρsA remains, and a change of the vector potential A induces
changes in the superconducting current density j in the ring. This current goes around
the ring in loops and creates a magnetic moment M that can be detected by a pickup-
loop connected to a superconducting quantum interference device (SQUID). Since A
is proportional to the current in the excitation coil Iec, and j is proportional to the
sample’s magnetic moment M we get a linear relation between the applied current and
the measured signal. When this linearity breaks, we know something has changed in
the system, and we are out of the linear regime.

2.1 Experimental setup

The system is assembled from a ring-shaped SC, cut out of a single crystal with a
femtosecond laser, as presented in Fig. 2.1(a). A long excitation coil pierces the ring.
Both appear in panel (b). The excitation coil, ring, and a second-order gradiometer
are connected to a SQUID system and surrounded by a main coil used to zero the field
to less than 0.1 µT on the ring, and for field-dependent measurement, as in panel (c).
Details of the dimensions of the different parts are given in the figure caption. The
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current flows in the excitation coil generate a vector potential Aec on the ring without
a magnetic field H. This vector potential is responsible for persistent rotational current
in the superconducting ring. This rotational current produces its own vector potential
Asc and a magnetic moment. The vector potential in Eq. 1.1 is Atot = Aec + Asc. The
magnetic moment is detected by moving the ring with the excitation coil rigidly relative
to the gradiometer. More information about how the gradiometer works appears in
Appx. B. The gradiometer and SQUID are part of QD-MPMS3 magnetometer. We
used the vibrating sample magnetometer (VSM) mode to measure the ring’s magnetic
moment M .

Figure 2.1: Experimental structure. (a) A microscopic image of the FeSe0.5Te0.5 ring.
The sample is not uniform. The minimal height, inner and minimal outer radii are
h = 0.10 mm, rin = 0.26 mm, and rout = 0.50 mm respectively. A discussion of
asymmetry in the ring’s outer radius appears in Sec. 4.1. (b) A copper excitation
coil with a superconducting ring beside it. The coil has a length of 60 mm, an outer
diameter of 0.25 mm, and 9300 turns in two layers. This coil is connected to an external
current source. (c) The ring and excitation coil assembly is moving rigidly relative to
a gradiometer, connected to a SQUID system, and surrounded by a main coil for field
zeroing or field-dependent measurement. The SQUID, gradiometer, and main coil are
part of a QD-MPMS3 system.

In principle, Aec does not change as the coil vibrates (no excitation coil flux varia-
tion), and the pickup-loop signal is only due to Asc (in practice, the signal of the exci-
tation coil is reduced from the measurements as background, as depicted in Sec. 3.1).
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This signal can be related to M at the center of a pickup-loop (z = 0), in the excitation
coil direction ẑ, and the radius of the pickup loop Rpl by

Asc(r = Rpl, z = 0) = µ0
4π

M

R2
pl
φ̂ . (2.1)

2.2 SQUID magnetometer

Based on the Josephson junction effect, the superconducting quantum interference
device (SQUID) is commonly used to detect magnetic moments. We used a quantum-
design MPMS3 magnetometer. The SQUID’s output is a voltage proportional to the
magnetic flux through the gradiometer. The output voltage of our device can be trans-
lated to units of magnetic moment with a resolution of 1 · 10−10 A·m2.

The measurements can be done in two different detection methods. (I) DC scan
mode. In this mode, we record the SQUID’s output voltage V (z) while the ring and
the excitation coil move relative to the gradiometer. The DC mode allows detection of
the excitation coil signal profile as well since the entire coil can be pulled out of the
gradiometer. Our gradiometer detects magnetic moments within a range of 15 mm on
each side of its center. This sets the length of our excitation coil. When measuring
over a wide temperature range, detection of the excitation coil contribution is essential
to determine the flux it generates at each temperature. ((II) VSM mode, where the
ring vibrates around the center of the gradiometer with an amplitude of 5 mm. Each
measurement is averaged over 2 second. The motor creates sinusoidal sample motion
with a frequency f . Average voltage output is obtained by Lock-in detection at a 2f
signal. In this mode, the excitation coil does not contribute to the signal significantly.
The VSM mode is fast and allows fine temperature scans without needing to achieve
temperature stability at each measuring point. Another advantage is that the nulling
of the external field is best in a range of 10 mm to each side. Hence, the sample remains
in the nulled field range during the measurement.

The best way to understand the signal in a measurement of the Stiffnessometer, as
illustrated in Fig. 2.1(c), is to look at the raw data of a DC scan. A typical DC mode
measurement is demonstrated in Fig. 2.2. The red symbols represent the excitation
coil signal moving through the gradiometer at T > Tc. Before the lower end of the
excitation coil has reached the gradiometer, the flux through it is zero. When the lower
end of the excitation coil transverse the gradiometer, its contribution to the total flux
changes from zero to positive to negative and back to zero. The upper end of the
excitation coil has the opposite effect; Its contribution to the flux goes from zero to
negative to positive and back to zero. But there is a time (or distance) delay between
the lower-end and upper-end contributions, leading to the observed signal.

At T < Tc, the ring adds its own signal, as shown by blue symbols in Fig. 2.2. The
ring produces a current that generates opposite flux to the one of the excitation coil.
The ring signal is concentrated on a narrower range on the z axis. By subtracting the
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Figure 2.2: A typical DC measurement of a ring in the center of an excitation coil is
scanned using a gradiometer connected to a SQUID. At high-temperature when the
ring is not superconducting (in red symbols); At low-temperature when the ring is
superconducting (in blue symbols); and in black symbols, the difference between these
measurements. This is a measurement of a LSCO ring with a current of 3 mA in the
excitation coil. It was taken from [12] and measured in a Cryogenic SQUID.

high-temperature measurement from the low-temperature one, it is possible to remain
with ring’s signal alone, as demonstrated by the black symbols.
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Chapter 3

Measurements

3.1 Stiffness

We cool the system to a certain temperature below Tc with zero current in the excitation
coil. After the temperature has stabilized, we gradually increase the current in the
excitation coil while measuring the superconducting magnetic moment. An example of
measurement at T = 12 K is presented in the inset of Fig. 3.1(a). A repetition of this
process at different temperatures appears in panel (a). To isolate the superconducting
signal, we subtract the moment of the measurement with zero current, which is due to
the ferromagnetic properties of FeSeTe, not its stiffness. In addition, we remove the
current dependence of the signal above Tc. This signal is due to the excitation coil’s
finite length and asymmetry.

Typical behavior in our measurements is a linear relation between the ring’s moment
and the excitation coil current, for low currents, as expected (see Ref. [13] and Sec. 4.1).
At some value of current, the linear relation breaks. This value defines the critical
current in the ring Ic. From that point on, the moment is expected to stop growing
with the increasing current and reach a saturation. In our measurement, beyond the
breakpoint, the magnetic signal drops sharply instead of the saturation behavior [12,
14]. This drop is caused by heat produced by the copper excitation coil, which leads
to a temperature gradient between the ring and the thermometer. In fact, when the
moment drops to zero, the ring has passed its critical temperature and stops being
superconducting. A simple solution to this heating problem could have been to use a
superconducting coil, but the Tc of FeSeTe is higher than any commercially available
superconducting wire. Instead, we calibrated the temperature at the ring position using
an open ring. The calibration is discussed in Appx. C.

To extract the stiffness, we fit each M(Iec) to a line in a temperature-dependent
range due to the variation in the critical current. Such a fit is demonstrated in the inset
of Fig. 3.1(a). The slope represents dM/dI (in the limit Iec → 0). The temperature
dependence of the slopes appears as blue circles in Fig. 3.1(b). The measurements do
not cover all the temperature range up to Tc since defining a linear region in the M(Iec)
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data becomes exceedingly difficult. Nevertheless, at a temperature slightly below Tc, a
knee appears in the (dM/dI)(T ). For a detailed discussion on the knee, see Appx. D.

The red down triangles measure M/I(T ) at constant Iec = 10 mA. At T > 13.45 K,
this current is above Ic. Such measurements cannot be used to extract the stiffness
above that temperature. On the other hand, such measurement can be carried out all
the way to Tc. Interestingly, the knee is observed with this constant current measure-
ment as well. It is important to mention that the knee was detected in other FeSeTe
rings (Fig. D.2).

Finally, in the inset of Fig. 3.1(b), we present the critical currents in the excitation
coil, corresponding to the moment’s maximum, as a function of the calibrated tempera-
ture. The large error bars at the low temperatures range are due to the large current in
the coil, leading to a strong temperature gradient and uncertainty in the temperature
calibration.
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Figure 3.1: (a) Stiffness measurements. Superconducting magnetic moment vs. the
current in the excitation coil at different temperatures, indicated by the colors. The
inset is focused on measurement at 12 K. A linear relation is found for low currents.
At some critical current value, the signal drops to zero. The blue circles in (b) depict
the temperature dependence of the linear slope obtained at low currents (far from
Ic) in panel (a). (b) Critical temperature. Superconducting moment over current of
the excitation coil vs. the temperature (red down-triangles) as described in Sec. 3.1;
Measured susceptibility (with a minus sign) vs. the temperature (emerald diamonds)
in MKS units, in the presence of a magnetic field of 1 mT, and without an excitation
coil (according to Sec. 3.2). Inset (b) shows the critical currents extracted from the
breakpoints in panel (a) vs. the calibrated temperature.
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3.2 Susceptibility

The emerald dimonds in Fig. 3.1(b), depict the temperature dependence of the mea-
sured, zero-field cooled (ZFC) susceptibility χ = M/(HVring), with a field of µ0H =
0.98 mT parallel to the axial direction of the ring; V stands for the ring’s volume. The
specific susceptibility is related to the measured one by

χ = χ0
1 +Dχ0

, (3.1)

where D is the demagnetization factor, and χ0 is the specific susceptibility. For a ring
with our geometry [15], the demagnetization factor equals D = 0.6, and if we consider
the inner radius of the ring rin → 0, since in ZFC, it is hard for the field to penetrate
the ring hole, D = 0.7. With these D values (considering the effective volume of
the ring in the latter case), we obtain, at T → 0, χ0 = −1.30, and χ0 = −1.15,
respectively. Whereas χ0 = −1 is excepted in the case that all of the ring’s volume is
superconducting. The extra 15% in χ0 is not clear to us. It means that our sample is not
exactly a ring and therefore, we do not know D exactly. Nevertheless, it indicates that
the entire sample is superconducting. A sharp transition of χ(T ) is obtained toward
the critical temperature, Tc = 13.75 K, which indicates the quality of the material.
Interestingly, in magnetization measurements, the knee is not observed (In other rings
it does appear Fig. D.2(b)).

3.3 Hysteresis loop

To characterize the magnetic properties of the FeSeTe sample, we performed a mag-
netic hysteresis loop measurement, which is depicted in Fig. 3.2(a). This measurement
is done above the critical temperature, at T = 15 K. We first increase the field from
zero to 2 Tesla while measuring the magnetic moment, then decrease it to −2 Tesla
and back to zero. The opening of a hysteresis loop is an indication of ferromagnetism.
Another sign is that the moment of the first point, at H = 0, is different from zero. It
might be difficult to notice this in the figure. However, this feature makes it possible to
detect the sample without applying fields or currents above and below Tc in contrast to
non-magnetic materials. Additional properties that can be deduced from this measure-
ment are the magnetization saturation, retentivity (remanence), and coercivity values:
Msat = 1.58 A·mm2, Mremanence = 0.22 A·mm2, and µ0Hcoercivity = 0.0153 Tesla, re-
spectively. From the magnetization saturation and the magnetic moment of a free Fe
ion mFe++ = 5.4µB or mFe3+ = 5.9µB, where µB is the Bohr magneton [16], we can
deduce that the fraction of the free iron ions per unit cell in the sample is y = 0.009
or y = 0.008, respectively. Wang et al. [17], performed inelastic neutron scattering
measurements of Fe0.98Se0.5Te0.5 and claimed that mFe = 2.85µB. The corresponding
value for the iron fraction is y = 0.017. More details about the calculation description
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at Appx. A.3.

3.4 Critical magnetic fields

The response of the superconducting ring to an applied magnetic field at different tem-
peratures below Tc is reflected in Fig. 3.2(b). From that measurement, we extract the
first and second critical fields, Hc1 and Hc2. Hc1 is defined by the maximum magnitude
of the moment for each temperature. A second peak emerges at an intermediate field
between Hc1 and Hc2, as discussed in Ref. [18]. This phenomenon is called the second
peak effect and is attributed to the role of twin boundaries. In principle, Hc2 is defined
by the value of H for which M = 0 [19]. However, it is not easy to define Hc2 because
of the asymptotic behavior of the moment. Therefore, we chose a criterion by which
Hc2 is the field at which the moment is 10% of the second peak magnitude. Below a
temperature of 10 K, Hc2 becomes higher than the maximum field available to us. Hc1

and Hc2 as a function of temperature are shown in the inset of panel (b).
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Figure 3.2: Magnetic moment vs. the external magnetic field. (a) Magnetic hysteresis
loop above the critical temperature. (b) M(H) at different temperature values below
the critical temperature, as indicated by the colors. Inset: The temperature dependence
of the critical fields Hc1 (blue circles) and Hc2 (red down-triangles) appear in the left
and right Y-axis, respectively.
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Chapter 4

Analysis Model

4.1 Stiffness

In the low flux regime (low currents in the excitation coil), the magnitude of the order
parameter is constant almost all over the superconducting ring and zero outside [13].
Substituting B = ∇ × A and London equation into amperes law gives

∇ × ∇ × Asc = −µ0ρsAtot , (4.1)

since on the ring ∇ × Aec = 0. In the London gauge, ∇ × ∇ × A = −∇2A, and the
vector potential outside an infinitely long coil is given by

Aec(r) = Φec/(2πr)φ̂ ; (4.2)

with Eq. 1.4, we arrive at the partial differential equation (PDE)

∇2Asc = 1
λ2

(
Asc + Φec

2πr
φ̂
)
, (4.3)

where λ = ∞ outside the SC. Normalizing the spatial variables and vector potential as
follows

r/Rpl → r , Asc/Aec(Rpl) → A , λ/Rpl → λ , (4.4)

Rpl is the pickup loop radius, and in cylindrical coordinates, A = A(r, z)φ̂, we end up
with the following PDE

∂2A

∂z2 + ∂2A

∂r2 + 1
r

∂A

∂r
− A

r2 = 1
λ2

(
A+ 1

r

)
. (4.5)

We use the finite element-based FreeFem++ software [20] to solve this PDE for different
values of λ and the dimension of our FeSeTe ring, appearing in the caption of Fig. 2.1.
The equation is solved in a box such that z ∈ [−L, L], and r ∈ [0, 8L] with L = 8.5 mm,
which equals the Rpl. Dirichlet boundary conditions are imposed.

As shown in Fig. 2.1(a), the ring’s outer radius is not uniform. However, according
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to the theory, see Appx. A.2, in the low flux regime, the current flow in a layer of width
λ near the inner rim of the ring, so the system’s rotational symmetry is not severely
compromised. When the flux through the ring is increased, the current layer retreats
toward the outer rim. This retraction ends when the current layer reaches the outer
rim. In our case, it happens at the shortest distance of the outer rim from the center.
We use this distance as the outer radius in the PDE 4.5.

The red line in the inset of Fig. 5.1(a) depicts the numerical solution of PDE 4.5.
The Y-axis is the normalized vector potential A at the ring’s height z = 0, and the
pickup-loop radial location r = Rpl. The X-axis is a logarithmic scale of the normalized
stiffness (Rpl/λ)2. Normalizing Eq. 2.1 by the vector potential of an infinite coil,

Aec(Rpl) = µ0nIec
2Rpl

∑
i

r2
ec,i , (4.6)

where n, rec,i, and Iec are windings per unit length in one layer, radius of the ith layer,
and current of the coil, respectively, we obtain the dimensionless vector potential

A(z = 0, Rpl) =
∑

i

g

2πnRplr2
ec,i

· M
Iec

, (4.7)

where M is the superconducting magnetic moment, and g is a calibration constant.

In reality, the coil is not infinite, and the external dimensions of the ring can be
different from the actual superconductor dimensions due to cutting and drilling. There-
fore, the constant calibration g is determined experimentally in two different methods:
(I) We compare the saturated value of A from the solution of PDE 4.5 (the red line in
Fig. 5.1(a) inset) to the saturated value of dM/dI (the lowest available temperature of
the blue circles in Fig. 3.1(b)). This method cannot be used to determine λ(T → 0)
since exactly this limit is used for the calibration. Nevertheless, it gives an estimate for
g; (II) In the second method, we use a literature value of a low temperature stiffness of
similar material to predict A with the PDE solution and compare it to our measured
dM/dI through Eq. 4.7 at the same temperature to extract g. For this work, the
stiffness was taken from Ref. [3]. We found g1 = 0.5363 and g2 = 0.5336 in methods
(I) and (II), respectively. We also applied the same calibration methods for a ring-
shaped Niobium with similar dimensions and found g1 = g2 = 0.68674(2) while using
λ(0) = 39 nm as the literature value for Niobium [21]. Although the two calibration
methods give different values for the penetration depth at low temperatures, towards
Tc, the values converge and almost coalesce, as seen in the blue and emerald triangles
in Fig. 5.1(c). In other words, the stiffness determined by the Stiffnessometer is not
sensitive to the calibration method once dM/dI is out of the saturation region.
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4.2 Coherence length

In the low flux regime J ≪ r2
in/λε and for λ ≪ rout − rin and h, where h is the

ring’s height, and J := Φec/Φ0, deep inside the ring Atot = 0, hence Asc = −Aec. For
J > r2

in/
√

8ξλ, the current necessary to produce Asc at rin passes the local critical
current [13]. Then, it is energetically preferable for the order parameter magnitude
to gradually diminish in the inner rim of the ring. Consequently, the superconducting
ring hole grows effectively, and effective inner radius reff

in is established. At even higher
flux, reff

in approaches rout, and the SC can no longer expel the applied flux, namely, to
cancel Aec. This happens when

Jfold ≈ r2
out√
8ξλ

. (4.8)

The name ”folding” means that increasing J past Jfold does not change Asc. Therefore,
it is identified with the critical applied flux Jfold = Φc/Φ0, which is directly related to
the critical current in the excitation coil. While the validity regime of Eq. 4.8 is in the
limits ξ ≪ λ ≪ rout − rin ≪ h, we believe it is valid for λ ≪ rout − rin and λ ≪ h

separately.
For J > Jfold, vortices are expected to penetrate from the inner rim toward the

outer one so that the superconducting moment no longer grows with amplification of
the current of the excitation coil. These vortices are manifested in increases in ∇ϕ. A
different approach to finding the relation between ξ and Φc appears in Appx. A.2.
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Chapter 5

Data Analysis

Eq. 4.7 relates the linear slope of the M(I) measurements, shown by blue circles in
Fig. 3.1(b), to the numerical solution of the PDE. The blue open circles in Fig. 5.1(a)-
inset represent the converted points for g2. Each of those points belongs to a different
temperature and gives a unique stiffness value. The temperature dependence of λ
for the two different g values is presented on a linear scale on the right Y-axis of
Fig. 5.1(a) and of λ−2 on a logarithmic scale in Fig. 5.1(c). The difference between
the two calibration methods is revealed in both sub-figures, but they are minute at
T → Tc. The linear regression towards the critical temperature on the logarithmic
scale represents the critical exponent mρ, according to the power-law

ρ ∝ (1 − T/Tc)mρ , (5.1)

with mρ = 0.91±0.02. This relation describes the data well from the knee temperature
12.4 K (blue circles in Fig. 3.1(b)) all the way to Tc.

Based on the stiffness and the critical current in the inset of Fig. 3.1(b), we ex-
tract the coherence length using Eq. 4.8 and Eq. 4.2, as depicted by the left Y-axis
of Fig. 5.1(a) and on a logarithmic scale in Fig. 5.1(b). Again, we fit the data to the
power-law

ξ−1 ∝ (1 − T/Tc)mξ . (5.2)

We found mξ = 0.41 ± 0.02, however we can not really extract a power law from this
figure due to the small change in ξ in the range of validity, see Fig. 5.1(b). The deviation
from the linear regression at high temperatures may be a result of analysis failure since
the penetration depth is no longer much smaller than the ring’s height λ��≪ h. At low
temperatures, we associate the deviation with heating caused by the strong current
in the excitation coil. It is worth mentioning that it belongs to measurements from
temperatures below the knee.

Alternative determination of ξ is from Hc2 [19] according to the equation

µ0Hc2 = Φ0
2πξ2(T )

. (5.3)
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ξ is presented on a linear scale with black squares on the left Y-axis of Fig. 5.1(a) and
1/ξ on a logarithmic scale in panel (b) of the same figure for comparison. Here we also
fit the data according to Eq. 5.2 and obtained mξ = 0.60 ± 0.03.

g2
g1

Figure 5.1: Penetration depth and coherence length. The red line in inset (a) depicts a
semi-log plot of the numerical solution of the PDE 4.5, namely, the normalized vector
potential evaluated at the pickup-loop radius and z = 0 for different values of (Rpl/λ)2.
The blue open circles represent the linear slopes in Fig. 3.1(b) through Eq. 4.7. (a)
The penetration depth as a function of the temperature in blue and emerald for the
different calibration methods. The left Y-axis shows the temperature dependence of
the coherence length, in red from the critical current measurement in Fig. 3.1(b)-inset
through Eq. 4.8 with the measured λ and in black squares measurements from the
second critical field in Fig. 3.2(b)-inset with Eq. 5.3. (b) and (c) panels are log-log
plots of 1/ξ and the stiffness λ−2 vs. 1 − T/Tc, respectively. The linear regression
represented the critical exponents according to Eq. 5.1 and Eq. 5.2, respectively. For
comparison, we add to (b) measurements (stars shaped) of 1/ξ from the resistivity
method [10] in magenta, ARPES [9] in purple, and STM [8] in green. The brown stars
in (c) are µSR measurements of the stiffness [3]

.
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Chapter 6

Discussion and Conclusion

6.1 Comparison with theory

Gavish et al. [13] considered an infinitely long excitation coil pierces a hollow super-
conducting cylinder confined to the region 0 < rin < r < rout. The dimensionless
Ginzburg-Landau (GL) free energy is read as

F = 1
2

∫
R3
λ2ξ2|∇ × A|2dx + 1

2

∫
sc

[
ξ2|∇ϕ|2 + ξ2ψ2|A − ∇ϕ|2 + 1

2
ψ4 − ψ2

]
dx , (6.1)

where Ψ = ψeiϕ, and the total vector potential is given by A = A(r) φ̂ = [Asc(r) +
Aec(r)] φ̂. The spatial variables, vector potential, and order parameter are normalized
according to

x → x
Rpl

, A → A
A0

, ψ → ψ

ψ∞
, (6.2)

where
A0 = ϕ0

2πRpl
, ϕ0 = 2πℏc

e∗ , ψ∞ =
√

−α

β
. (6.3)

ξ, and λ (in this section) are the normalized coherence length and penetration depth
are related to each other by

λ2 = ξ2 · βm
∗2c2

2πℏ2e∗2 . (6.4)

The GL equations are obtained by minimizing the free energy variation with respect
to ψ, and Asc, respectively:

ξ2
(
ψ′′(r) − ψ′(r)

r

)
= ψ3(r) −

(
1 − ξ2

(
Asc(r) + J −m

r

)2
)
ψ(r) , (6.5)

and
A′′

sc(r) + A′
sc(r)
r

− Asc(r)
r2 = 1

λ2

(
Asc(r) + J −m

r

)
ψ2(r) , (6.6)

where Aec = J/r φ̂, J = Φ/Φ0, and Φ is the flux inside the coil.
β is taken to be temperature independent, so it inferred from Eq. 6.4 that ρ ∝
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(ξ−1)2. Therefore, under GL it is expected that

mρ/mξ = 2 , (6.7)

where mρ and mξ are defined in Eq. 5.1 and Eq. 5.2, respectively. From the Stiffnes-
someter technique, we obtain

mρ/mξ = 2.22 ± 0.12 . (6.8)

This ratio could be compared with measurements done in an applied field. In
Fig. 5.1(c), we show the penetration depth taken by µSR [3]. The µSR stiffness values
close to Tc differ from those determined by the Stiffnessometer. Moreover, the power-
law value mµSR

ρ = 0.53 ± 0.04 is different by nearly a factor 2 from the Stiffnessometer.
Even worse, the µSR measurements are done in a fixed magnetic field, which becomes
higher than Hc2 as one approaches Tc. As mentioned before, the discrepancy between
µSR and the Stiffnessometer could also result from an interaction between the applied
field and the underline ferromagnet.

Similarly, compared to the Stiffnessometer measurements, the values of ξ obtained
by the Hc2 method are lower by a factor of 0.37 (at T = 13 K), and the power-law
(of 1/ξ) is higher by 0.2. The result obtained from the µSR and Hc2 methods gives
mµSR

ρ /mHc2
ξ = 0.88 ± 0.08, very far from the GL expected value.

The first critical field, Hc1, is related to λ and ξ [22] via

µ0Hc1 = Φ0
4πλ2 ln λ

ξ
. (6.9)

Since we already found all of these properties, we tried to get some closure in different
ways, without success: I) Calculating λ using ξ from Hc2 (Fig. 3.2(b)-inset red symbols
and Eq. 5.3) and Hc1 (Fig. 3.2(b)-inset blue symbols). The values obtained for λ
at T/Tc = 0.76 is 13 times greater than the stiffnessometer’s value and 7 than the
µSR value; II) Finding Hc1 at T = 0 using λ from µSR and ξ from STM. We get
Hc1(0) = 1.5 mT, which is 100 times smaller than the measured at 2 K.

Bendele et al. [4], addressed this problem by considering demagnetization factor D.
They introduced

B = µ0 (M/V +Hint) , (6.10)

where Hint = Hext −DM/V . Hint and Hext are the internal and applied field, respec-
tively, µ0Hc1 → B in Eq. 6.9. This calculation is very sensitive to the ring’s volume
and D accuracy. In Sec. 3.2 we consider two options for D. If we adopt the disk option
get a much smaller B than measured (as expected). If we consider the ring option we
find a negative B value. Sometimes additional constant is considered in Eq. 6.9 that
includes the effect of the hard core of the vortex line [4, 23, 24], but in our case, its
effect is negligibly.

26



For further comparison, low-temperature measurements of 1/ξ from other methods
have been added to Fig. 5.1(b) (stars shaped). Resistivity [10] in magenta, ARPES
[9] in purple, and STM [8] in green. The resistivity measurement is, in fact, an Hc2

measurement and, the result obtained is close to the one we get from the magnetization
method (ξHc2/ξRes = 1.6 at T = 0). In ARPES they find Fermi velocity over gap ξ0.
This is related to the GL ξ at T = 0, ξ(0), by a factor of 0.74. The same factor was
taken into account in the STM measurement. Unlike the Hc2 measurements, the results
from the other two methods are closer to the linear regression of the Stiffnessometer
method (ξStiff/ξARPES = 1.7 and ξStiff/ξSTM = 1.9 at T = 0).

6.2 Conclusion

We developed a method, ideal for magnetic superconductors close to Tc, to measure
both the penetration depth λ and coherence length ξ. For FeSeTe we find that λ and ξ
are longer than previously thought. In addition, their temperature dependence agrees
better with the GL predictions. A second transition, that looks like a knee, is observed
at temperature below Tc in the stiffness measurements. We could not rule out the
possibility that this transition is due either to nematic order, surface superconductivity,
multiple Fermi surfaces, or a simple geometrical effect.
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Appendix A

Mathematical Description

A.1 London equation derivation

The London equation gives the relation between a superconducting current density
and the electromagnetic fields in and around a superconductor. Let us consider an
infinitely long excitation coil pierces a superconducting ring. When the current in the
coil is set to a finite value, the magnetic field outside the coil is zero, but there is a
rotor-free vector potential outside, which is proportional to its current. We use the
Maxwell-Faraday equation,

∇ × E = −∂B
∂t

= −∇ × ∂A
∂t

, (A.1)

where B = ∇ × A. By integrating we get

E = −∂A
∂t

+ ∇V , (A.2)

where V is a scalar function. We choose it to be as follows

∇V = ℏ
e∗ ∇∂ϕ

∂t
, (A.3)

where e∗ is the charge of the particles. Substituting the expression above into Eq. A.1

E = − ∂

∂t

(
A − ℏ

e∗ ∇ϕ
)
. (A.4)

In a superconductor, there is zero resistivity. Hence, the acceleration of the charges is
dictated by m∗v̇ = e∗E, where m∗ is the charge carrier’s mass. Integrating over time
to get the velocity

v = − e∗

m∗

∫
∂

∂t

(
A − ℏ

e∗ ∇ϕ
)
dt . (A.5)

For a thin ring, the velocity is only in the azimuths direction, and by the system’s
symmetry, the vector potential and the velocity are independent in φ̂. Thus, there is
no difference between ∂t and dt, and the integral in the equation above is canceled.
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In addition, we use the definition of the charge current density j = e∗|ψ|2v, with
the identification n∗

s = |ψ|2, to obtain the gauge-invariant London equation (same as
Eq. 1.1)

j = −ρs

(
A − Φ0

2π
∇ϕ

)
, (A.6)

where n∗
s is the charge carrier’s density, the stiffness ρs is defined in Eq. 1.2, and Φ0

is the flux quanta. It is essential to mention that the London equation is much more
durable than in this description. It does not depend on whether we cool the sample
and then turn on the current or vice versa. Additionally, it is more general than this
specific setup and geometric.

A.2 Coherence length – approximate theory

This time, we consider an infinitely long excitation coil that pierced a long and thin
superconductive cylinder. The system can be described by the Ginzburg-Landau (GL)
free energy (Eq. 6.1). The GL equations are obtained by minimizing the free energy
with respect to the vector potential generated by the SC Asc and the normalized order
parameter magnitude ψ separately Eq. 6.5 and 6.6. The solution of the GL equations
shows how ψ and Asc arranges in the sample and how they evolve when we increase the
flux throw the hole. Gavish et al. [14] solved these equations in different flux regimes
and found that for low flux ψ = 1 almost all along the sample. But, when the flux is
increased, ψ will retreat towered the outer radius of the cylinder. When it reaches the
outer radius, and we keep increasing the flux, ψ will no longer be one anywhere, and
the system’s rigidity will break. That point defines the critical flux inside the ring.

The solution of the GL equations also relates the transition radius of ψ to the
current loop radius. For low flux, the current flow mostly in a boundary layer of width
λ from the inner rim of the cylinder (see Fig. A.1(a)). Deep inside the superconducting
cylinder, there is no current density j or magnetic field. Hence, according to the
London equation (Eq. 1.3), Atot = Aec +Asc = 0 means that the applied flux Φec must
be balanced by the flux generated by j, which flows at a width λ near the inner rim,

Φsc = µ0jλπR
2
in . (A.7)

When the flux is increased, the inner rim becomes normal, and the current retreats into
the sample and flows in a layer of width λ, see Fig. A.1(b). But still, it has to balance
the applied flux in the superconducting region (beyond the current layer),

Φsc = µ0jλπR
2
eff . (A.8)

The flux for which the current layer reaches the outer rim of the cylinder is identified
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as the critical flux and the critical current density accordingly, see Fig. A.1(c),

Φc = µ0jcλπR
2
out . (A.9)

Figure A.1: Illustration of the evolution of the current density in a superconducting
cylinder with the increase of flux throw the hole. Superconducting region in light blue
and normal in dark blue. (a) Low flux; (b) intermediate flux; and (c) strong flux.

The current definition is

j = e∗|ψ|2v = e∗2|ψ|2

m∗
1
e∗m

∗v = 1
µ0λ2

1
e∗m

∗v , (A.10)

where in the second equality we used Eq. 1.2, and 1.4. We use the connection between
the critical momentum and the coherence length, m∗vc = ℏ/

√
3ξ, from Tinkham [19]

(equation 4.37) and plug it into the current definition to get the critical current

jc = 1
µ0λ2

1
e∗

ℏ√
3ξ

= 1
2πµ0λ2

Φ0√
3ξ
, (A.11)

where Φ0 = 2πℏ/e∗ is the flux quantum. We combined it with Eq. A.9 to get the
expression for the coherence length,

ξ = 1
2πµ0λ2

Φ0√
3jc

= R2
out√
12λ

Φ0
Φc

. (A.12)

A numerical calculation of the GL equations [13] gives

ξ = R2
out√
8λ

Φ0
Φc

. (A.13)
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A.3 Free iron ions in the sample

Let us assume that iron atoms that are part of a unit cell of the FeSeTe crystal do not
contribute to the magnetic signal, and the contribution of the Se/Te ions is negligible.
Then the total magnetic signal is caused only by the free iron ions. When the field is
increased, and all the free ions are polarized in the same direction, the moment reaches
a saturation Msat, see Fig. 3.2(a). Consequently, the total number of free iron ions is
Nfree Fe = Msat/MFe, where MFe is the magnetic moment of one iron ion. The mass of
a unit cell is calculated from the sum of its components mcell = 2mFe + mSe + mTe.
The number of unit cells is obtained by dividing the ring’s total mass by the mass of
one unit cell Ncell = mring/mcell. By partitioning the total number of free iron ions by
the number of unit cells in the sample, we obtain the fraction of the free iron ions in
the crystal y = Nfree Fe/Ncell.
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Appendix B

Gradiometer

The gradiometer comprises three winding groups, see Fig. 2.1(c). The two outer con-
tain two loops each, wound clockwise, whereas the inner contains four loops wound
anticlockwise. In that way, we separate the magnetic signal generated by the sam-
ple from any other field uniform in space, even if it drifted in time. The gradiome-
ter is connected to a SQUID. The output is a voltage proportional to the difference
between the flux threading the different winding groups of the gradiometer Φtot =
−2Φ(z − 8) + 4Φ(z) − 2Φ(z + 8), where Φ is the flux that goes through each loop, z is
the location of the sample relative to the center of the gradiometer, and 8 mm is the
distance between each winding group. The flux Φ depends on the distance between the
sample and the loop. The proportionality between the output voltage and the mag-
netic moment of the sample is found once or verified by a known magnetic calibration
sample.
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Appendix C

Temperature calibration

Due to the heat produced by the current in the excitation coil, a temperature gradient
is developed between the ring and the thermometer, s.t., the actual temperature of
the sample T , and the temperature recorded by the chamber thermometer Tch are not
the same. Our goal is to determine the sample temperature T corresponding to each
critical current Ic based on the chamber temperature Tch.

The calibration process is done by measuring the temperature dependence of the
magnetic moment in the presence of an applied field of µ0H ≈ 1 mT (ZFC), similarly
to Sec. 3.2. However, this time we use a disconnected FeSeTe ring and repeat that
measurement for different currents in the excitation coil. The critical current values
from Fig. 3.1(b)-inset have been chosen to improve the accuracy.

The current in the excitation coil heats the sample but cannot generate a persistent
current in the ring due to the disconnection. Nevertheless, there are three additional
contributions of the excitation coil current to the signal, and all are consequences of
its finite length. A good way to understand them and get an intuition is to look at the
excitation coil signal that appears in figure 2-inset in Ref. [12] and by the red symbols
in Fig. 2.2: I) The second-order gradiometer is insensitive to any field uniform in space,
but even around its center, the excitation coil signal is not totally uniform; II) A global
shift of the moment due to asymmetry of the coil (e.g., wires enter the coil from one
side only). The contribution from these two sources is identified from the measurement
above Tc. The measurement results after this reduction appear in Fig. C.1(a); III) A
field’s leakage from the excitation coil parallel to the applied field, altering the entire
field in the sample and the sample’s moment accordingly, as will be discussed later.

Once these shifts were eliminated, we search for the temperature correction, ∆T ,
for which M(Iec, Tch + ∆T ) collapses onto the one without the current M(0, T ) at the
steepest part of the measurement’s slope as seen in Fig. C.1(b) and Fig. C.2-inset. It
could also be seen that although the collapse happened close to Tc, the correction is
suitable for a wide range of temperatures.

After the temperature correction, for each current, we compare the measurement
with the current to the one without. The error in the temperature correction is es-
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Figure C.1: Temperature dependence of the magnetic moment of a disconnected FeSeTe
ring in the presence of a magnetic field, repeated for different currents in the excitation
coil, as indicated by the colors. (a) Before the calibration. (b) After calibration.

timated by the temperature difference between points with the same moment value
from both measurements. An example appears in Fig. C.3. The errors depend on the
current in the coil and temperature. Finally, in blue circles in Fig. C.2, we present the
SC critical current Ic as a function of the calibrated temperature T with error-bars.

Looking at the low-temperature range in Fig. C.1(b), we can see the moments
drop as we increase the current in the excitation coil. A possible explanation is that
a magnetic field is leaking from the coil. This leakage could be partially canceled
by measuring the moment with both current directions, as presented in Fig. C.4(a).
Indeed, the gap increases with the current while the zero current measurement stays
in the middle. Averaging over both directions reduces the deviation, as in Fig. C.4(b).
Notably, the magnitude of the field leaking from the coil at 10 mA current is estimated
to be 0.03 mT.
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Figure C.2: Critical current inside the ring vs. the temperature. Before the calibration
in gray diamonds and after in blue circles. The inset shows the temperature correction
∆T vs. the current in the excitation coil. A parabolic relation is obtained (approxi-
mately).
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Figure C.3: Estimation of the errors in the temperature calibration process. Measure-
ments after temperature calibration (from Fig. C.1(b)) without current in the excitation
coil in black symbols and with a current of Iec = 25 mA in red. The error is estimated
by the temperature difference between two points with the same moment value. It is
represented by δT and depends on the current and the temperature.
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Figure C.4: Moment vs. temperature. The influence of the leaking field from the
excitation coil on the measurement. (a) Calibrated measurements in the presence of
positive and negative current values. (b) Averaging over the directions of the currents
in (a).
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Appendix D

Knee Investigation

D.1 Applied field influence

The Knee origin is still unknown, but here we present our investigation. The fact that
the knee appears in measurements with the coil but not with an external field (emerald
diamonds in Fig. 3.1(b)) raised the question of whether the field destroys the knee.
To answer that, we’ll do the following manipulation. We measure the superconducting
magnetic moment vs. the temperature in the presence of a perpendicular applied field
(ZFC) and current in the excitation coil as presented in Fig. D.1. In one measurement
(in black), we applied a magnetic field and current in the coil, and in the second (in
red) with field only. Then, we subtracted the measurement with the field from the
combined one, so we left “only” with the contribution of the coil (in blue). Panel (b) of
the same figure is zoomed in on the manipulated measurement (in blue), It is possible
to see that the knee has not disappeared and appears at the same temperature as in
the measurement with current only (in brown), as indicated by the red line.

It can be seen in Fig. D.1(b) that the saturation value (the moment at low tempera-
tures) in the brown measurement is different from the manipulated one. This difference
is due to the differences between the black and red measurements.
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Figure D.1: Superconducting magnetic moment vs. the temperature in the presence of
applied field (1 mT) and current in the excitation coil (10 mA). The blue symbols belong
to the measurement in black minus the one in red. (b) Zoom in on the manipulated
measurement (in blue). The brown measurement is done with a zero field and a current
in the excitation coil. A shift has been inserted to the Y-axis to emphasize the knee.

D.2 Rings comparison

A comparison between different rings from different crystals appears in Fig. D.2, which
shows the normalized superconducting moment as a function of the temperature. Panel
(a) with a current in the excitation coil and panel (b) with an applied field. The applied
currents and fields are in the range [5, 10] mA and [0.1, 3] mT, respectively, But not
necessarily equal. Ring 1 is the central ring of this research. Its data appears in the
red down-triangles in Fig. 3.1(b). Rings 1 and 2 are from the same crystal, 3 and 4
were measured by Eran Gazit (a former MSc student of Amit Keren) in a Cryogenic
SQUID.

The knee temperature varies from ring to ring (Fig. D.2(a)), and in rings 2 and 5,
do not exist at all. In panel (b), interestingly, a knee appears in the measurement of
ring 3.
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Figure D.2: Normalized magnetic moment vs. the temperature for different rings. (a)
in the presence of current in the excitation coil, as described in Sec. 3.1. (b) in the
presence of a perpendicular applied field, according to Sec. 3.2 protocol. Ring 1 is the
central ring of this research. Its data appears in the red down-triangles in Fig. 3.1(b).
A different offset has been added to each ring to separate the measurements

D.3 Nematic order

Fig. D.3 presents the nematic and superconducting transition temperatures as a func-
tion of the Tellurium composition in the FeSeTe sample (reprinted from Mukasa et al.
[25]). Panel (b) is focused on a lower temperature range. The nematic transition (Ts)
is reflected as a tetragonal to orthorhombic structural transition. The nematic and su-
perconducting transition was measured by resistivity measurements, the blue and red
circles in Fig. D.3, respectively. Additionally, the Ts was determined by the splitting
of the Bragg peaks in the XRD measurements (the green triangle). The resistivity
measurements cannot be used to observe Ts below Tc due to the absence of resistivity.
The lowest temperature measured by the XRD measurements is 13.3 K, and there are
no measurements close to the 0.5 (Te composition). Nevertheless, it looks like the two
transition temperatures converge near 0.5. Maybe there is a composition for which
the nematic critical temperature drops below Tc? Perhaps this happens in our sample
(with similar composition), and this is the explanation for the knee.
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Figure D.3: Transition temperature vs. Te composition. The blue and red circles
represent the nematic and superconducting transition temperatures from resistivity
measurements. The green triangle represents the nematic temperature determined by
the splitting of the Bragg peaks in the XRD measurements. Panel (b) is the same as
(a) but focused on a lower temperature range. Reprinted from [25]

D.4 Two critical temperatures?

Peng Zhang et al. [26], suggests the existence of surface superconductivity in FeSeTe,
as illustrated in Fig. D.4. This might lead to two different Tcs, one for the bulk SC and
one for the surface. The two Tcs can be another reason for the knee.

Figure D.4: Superconducting state in the bulk and on the surface. The blue and red
arrows illustrate the spin directions. The black curves denote the bulk states, and the
blue and red curves to a topological surface states. Reprinted from [26]
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טטראדר. במבנה הממוקמים טלור או סלניום

והמגנטיות העל-מוליכות תכונותיו את לאפיין מנת על נעשו אשר מדידות מגוון מוצגות זו בעבודה

הערעור בסליל בזרם כתלות מומנט מדידת קשיחות. מדידת (1) הינם: בינייהם המרכזיות הגביש, של

למציאת ומשמשת לונדון משוואת של הקשר את ממחישה זו מדידה .Tc-ל מתחת שונות בטמפרטורות

מדידות קריטית. טמפרטורה מדידת (2) הקריטי; הזרם מתוך הקוהרנטית ואורך העל-מוליך קשיחות

ואחיד. חיצוני מגנטי שדה בהשפעת או הערעור בסליל זרמים בהשפעת בטמפרטורה כתלות מומנט

לולאת (3) המגנטית; הסוספטביליות ואת הקריטית הטמפרטורה את לגלות משמשות אלו מדידות

מדידת (4) פרומגנטיות; לגילוי הקריטית הטמפרטורה מעל בשדה כתלות מומנט מדידת היסטרסיס.

למציאת משמש .Tc-ל מתחת שונות בטמפרטורות המגנטי בשדה כתלות מומנט מדידת קריטים. שדות

זרם הזרמת כי התברר הניסוי במהלך בנוסף, והשני. הראשון הקריטי השדה של בטמפרטורה התלות

כיול לשם במקרר. לטרמוסטט הטבעת בין טמפרטורות גרדינט יוצר מנחושת שעשוי הערעור בסליל

הטבעת. של האמיתית הטמפרטוה את לזהות המאפשר חדש ניסוי על לחשוב נדרשנו הטמפרטורה
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תקציר

j העל-מוליך זרם וצפיפות A הוקטורי הפוטנציאל שבין היחס את מביעה ρs העל-מוליך קשיחות

פרמטרי שני מבין השני הוא הקוהרנטיות אורך .j = −ρsA לונדון משוואת לפי על-מוליך בתוך

בו ביותר הקצר המרחק את מאפיין זה גודל גינזבורג-לנדאו. של בתורה על-מוליכות של האורך

בהרבה חשוב גודל זהו באנרגיה. מיותרת לעלייה לגרום מבלי להשתנות יכול Ψ(r) הסדר פרמטר

העל-מוליך קשיחות כלל בדרך אותו. למדוד מוטיבציה לנו יש ולכן על-מוליכות של מחקר תחומי

שלהם החדירה עומק ומדידת חיצוניים מגנטיים שדות הפעלת ידי על נמדדים הקוהרנטיות ואורך

העל- ממשפחת חלק כגון מגנטיים בחומרים זאת, למרות .Hc2 השני הקריטי והשדה λ החומר לתוך

לתוצאות להוביל יכולה זו בעיה בפרט. (FeSeTe) ברזל-סלניום-טלור ותרכובת ברזל מבוססי מוליכים

זו בעיה על להתגבר מנת על יוצר. שהחומר המגנטי השדה עם מתערבב המגנטי והשדה מאחר שגויות

"קשיחומטר" הנקראת הקוהרנטיות ואורך העל-מוליך קשיחות למדידת חדשה בשיטה משתמשים אנו

טבעת לצורת הגביש את חותכים זו בשיטה שלנו. המחקר בקבוצת פותחה אשר (Stiffnessometer)
יוצרת העירור בסליל זרם הזרמת עירור. סליל הנקרא מאוד ארוך סליל של במרכזו אותה ומקבעים

וללא רוטור חסר A פוטנציאל וקטור נוצר זאת, לאומת בלבד, הסליל של הפנימי בחלקו מגנטי שדה

על-מוליכים התמד זרמי בטבעת מתעוררים לונדון משוואת לפי העל-מוליכה. בטבעת מגנטי שדה

M העל-מוליך של המגנטי המומנט דרך נמדדת j בטבעת הזרם צפיפות הטבעת. את מקיפים אשר

הזרם שעוצמת ומכיוון ,(SQUID על-מוליך קוונטית התאבכות (התקן סקוויד מגנטומטר באמצעות

מתוך הקשיחות את ולחשב המופעל הפוטנציאל וקטור את לחשב ניתן לנו, ידועה הערעור בסליל

הוקטורי הפוטנציאל את לסחוף ניתן העירור בסליל שעובר הזרם הגברת על-ידי לונדון. משוואת

בתחומים גינזבורג-לנדאו משוואות של פתרון מתוך נשבר. A-ל j בין הלינארי שהקשר עד המגנטי

במיוחד מדויקת זו שיטה הקוהרנטית. לאורך הקריטית הזרם הצפיפות את לקשר ניתן המתאימים

של נוכחות או במגעים שימוש ללא על-מוליכים לחקור מאפשרת היא הקריטית. הטמפרטורה בקרבת

מערבולות של ומקיומם דימגנטיזציה, גורם של מסיבוכים נמנעים אנו זה באופן בדגם, מגנטי שדה

מדידה ולטכניקות תיאורטיות לציפיות תוצאותינו בין השוואה מתבצעת זו בעבודה .(Vortices) זרם

שונות.

להם שהמשותף חומרים של במשפחה השמונים בשנות התגלתה גבוהות בטמפרטורות מוליכות על

על-מוליכים של נוספת משפחה התגלתה 2008 בשנת וחמצן. נחושת עשויים אטומיים מישורים הוא

השנה באותה ברזל. של אטומיים מישורים הוא להם שהמשותף גבוהה קריטית טמפרטורה בעלי

בלחץ קלווין מעלות 8 של קריטית טמפרטורה עם ברזל-סלניום בגבישי על-מוליכות לראשונה התגלתה

עד קריטית הטמפרטורה של לעליה הוביל טלור באטומי הסלניום מאטומי חלק החלפת אטמוספרי.

בנוסחה (y ≃ 0) x = 0.45 עבור התקבלה אשר קלווין מעלות 15 של מקסימאלית לטמפרטורה

אטומי ידי על המחוברים ברזל אטומי של מישורית משכבה מכיל שלו הגביש מבנה .Fe1+ySexTe1−x
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לפיזיקה. בפקולטה קרן עמית פרופסור של בהנחייתו בוצע המחקר

זה. מחקר מימון על לטכניון מסורה תודה הכרת
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