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Motivation

The anisotropy of superconductivity in Cuprates and the difference between parameters in/out of CuO2
plane is a well-known phenomena.

Kapon et al. showed a 0.7 (K) difference in Tc of 1/8 doping in LSCO.

We wanted to check the doping dependence
of this Tc difference.
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The Cuprate Family

• High temperature superconductors – “HTSC”.

• Nearly tetragonal unit cell with layers of CuO2 planes.

• Doping by changing the rear-earth metal atoms concentration – “x”.

2 4x xLa Sr CuO−

Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen
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Phase Diagram of Cuprates

Keimer, B & A Kivelson, S & R Norman, M & Uchida, S & Zaanen, J. (2015). 
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• The single crystal is checked and orientated using x-ray Laue diffraction.

• Using diamond disk saw to cut ac-plates and ab-plates.

• Cutting the rings out of the plates using femtosecond-laser.

Rings making

C-ring

CuO2 planes 
perpendicular to 

symmetry axis

A-ring

CuO2 planes 
parallel to 

symmetry axis

Laue picture of c-direction



The superconducting stiffness is defined by:

Where ϕ is the phase of the complex order parameter

When 𝛻𝛻𝛻𝛻 = 0 we get the London Equation:

The London Equation
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ρs is the stiffness.

λ is the penetration
depth. 

One usually measures λ by applying a magnetic field. We want to measure ρs directly.

London

Maxwell

Solution

The Meissner Effect



• Use infinitely long coil in the center of a superconducting ring 
to generate A with B=0.

• A creates J.

• J creates magnetic moment m.

• We measure m by moving the ring inside a pickup loop.

• We drive A until linearity between A and J breaks, or change the 
temperature wile the currant in the coil is fixed.
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Principal of Operation



Experimental Setup
60mm superconducting-coil
4 layers, 2400 turns, 
102 µm wire, 
0.96mm outer diameter.
Made out of TiNb

Inner-coil

Superconducting
ring

Gradiometer 

External coil

LSCO Ring
1mm inner hole diameter
3mm outer diameter
1mm height.

60mm coper-coil
2 layers, 1214 turns, 
50 µm wire, 
0.82mm outer diameter.



Superconducting Quantum Interference Device
“SQUID”

The magnetic flux through pickup loop is connected to the SQUID with a Flux Transformer and the 
measured voltage is:       

This magnetic flux is proportional to the samples vector potential via:          

pl
SQUIDV K= ⋅Φ
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Extracting the Stiffness
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The important quantity is: 

rpl is the radius of the pickup loop. 

G~1 is the Gradiometer geometrical factor.

So we need to calculate Aring(λ) and invert it. 
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Extracting the Stiffness
Maxwell:                                        London:

Combining the two equations, and switching to unit-less variables:

we get the PDE:

Boundary conditions:

Outside the ring  𝜆𝜆 → ∞ .

2 2

22 2 2

1 1 1A A A A A
z r r r r rλ

∂ ∂ ∂  + + − = + ∂ ∂ ∂  

0 ( )ring µ∇×∇× = −A J r ( )2

1( ) s tot coil ring
o

ρ
µ λ

= − = − +J r A A A

( , ) ˆ( , ) ,  , , , , /
( )

ring
PL

coil PL

A r z
r z r z r z r

A r
θ λ λ= →A

( 0, ) ( , ) ( , ) 0A r z A r z A r z= = →∞ = → ±∞ =



Extracting the Stiffness
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• Measurements are accurate for: 

• G can be calibrated from the measurements and the 
simulation for low temperatures and short   .λ

0.1 3mmλ≤ ≤



Zero Gauge Field Cooling
Cooling below Tc, turning the current on.

Gauge Field Cooling
Turning the current on, cooling below Tc,
turning the current off. (now             )

Cooling Protocols
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Stiffness vs Temperature 



λ vs Temperature 



Magnetic Moment Measurement
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Magnetization vs Temperature 
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Magnetization vs Temperature 



Stiffness vs Temperature 



λ vs Temperature 



The Phase Diagram



The Phase Diagram
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The critical A
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ξ of La2-xSrxCuO4 for A and C rings

• In LSCO x=22% A-ring a clear break from linearity is observed.
• In LSCO x=22% C-ring we do not reach a critical vector potential Ac(rin).
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The Implications to ξ

ξ < 4 nm

For LSCO x>15%, λ=300nm  (Low Energy µSR).

Solving the PDE for this λ and using               Amp for x=22% we find

One can also measure ξ using the relation

The cuprates acceptable value is ~2 nm and requires a field ~100 T.
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Conclusions

• The difference in Tc observed in x=1/8 doping was just the tip of the iceberg.

• The new phase diagram is dome-like with it’s maximum near OPD and a drop at the quantum 
critical point.

• The new method of measuring ξ works at            and we can determine ξc.

• A factor 2 in ATot will allow ξ measurements for all doping in both directions.

0T →



The Group
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• We can calculate the critical current density using a simple argument.

• Consider an Ampere loop. 
• There is no field inside the coil since the SC rejects it. 
• There is no field inside the SC. 
• So the total current crossing the loop is zero. 
• In the SC the current is limited to a region of length λ next to the inner rim.

Critical Current Density  at 𝑇𝑇 → 0
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Coil With 6 Winding Layers

ξ ≤ 2.94 nm (?).If this break is true then: Needs to be confirmed !



• The gradiometer is maid of 8 pickup loops with different winding direction.

• The SQUID signal is proportional to the flux from all 8 pickup loops.

• Calculating:                                                  ,

• Then:                                                                                          where:

The Gradiometer “G” factor
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The Phase Diagram
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