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Motivation

The layered structure of cuprates might imply that SC
phase is two dimensional.

Theoretically, phase transitions with long range order are
forbidden in a two-dimensional systems. (BEC, 2D solid,
2D magnet, 2D SC).

Recent theoretical and experimental evidence show
that SC can work in two dimensions. The Cu-O planes
can decouple while SC in the planes survives. '
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Previous work

Magnetic-field-induced uniaxial resistivity in a high-7, superconductor

Jinsheng Wen.»? Qing Jie.!*? Qiang Li.' M. Hiicker,! M. v. Zimmermann,? Su Jung
Han.*? Zhijun Xu.»* D. K. Singh.”>® Liyuan Zhang.! Genda Gu.! and J. M. Tranquada'

* Experimental evidence of a distinct field-
induced state in LBCO.

e Zero resistivity was measured in two
dimensions (2D), parallel to the planes.

e Large resistivity was measured for the same
temperature, perpendicular to the planes.

Arxiv:1009.0031v2 (2010)
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FIG. 1: Magnetoresistance in La._,Ba,CuQO, with z =
0.095. Resistivities vs. temperature for a range of magnetic
fields, corresponding to the configurations: a, p; in H,; b,
pLin Hy; ¢, pin Hi: d, p| in H|. The values of puoH,
ranging from 0 T (violet) to 9 T (red), are indicated in €. The
orientations of the measuring current, I, and the magnetic
field are indicated in the insets.




Previous work

PRL 104, 157002 (2010) PHYSICAL REVIEW LETTERS 16 APRIL 2010

Towards a Two-Dimensional Superconducting State of L.a, ,Sr,CuQy,
in a Moderate External Magnetic Field

A. A. Schafgans,"* A.D. LaForge,' S.V. Dordevic,” M. M. Qazilbash," W.J. Padilla,' K. S. Burch,' Z.Q. Li,'
Seiki Komi}-'a,3 Yoichi Anndcr._4 and D.N. Basov'

* An optical reflectance study probed
the superfluid density between CuO,
below T..

* A complete suppression of the
interlayer coupling was observed
upon application of a
?perpendicular? magnetic field.

Applied Field (T)

0 5 10 15 20 25 30
Temperature (K)

* The in-plane SC properties was found The Red dots represent the
to be intact. decoupling field at a certain T.




Previous work

week endin:
PRL 99, 127003 (2007) PHYSICAL REVIEW LETTERS 21 SEPTEMBER 2007

Dynamical Layer Decoupling in a Stripe-Ordered High-7', Superconductor

E. Berg,] E. Fradkin,” E.-A. Kim,' S. A. Kivelson,' V. Oganesyan,3 J. M. Tranquada,4 and S.C. Zhang1

* When stripe order is present, frustration of A loee o
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gives rise to a 2D-like superconducting state. -




Previous work

week ending

PRL 105, 085302 (2010) PHYSICAL REVIEW LETTERS 20 AUGUST 2010

Finding the Elusive Sliding Phase in the Superfluid-Normal Phase Transition Smeared
by c-Axis Disorder

David Pekker,' Gil Refael,2 and Eugene Demler’

* Interplay between disorder along the c-axis, and the a-b planes KT
physics gives rise to an anomalous phase.

* In this region of the phase diagram, superfluid becomes split into an
array of 2D puddles with no response along the c axis.

* The discussion here is about BEC, but it is also valid

for layered superconductors as well.

Superfluid Response

P. Mohan and T. Vojta , PRL 105, 085301 (2010)
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Motivation

* The experiments were done at relatively high magnetic

field, up to 9 Tesla. This could alter the ground state of
the system.

* We believe that we a state of 2D superconductivity
measure, in a zero field regime.

* We discovered this unintentionally while measuring

magnetization of single crystal of LSCO with different
orientations.




Crystal growth technique we use:

Traveling Solvent Floating Zone Method (Crystal Systems Corp. Japan) image
furnace. It is in operation in our laboratory since 2007.
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Crystal growth “technology”

1. Synthesis of the starting material

2. Pressing and sintering of the feed rods @7-9mm, length 50-200mm!!
(hydrostatic pressing 60000 PST)




Growth parameters which can be controlled

It appears that LSCO grows with it’s c-axis
pointing from the side.




The samples - Rectangular Needles

A-needle C-needle
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Typical dimensions
I1x1x10 mm IxIX5mm




Why needles?

* Demagnetization factor - D. g e
T D@ ' l|l::||l+
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apparent susceptibility is not the intrinsic one: = $E[FEEEEL
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D depends only on sample geometry, but fortunately for a-
needle D=0.

* With rectangular needles we can measure “clean” susceptibility
for the two directions.
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Orientation

X-ray beam
%

X-ray beam

Laue of (100) direction (AB) Laue of (001) direction (c-axis) .



Cutting the samples
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Cut some more...

1x1x10mm needle



Cutting the samples

* It was extremely difficult to cut a C-Needle.

* The crystal easily breaks on its natural cleavage plane
perpendicular to c-axis.

* A wire saw, which applies minimal

pressure, can do the job.

Spontaneously cleaved crystal
(C-axis going out from to page)




Experimental Setup

* Measurement was conducted in cryogenic Limited SQUID
Magnetometer.

* Field Resolution of 0.010e at field up to 2000e.

* Prior to each measurement batch the field was degaussed and
calibrated with a type I SC.
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What did we measure?

* We mainly measured magnetization vs T in two directions, parallel
and perpendicular to the C axis.

This was done for:
* Different doping.
* Different applied magnetic fields.
* Different sample geometries.
* Sample Homogeneity via T_.
 Different angular tolerance

* Critical fields for various temperature close to T_




The main and surprising result

15% LSCO
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It looks like we have two different T_ for the two directions in y,
while resistivity shares the same T_.

AT, = 0.7 + 0.05K.




Other Doping

LSCO N32 8%
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We observer the same effect for x=0.08 doping with AT, = 2.6 + 0. 1K.




Other Doping

LSCO NS0 7%
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We observer the same effect for x=0.07 doping with
AT. = 4.5 + 0.5K (probably larger).

At x=0.06 we could not observe the saturation of the magnetic
moment, so x=0.07 was our limit.




Field Dependence

A-Needle y vsT
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Field Dependence of T 12
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 T%isthe temperature where the susceptibility is 50% of it’'s max value.

* We see that in the H=0 limit there is a clear difference between the two directions
at H=0.

* The A-needle has a sharper T dependence of the transition width.




Volume fraction
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We measured full volume fraction for our sample at the lowest temperature.




Sample Homogeneity

LSCO 8% N40
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* T. is fluctuates within measurement errors with STDEV 0.25K
along the grown sample while AT, = 2.6 + 0. 1K was
measured.

* Previous works has shown that Sr content is stabilized after
20mm of crystal growth.




Magnetic Moment [Am’]

Critical Field Temperature Dependence
A-needle
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Magnetic Moment [Am’]

Critical Field Temperature Dependence
C-needle
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The measurements were preformed under H_, for all the temperature
range on the transition.

T at which Hc, goes to zero is different between the samples.




Cube geometry

LSCO 7% Cube
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When measure the same sample we see clear difference

between the two directions — our results are sample

independent.
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Cube geometry
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Misorientation

A-Needle Misorientation
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No significant difference for artificial misorientation For the A-needle.




Misorientation
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No significant difference for artificial misorientation For the C-needle.




Length Dependence

1-0 o rnngns

0.9 | u
- ®n
08 °.
L .\ \.
0.7 |
[ °.
0.6 | ‘\.\ —HE— 10mm Needle
o - .\ —®— 5mm Needle
% 05 F |
| Q\
@

0.4 - X
0.3 -

| .
0.2

0.1 — .\

0.0

30 31 32 33 34 35 36 37 38

No significant difference between different sample lengths.




Reproducibility
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Summary

AT

We grew Single crystals of LSCO with various Sr doping.

We measured magnetization on needle shape sample with different
orientations.

We found that for the A and C needle samples there is a consistent
difference in T.. This is independent of external factors.

The difference in T. depends on doping, it increases as doping
decreases
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Is there another explanation

* Is the penetration depth larger than sample dimensions?
* The standard London equation:

1
VZB = ﬁB
* The London equation in two dimensions (Valid below H_,):

&)\C

A'EEIb A-ab

A-needle C-needle
92 2 02X 2 02X 2 02X
2% 4Xa 4 9 a _ y 4+ )4, —=£ =
C Hx2 + ab 6y2 Xa ab Ox2 + ab 6y2 Xc

* From the c-needle data we can calculate A (T).

* With A, (T) we can now extract A_(T).




Is there another explanation
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A, decreases much faster then A ;.

If we will increase our sample size by a factor of
5, we except to see a larger difference in T..
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Conclusions

Contrary to theoretical wisdom, we do measure
two different T_’s.
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