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Abstract

The experimental search for an ideal two dimensional, spin 1/2, Kagomé com-
pound, which has no out-of-plane interactions and no impurities on the Kagomé
plane, has powered tremendous experimental efforts in recent years. Recently a
new Kagomé compound was synthesized. New organometallic hybrid compound
Cu(1,3-benzendicarboxylate) [Cu(1,3-bdc)|, which has structurally spin 1/2 cop-
per kagomé planes separated by pure organic linkers. Using muon spin resonance
(uSR), magnetization measurements and electron spin resonance (ESR) we ex-
amine this new Kagomé. Susceptibility and ESR measurements revealed distinct
anisotropy behavior. By orienting the sample two different 6., are found. When
the applied external field is parallel to the Kagomé planes, 67, exhibits ferromag-
netic interactions. As for the perpendicular direction, X is not reliable, thus
we cannot characterize the interactions in the Kagomé planes from magnetization
measurements alone. Furthermore, ESR measurements done on the Cu(1,3-bdc)
compound reinforced the presence of anisotropy. We get two different g-factors for
each direction measured and two different ESR line-widths, which were found out
to be temperature independent. Susceptibility and ESR measurements combined
with theoretical calculations allow us to characterize the spin Hamiltonian.

From the SR experiment we found slowing down of spin fluctuations starting at
T = 1.8 K, and that the state at T" — 0 is quasi-static with no long-range order
and extremely slow spin fluctuations at a rate of 3.6usec™ . This indicates that

Cu(1,3-bdc) behaves as expected from a Kagomé compound.
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Chapter 1

Introduction

In most magnetic materials at high temperature regime the spins (due to the
presence of unpaired electrons) are subject to thermal agitation and are random in
orientation, a state called paramagnetism. As the temperature is lowered spin-spin
interactions eventually dominate the thermal energy and the spins can lower their
energy by aligning or ordering with each other. The most common ordering is that
in which the nearest neighbor (n.n.) spins align antiparallel (antiferromagnetically)
as in Fig. 1.1 where the spins are on the corners of a square. In this geometry there

is no impediment to the establishment of n.n. spin order. Consider now the case of

Y

FIGURE 1.1: Spins arrangement in a square lattice.

Fig. 1.2, where the spins are on the corners of an equilateral triangle. Here there is
a strong geometric impediment to spin ordering as only two of the three spins can
be aligned antiparallel simultaneously. The combination of triangle-based lattice
symmetry and antiferromagnetism results in phenomena known as geometrical
frustration, which has attracted much interest in the last two decays. Frustration

4
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FIGURE 1.2: Spins arrangement in a triangle lattice.

is the inability of a system to simultaneously minimize the total energy of its
classical ground state by minimizing individual microscopic interactions. Highly
frustrated magnets have a large degenerate ground state. Heisenberg Hamiltonian

describing the interaction between n.n. spins is,
H=1JY S5 (1.1)

where J is the exchange coupling constant, J > 0 is the antiferromagnetic (AFM)
exchange and the sum (7, j) is over all n.n. spins. Considering a triangle lattice
with n.n. interactions, the energy is minimized for collinear (parallel or antipar-
allel) spin alignments. Under the condition that .J is positive which favors the
AFM correlation, the system is geometrically frustrated. Frustrated magnets in-
clude the two dimensional (2D) kagomé lattice (see Fig. 1.3), which is a lattice of
corner sharing triangle, and its big brother, the 3D pyrochlore, a lattice of corner
sharing tetrahedra. A kagomé AFM presents an ideal construct for studying the
unusual physics that result from the placement of magnetically frustrated spins
on a low-dimensional lattice. Tremendous efforts are invested to find the perfect
candidate for studying the ground state of 2D kagomé lattice. A two dimensional
compound which has spin 1/2, no out-of-plane interactions and no impurities on
the kagomé plane. The search for kagomé realization led to various new materials,
synthesized especially for this purpose.

The SrCr,Gajs_019 [SCGO] compound, a kagomé lattice with S = 3/2, which
may behave classically. The SCGO found to have alternating magnetic planes

with kagomé and triangle lattices and that Ga atoms, which are non magnetic,
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FIGURE 1.3: The kagomé lattice - a lattice of corner sharing triangle
partly substitute magnetic Cr sites [1, 2].
The volborthite compound, CuzVo07(OH)s - 2H50, 2D AFM spin 1/2 kagomé
comprising two different sites of C'u. Thus, the kagomé lattice is slightly dis-
torted [3].
Another candidates is the jarosite family, K A3(OH)s(S04)q, where A = Fe, Cr.
The Fe-jarosite Fle?™, S = 5/2, exhibits long-range order in the ground state. As
for the Cr-jarosite Cr3*, S = 3/2, may involve large effect of quantum fluctua-
tions [2].
The vesignieite, BaCu3Vo03(OH)s, comprising a nearly ideal kagomé lattice of
Cu*" ions with spin 1/2 and impurity contribution were found at low temperature
susceptibility measurements [4].
Another two less investigated compounds are the Kapellasite, CuzZn(OH )sCls,
and the Haydeeite, CusM g(OH )¢Cly, seem to have defects on the kagomé plane [5,
6].
The discovery of Herbertsmithite, ZnCus(OH )sCly, thought to be the end of the
research after kagomé realization. It has no long-range-order and strong AFM
interactions, However, further measurements done on it revealed a not so perfect
compound. About 10% of the Cusy, sites in the Kagomé plane are substitute by
Zn?* ions [7-9].

None of those compounds are good enough to be elected as the perfect Kagomé
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model. Recently a new Kagomé compound was synthesized by Nytko et al. [10],
The Cu(1,3-bdc).

1.1 Cu(1,3-bdc) Compound

The Cu(1,3-bdc) compound is a copper-based organometallic compound with spin
1/2. Tt was synthesized by Nytko et al. [10]. An ideal Kagomé lattice structure
was determined by X-ray measurements. As oppose to the Herbertsmithite, this
compound doesn’t have Zn ions, or any other candidate, which can substitute the
Cu ions on the Kagomé plane.

Cu(1,3-bdc) is shorthand for Cu(1,3-benzendicarboxylate). The Kagomé planes
are separated by organic linkers, each linker being a benzen molecule with two
corners featuring a carboxylate ion instead of the standard hydrogen ion. By la-
beling each corner of the benzen molecule, one can see that the two corners with
the carboxylate ions would be the 1st and 3rd. The superexchange path of Cu ions
located on the plane is shorter than the superexchange path of Cu ions between
the plane. This indicates a 2D Kagomé compound.

The basic elements of Cu(1,3-bdc) are depicted in Fig. 1.4.

The powder contains blue crystalline plates which are the Cu(1,3-bdc) and green
spheres which are a copper-containing ligand oxidation byproduct Css HosC'ugOag,
see Fig. 1.5. Magnetization measurements, done on the powder, found antiffero-

magnetic 0., = —33 K. Heat capacity shows a peak at 7'« 2K [10].
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FIGURE 1.4: The Cu(1,3-bdc) structure showing the Kagomé planes, the inter-
plane and intra-plane superexchange path.

FIGURE 1.5: Blue plates: large single crystals of Cu(1,3-bdc). Green spheres:
a copper-containing ligand oxidation byproduct Css Hoq4CugOaog.



Chapter 2

Experimental Methods

In this chapter we describe three different technique used to examine the Cu(1,3-
bdc) kagomé compound. We begin with an introductions to susceptibility measure-
ments, continue with Electron Spin Resonance (ESR) experiment. Finally, we will

describe pSR experiment considering its three possible configuration: Transverse-

Field(TF), Longitudinal-Field(LF) and Zero-Field(ZF) uSR.

2.1 Susceptibility Measurements

Superconducting Quantum Interference Device (SQUID) is one of the most sen-
sitive magnetometery. The SQUID magnetometer uses the interaction between
magnetic flux and Josephson junction. Magnetic flux modulates the current pass-
ing through the junction. This modulation is detected and amplified by some feed-
back electronics. There are two types of SQUIDs, AC (or RF) and DC SQUIDs.
Our measurements were done with a de-SQUID. The de-SQUID, which operates
with a dc bias current, consists of two parallel Josephson junctions incorporated
into a superconducting loop. The measurements in the Cryogenic SQUID are pre-
formed by moving the sample through a coil from its upper to its lower part and

back. A change in the magnetic flux occurs when the sample moves through the



Chapter 2 Experimental Methods 10

coil. This movement induces screening current in the coil, which is proportional

to the induced magnetic moment of the sample and is detected by the SQUID.

2.2 ESR

ESR is a branch of spectroscopy in which electromagnetic radiation (usually of mi-
crowave frequency) is absorbed by molecules, ions, or atoms possessing electrons
with unpaired spins, i.e. electronic spin .S > 0.

The basic physical concepts of ESR are analogous to those of nuclear magnetic res-
onance (NMR), but it is electron spins that are excited instead of spins of atomic
nuclei. Electrons usually occupy electronic shells in atoms as pairs. In such pairs
the electrons have spins opposite one another so the associated magnetic fields
cancel.

In some ions, free radicals or paramagnetic materials, however, a single electron
may occupy an orbital. In both ESR and NMR, the sample material is immersed
in a strong static magnetic field and exposed to an orthogonal low-amplitude high-
frequency field.

ESR usually requires microwave-frequency radiation (GHz), while NMR is ob-
served at lower radio frequencies (MHz). With ESR, energy is absorbed by the
sample when the frequency of the radiation is appropriate to the energy difference
between two states of the electrons in the sample, but only if the transition satisfies
the appropriate selection rules. In the case where no magnetic field is applied, the
2 energy states of the electron are degenerate. By applying an external magnetic
field, By, those electron energy states, split into two energy levels as depicted in

Fig. 2.1, and the separation between the levels is

AFE = ge,uBBo (21)

where g, is the electron’s g-factor and pp is the Bohr magneton. This interaction,
known as the Zeeman interaction. ESR signal can be obtained by two types of

spectrometers, continuous wave (CW) ESR and pulsed ESR spectrometer. In CW
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Mg = + 1/2
5
§ AE=E+1/2-E112
w
mg = - 1/2
By=0 By#0 Magnetic Field

FIGURE 2.1: Energy level scheme for the simplest system (e.g., free electron)
as a function of applied applied magnetic field B.

ESR, a constant electromagnetic radiation is applied and the external magnetic
field (By) is swept. When the resonance condition occurs, ESR signal can be de-
tected.

In pulsed ESR, the external magnetic field is fixed and by applying an electro-
magnetic pulse, which enables excitation of a range of frequencies in the sample,
ESR signal can be detected. We used the CW technique in our ESR experiment.

We shall describe briefly the principal components of a simple ESR spectrometer.

2.2.1 ESR spectrometer

The simplest type of ESR spectrometer consists basically of a microwave source, a
sample cell or a cavity and a detector. The electromagnetic source and the detec-
tor are in a box called the microwave bridge. The sample is in a microwave cavity,

which is a metal box that helps to amplify weak signals from the sample.

Source.

Most common frequency of radiant energy used in ESR spectrometer is in the
medium frequency microwave regime, ~ 9.5 GHz. In the microwave region (1 <
v < 100 GHz) various special electromagnetic radiation sources can be used. These
include gunn-diodes, tunnel-diodes, voltage control oscillators, klystron etc.

Frequencies typical for ESR experiment are from 1.5 GHz to 250 GHz as seen in
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table 2.1. Our ESR experiment was preformed in the X-band regime.

Magnetic field (Tesla) Typical frequency (GHz) Band region

0.05 1.5 L
0.12 3.2 S
0.35 9.5 X
1.29 35 F(W)
5.54 150 G(A)
9.25 250 H

TABLE 2.1: Typical frequencies for ESR experiment.

Resonator.

The heart of a typical ESR spectrometer is a device called a resonator, which
contains the sample. This is most commonly a resonant cavity. The cavity is a
closed box made of a conducting material, which confines standing electromagnetic
waves with wavelength that matches the cavity dimensions. Resonance means
that the cavity stores the microwave energy; therefore, at the resonance frequency
of the cavity, no microwaves will be reflected back, but will remain inside the
cavity. Cavities are characterized by (), the quality factor, which indicates how
efficiently the cavity stores microwave energy. As (Q increases the sensitivity of the

spectrometer increases. The () factor is defined as,

enerqy stored

Q =27

enerqgy dissipated per cycle

where the energy dissipated per cycle is the amount of energy lost during one
microwave period. We couple the microwaves into the cavity via a hole called iris.
An adjustable screw adjacent to the iris permits optimal impedance matching.
The frequency of the source is tuned to the appropriate resonant frequency of the
cavity. The size of the iris controls the amount of microwaves which will be re-
flected back from the cavity and how much will enter the cavity. When the sample
absorbs the microwave energy, the Q is lowered because of the increased losses and
the coupling changes because the absorbing sample changes the impedance of the

cavity. The cavity is therefore no longer critically coupled and microwaves will be
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reflected back to the bridge, resulting in an ESR signal.

Detector.

The most common detectors, in CW ESR, is a silicon crystal diodes which detect
the absorption of energy. Absorption lines can be observed in the ESR spectrum
when the separation of two energy levels is equal to the quantum energy hv of
an incident microwave photon. The absorption of such photons by the sample
is indicated by a change in the detector current. This current is proportional to
the microwave power. The noise figure of a particular crystal detector varies with
frequency, temperature and power level. Disadvantage of the crystal detector is
production of inherent noise which is proportional to the reciprocal of the frequency

of the detected signal. To reduce noise a locking amplifier is used.

Magnetic Field.

The usual source of static magnetic field B, which polarized and splits the spin
energy levels, is an electromagnet or a superconductor magnet for fields higher
than 2 T. This external field must be uniform over the sample volume and stable

during the measurement.

2.2.2 Continuous Wave ESR

In CW ESR, the sample is being continuously irradiated by microwave radiation.
The resonator reflects power back to the transmission line feeding it, as it is well
matched to the microwave power source. We measure the reflected power without
the sample minus the reflected power with the sample. This gives the absorbed
power P. There are two external parameters in ESR, the frequency w and the
magnetic field H which is swept. Since the frequency is fixed we can write the

energy absorbed as follows [11, 12]

AP,
P,

~ Q. (2.2)
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where AP, is the change in reflected power, P, is the maximum power supplied
from the source , @, is the unloaded quality factor, v imaginary part of the
susceptibility and 7 the filling factor. The filling factor is defined by,
[ Biav
— VS
1= Ty
Ve
By is the microwave magnetic field, V; is the sample volume and V, is the cavity
volume [12]. @, and the filling factor n are related to the cavity geometry. Up to

a calibration constant ESR signal is " (H,w). In order to improve sensitivity a

modulation field is added,
H = St + H; cos (wqt) (2.3)

where S is the sweeping rate (field per time), and S is much smaller than w,.

Therefore, at a given time we can expand x” to series as follows,

" ” (9XN (H, UJ)

X (Hyw)=x (St,w)+ Yo H, cos (w,t) (2.4)

H; is a fixed number for experiment. A lockin detects the amplitude of the fast
modulations in the absorption power, therefore the ESR signal is
ox" (H,w)
0H

as seen in Fig. 2.2. To obtain " (H,w) up to a calibration constant the ESR signal

as a function of H should be integrated once. X;B(H ,w) has a peak when

wo = gupH.

Another way to describe the absorption line is by a Lorentzian/Gaussian func-
tion. Using the method of moments of a resonance curve we will demonstrate in
Chapter 4.2 the connection between y and the fitted function. The method of

moments allow us to connect between experiment and theory.
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FIGURE 2.2: Absorption and first derivation lines of an ESR. spectrum.

2.3 uSR

Muon spin rotation, relaxation, resonance and etc. (uSR) is an experimental
technique used for basic studies in condensed matter physics. This technique
makes use of a short-lived subatomic particle of the lepton family called a muon,
the muon is a sensitive probe of local magnetic fields in matter. Muons are charged

*, in our case or p~) spin 1/2 particles. High energy proton beams (produced

(n
using synchrotrons or cyclotrons) can be fired into a target (usually carbon) to

produce pions. The pions decay into muons, as follows:

at — /ﬁ + vy

Consider pions that are produced at rest in the laboratory frame. To conserve
momentum, the muon and the neutrino must have equal and opposite momentum.
The neutrinos spin is aligned antiparallel with its momentum (it has negative
helicity). The pion has zero spin so the muon spin must be opposite to the neutrino
spin, and this implies that the muon-spin is similarly aligned. By selecting pions
which stop in the target (and which are therefore at rest when they decay) one
has a means of producing a beam of 100% spin-polarized muons. The muon is an

unstable particle which decays spontaneously into a positron (or an electron) and
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a neutrino-anti-neutrino pair:

,u+—>e++ye—|—ﬂu

its mean-life time is 7, ~ 2.2p sec.

The positrons are emitted preferentially in the muon spin direction. The angular
distribution of the emitted positrons (see Fig. 2.3) depends on their energies and
is given by:

W(h,e) =1+a(e)cosb

where € is the positron energy and 6 is the angle of the positron emission measured
from the muon spin direction. a is the asymmetry parameter, which depend on the
energy of the detected positrons. When both neutrinos are emitted in the same
direction, € = €, and a = 1, when they are emitted in opposite directions, ¢ =0

and @ = 1/3. In order to carry out an experiment, the muons are transported

FI1GURE 2.3: The angular distribution of emitted positrons.

to the sample using a system of magnets, that conserve spin polarization. The
decay positrons are detected using several photomultiplier tubes surrounding the
sample. By detecting those positrons we can reconstruct the muon polarization.

Each positron detector creates an histogram of detected positrons as a function of

the time difference between the muon implantation and the decay positron. The
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number of detected positrons in a histogram of detector i is given by,
N; (t) = Nige 7 (14 APy, (1)) + B,

where Ny is a normalization, B, is the time independent background, A; is the
experimental asymmetry and P, is the muon polarization function in the detector.
There are different configurations of uSR experiment depending on how you orient
the applied field: zero field, longitudinal field (along the spin polarization), and
transverse field (perpendicular to the initial spin polarization). The basic idea is
to investigate the nature of the changes in the local environment of the muon as

temperature decreases.

2.3.1 Transverse Field Configuration

The simplest SR technique (see Fig. 2.4) is the transverse field configuration in
which an external magnetic field is applied perpendicular to the initial muon spin
polarization, P,(0). Once the muons are implanted into the sample, the muons
spin precess at a Larmor frequency, w = ~v,H (v, = 13.554 MHz/kG). Hence,

P,(t) exhibit oscillation at the Larmor frequency. In order to probe frustrated

Electronic clock

Positron
detector

Spin-polarized
muen beam

e+

Muon
detector

FIGURE 2.4: Schematic of a transverse field (TF) uSR.

magnetism we look at the Hamiltonian which describes the hyperfine interaction
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with the electron spin S. The muon Hamiltonian is:
H - —h*}/“] . (HTF + Hint) (25)

I is the muon spin, Hrr is the applied field and H;,; is the magnetic field from

neighboring electrons. H;, is given by,
Hin = Z ASi
k

where A;, = zzlk(r) is the hyperfine interaction with each neighboring spin, Sy is
the electronic spin. The sum j runs over the muon’s neighboring electrons. By a
mean field approximation, we replace S by its expectation value (Sg).

The field at the muon site is given by

B=H-Y A (S).
Assuming (Sy) — (S) and (S) = M = xH

B=H-M-» A (2.6)

than we get,

K:<S>2Ak=”0_”. (2.7)
k

Assuming a distribution of hyperfine fields in the Z direction one can write A as

a sum of a mean value A, plus a fluctuating component Ak, A, = Aj, + 6A;.
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The transverse muon shift will be,
(9) S 1
The muon polarization is given by,
P, (t) = Pycos[y,Bt] = Pycos |, (1 - X" Z Ak) HTpt] (2.9)
k
By averaging over the distribution of the fluctuating component,
P, (t) = / Pycos |7, (1 —x- ) A+ 5Ak> Hrpt| p(6A)d(6A)  (2.10)
k
considering a Lorentzian distribution
(GAy) = L9t (2.11)
PO = AN + o2 '
we get the Transverse Field Relaxation [13],
(2.12)

R= <S>Zak-

2.3.2 Longitudinal Field Configuration

Longitudinal Field Muon Spin Relaxation (LF uSR) involves the application of

an external magnetic field parallel to the initial direction of the muon spin po-

larization. Here one measures the time evolution of the muon polarization along

its original direction. Alternatively, such measurements may be performed in the

absence of an external field, a configuration called Zero Field Muon Spin Relax-

ation (ZF pSR). ZF pSR is a very sensitive method of detecting weak internal

magnetism, that arises due to ordered magnetic moments, or random fields that

are static or fluctuating with time.
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Electronic clock
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mueh bearm positron

\j;\ detector

Forward
positron
cetector

FIGURE 2.5: Schematic of a zero field (ZF) uSR.

In order to understand the ZF and LF pSR experiments we study the time evolu-
tion of the muon spin polarization.

For simplicity we start with the static random internal field case. When the im-
planted muon reaches its site, the muon spin starts to evolve in a local magnetic
field B. The static muon polarization along the 2 direction is generated using the

double projection expression,
P, (B,t) = cos* + sin*¢ cos (v, | B| t) (2.13)

The angle 6 is connected to the field values by the relations,

B? B} + B}
cos?f = B—‘; , sin?f = —wBQ t
Thus, the averaged polarization is:
. B?> B+ B
R0 = [p8) [+ TP cos o 810 8 (2.14)

where p (B) is the field distribution. We found that the Gaussian field distribution

works best,

p(B) = — L exp (-%) (2.15)
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where A is the field distribution width, Hj, is the longitudinal external field and
B is the internal local field.

If the field distribution is isotropic, one can integrate over the angular part

P =5+ 5 [ (Bl cos(y,[Blt) BB (2.16)

In a system with long-range order, which is not expected in 2D Kagomé lattice, the
field around the muon site is centered around certain value wy/7, and oscillations
will be observed. The first term (1/3-component) originates from the fraction of
the local field which is parallel to the initial muon spin polarization. This term is
an important signature of static relaxation, because its existence doesn’t depend
on the shape of the field distribution. At long time the polarization will relax to
1/3, in powder.

When a longitudinal field is applied (along the spin polarization), the muon spin

will rotate around the vector sum of the external and internal fields.

In order to simplify the LF case, we assume random local field with a Gaussian

distribution 2.15. Now Eq. 2.14 becomes [14]:

2A2
(Hp)?

t
2A4 ]. ! ’ /
T A /exp (—§A2t 2) sin (Hyt') dt
L
0

This is known as the static-Gaussian longitudinal-field Kubo-Toyabe (KT) func-

P, (wp,Ajt)=1— [1 — exp (—%Nﬂ) cos (HL)l (2.17)

tion. In Fig. 2.6 plotted the muon spin polarization for several different external

fields. In the zero-field case, H;, = 0 we get the average polarization [14],

_ 1 2 1
P,(0,At) = s+3 (1 — A%?) exp (—§A2t2) (2.18)

w

Eq. 2.18 is known as the static-Gaussian-zero-field KT. It reaches a minimum on
a time scale set by A after which it recovers and saturates again to 1/3. The next

step is to add dynamics into the system. When the dynamic part of the local field
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FIGURE 2.6: Muon polarization function in a Gaussian internal field distribu-
tion and external field pointing in the initial muon spin direction.

is fluctuating in time, the spin fluctuation rate, v is defined by
(B(t)B(0)) = (B*) e

One method of adding dynamics into the system is by using the Volterra equation

of the second kind [15],

P, (v,H,At) =e ' P, (0,H,A,t) (2.19)
t
+v [dt'P, (v, H, At —t') e ' P, (0, H, A, t)
0

The P, (0, H, A, t) is the static relaxation function. The factor e=** is the probabil-
ity to have no field changes up to time t. The factor e ** vdt' is the probability den-
sity to experience a field change only between ¢ and ¢’ + dt’. The first term on the
r.h.s is the polarization at time ¢ due to muons that did not experienced any field
changes. The second term on the r.h.s is the contribution from those muons that
experienced their first field change at time ¢/. The factor e ¥ P, (0, H, A, t') vdt’
is the amplitude for the polarization function evolving from time ¢’ to ¢, which
can include more field changes recursively. This equation can be solved numeri-
cally [16] and P, (v, H, A, t) is known as the Dynamic Gaussian Kubo Toyabe LF

relaxation function. The origin of the dip is the presence of a typical field scale
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FIGURE 2.7: The muon spin polarization in the ZF uSR with a dynamic and
Gaussian internal field distribution.

around which the muon spin nearly complete an oscillation. However, the field
distribution is so wide that the oscillation is damped quickly. The origin of the
recovery is the fact that some of the muons experience nearly static field in their
initial field direction during the entire measure time. These muons do not lose
their polarization while others do. When the external field increases (Fig. 2.6),
the dip moves to smaller At (as the field scale increase) and the asymptotic value

of the asymmetry increases as well (as more muons do not relax).
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Results

In this chapter we present our experimental data and conclusions. First, we will
exhibit Susecptibility and ESR results of our kagomé compound. We will continue
with result from the pSR measurements in order to say something physical about

the ground state of this Hamiltonian.

3.1 Susceptibility measurements

DC magnetic susceptibility data were collected on crystalline samples, which were
glued on a transparency slide, using SQUID magnetometer at temperature rang-
ing from 3.6 K to 304 K and field strength varying from 100 Oe to 24 kOe. The
blue plates have a two dimensional nature as can be seen from Fig. 1.5. A single-
crystal X-ray diffraction experiment determined that (001), the kagomé plane, is
the flat plane of those hexagonal plates [17]. Magnetization measurements were
done with the kagomé plane parallel and perpendicular to the field of the SQUID
magnet. For magnetization measurements we separate the blue kagomé plates
from the green spheres. We glued them with epoxy to a transparency slide and
put it in a suitable capsule. For the perpendicular measurements, the slide was

standing up in the capsule as seen in Fig. 3.1(b). For the parallel measurements,

24
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the slide was lying in the capsule as seen in Fig. 3.1(a). We also preformed mea-
surements of the epoxy in order to reduce it from the raw data depicted in Fig. 3.2

and 3.3. The susceptibility above 50 K show field dependence while below this

—— straw (——4 straw

TO)
—

(a) (b)

FIGURE 3.1: Preparation for SQUID anisotropy experiments: (a) c-axis parallel
to the field of the SQUID magnet. (b) c-axis perpendicular to the field of the
SQUID magnet.

temperature there is no field dependence, all susceptibility data merge regardless
of the field. In Fig. 3.2 and 3.3 we present the molar susceptibility, at the high
temperature regime, for several elected fields in both directions. One can see that
the parallel susceptibility is smaller than the perpendicular one. This anisotropy
in the magnetic susceptibility means that another Hamiltonian than the Heisen-
berg Hamiltonian should be used. In the high temperature approximation, the

magnetic susceptibility of a ferromagnet is described by Curie-Weiss law,

C

= — 1
T o (3.1)

X

where C' is a material-specific Curie constant. In Fig. 3.4 we demonstrate a linear

fit for the parallel directions, which reveals

o)., =4.03 K (3.2)
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FiGURE 3.2: High temperature susceptibility for several fields parallel to the
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FIGURE 3.3: High temperature susceptibility for several fields perpendicular to
the kagomé plane.

The positive Oy, indicates ferromagnetic interactions in the z direction. The
perpendicular directions could not be fitted with a linear fit, thus we don’t have

L
value for Oz, .

In Fig. 3.5 we depicted the magnetization versus the magnetic field measured at
T = 2.4 K. the magnetization saturates around 1.2 pp/Cu, hence the g-factor,
determine for the parallel and perpendicular directions at low-T, is g = 2.5(2).

The red line in Fig. 3.5 represent a Brillouin function for paramagnetic system
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FIGURE 3.4: The inverse susceptibility, measured at 100 Oe. Red line represent
linear fit for the data from the 100 Oe parallel field. Black line represent linear
fit for the data from the 100 Oe perpendicular field.
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FIGURE 3.5: Magnetization vs the magnetic field for both directions at
T = 2.4 K. The black line represent the a Brillouin function for spin 1/2 with ap-
propriate g-factor of 2.5. The blue line demonstrate a Brillouin function for spin
1/2 with ferromagnetic interactions and J = 2.4. The pink line demonstrate a
Brillouin function for spin 1/2 with ferromagnetic interactions and J = 2.3

with spin 1/2 and g = 2.5 [18]:

M 1 [
— = —gtanh
e 2

%WQH}. (3.3)

kgT

As can be seen, the data does not fit to the Brillouin function. Brillouin function

can be a good fit for high temperature measurements when interactions can be
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neglected. Since our data are taken at low temperature, interactions cannot be
neglected thus, Brillouin function cannot describe our data. Another thing that
one should notice is that the data increase faster than the Brillouin function.
Therefore, the spins feel higher magnetic field than the applied magnetic field,
this could be an indication for ferromagnetic interactions.

We look at the following Hamiltonian:

H=JS -S+H-M (3.4)

where, M = gupS and H is the magnetic field. Than we can write the Hamiltonian

as,
H—j—JQMl-MngM-H_M(HJr §J2M> — M-H.y
9°HB 9"Hp

where z is the number of neighbors and H.sr = H + ﬁ]\/f . Now we can write
B

Brillouin function using this Hyy,

M sonsH, sopsH + 522 M
—— = tanh (M> = tanh (2 B - 2 91 (3.5)

giB kT BT

Using this equation we try to find the value of the exchange coupling J.

In Fig. 3.5 we demonstrate theoretical Brillouin functions for different values of
the exchange coupling .J. The blue line demonstrate a Brillouin function for spin
1/2 with ferromagnetic interactions and J = 2.4. The pink line demonstrate a
Brillouin function for spin 1/2 with ferromagnetic interactions and J = 2.3. These
two Brillouin functions do not fit the data. But they can indicate that there is
a small difference in the interactions, perpendicular and parallel to the Kagomé

plane.
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3.2 ESR

ESR experiments were held at the Schulich Faculty of Chemistry, Technion. Spe-
cial NMR sample tubes made of Quartz, which have no contribution to the sample
signal, were used.

Using the same technique of gluing the sample’s plates to a transparency slide we
preformed anisotropy measurements. At each direction we measured from 300 K
to 15 K, the measurements were done by keeping the frequency fixed and sweeping
the field. At Fig. 3.6 depicted the absorption line for the parallel and perpendicular
fields at temperature of 295 K. The signal intensity at the perpendicular direction
is stronger than the signal intensity of the parallel direction, which is consistent

with the anisotropy SQUID measurements (Chapter 3.1). For all temperature

8000 - Parallel field @ T=295K
Perpendicular field @ T=295K

4000

Signal (a.u)

-4000

-8000 |-

-12000

0 2000 4000 6000
H (Oe)

FIGURE 3.6: ESR absorption lines for the Cu(1,3-bdc) compound at 295 K for
both directions, H || ¢ — axis and H L ¢ — axis.

measurements, we integrate over the absorption signal and fitted the line with a
lorentzian fit. The HWHI, 0 (see Eq. 4.9), and the intensities of the signal can be
extracted, from each fit. Those parameters as a function of temperature are de-

picted in Fig. 3.7. The g-factor at each temperature and direction was calculated

by,

AH
g1 = 77 - 2:0023 +2.0023 (3.6)

T
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where H, is the resonance field of the reference sample, AH is the difference
between the resonance fields of the sample and reference and 2.0023 is the g-factor

of electron in carbon-oxide which is our reference sample. Stands out from those
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FIGURE 3.7: Temperature dependence of the linewidth, intensity and g-factor
for both directions, H || ¢ — axis and H L ¢ — axis.

graphs that the linewidths and g-factors are constant over all temperature range

measured. The intensity decreases as temperature increases, an expected behavior.

3.3 uSR

SR measurements were preformed at the Paul Scherrer Institute (PSI), Switzer-
land, in the low temperature facility spectrometer with a dilution refrigerator.
The measurements were carried out with the muon spin tilted at 45° relative to
the beam direction. Positrons emitted from the muon decay were collected simul-
taneously in the forward-backward (longitudinal) and the up-down (transverse)
detectors with respect to the beam direction. The powder we examine contains
Cu(1,3-bdc) in the form of blue crystalline plates. However, it is mixed with some
green spheres of copper-containing ligand oxidation byproduct CsoHoyCugQOog as

seen in Fig. 1.5. Although we have those two different phases in our crystalline,
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we manage to distinguish between the signals as we demonstrate below. In order

to performed the uSR experiment, we pressed our powder into a silver plate.

3.3.1 TF uSR

Transverse field (TF) measurements were taken at the temperature ranging from
0.9 K to 2.8 K with a constant applied field of H = 1 kOe. We also performed
a field calibration measurement using a blank silver plate providing the muon
rotation frequency f; = 13.67 MHz at the applied TF of 1 kOe.

In the inset of Fig. 3.8 we depict by symbols the muon decay asymmetry in a
reference frame rotated at H = 200 Oe less than the TF. In the main panel
of Fig. 3.8 we show the fast Fourier Transform (FFT) of the TF data at some
selected temperatures. The FFT of the highest temperature, 6 K, shows a wide
asymmetric peak with extra weight towards low frequencies. At 3 K the wide
asymmetric peak separates into two different peaks shifting in opposite directions.
At even lower temperatures the low frequencies vanishes. We assign the latter
peak to to muons that stop in Cu(1,3-bdc) since such a wipe-out of the signal
is typical of slowing down of spin fluctuation, which in Cu(1,3-bdc) is expected
near 2 K. Previous research [10] shows a peak at the heat capacity at T ~ 2 K.
This special temperature may be significant at uSR experiment and may be an
indication of a change in the Cu(1,3-bdc) compound. The high frequency peak
corresponds to muons that stopped at the by-product since its frequency is very
close to the silver calibration. The slightly shift of the high frequency peak as the
temperature is lowered is unclear.

Despite the disappearance of the low frequency peak in the frequency domain, its
contribution in the time domain (inset of Fig 3.8 is clear. The high frequency peak
in the main panel of Fig. 3.8 corresponds to the signal surviving for a long time
in both insets of Fig. 3.8. The broad and the disappearing peak in the main panel
corresponds to the fast decaying signal for the first 0.2usec seen in the lower inset,

the arrow in the inset demonstrates the frequency shift. Consequently we fit the
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function
<7 (R1t)2>
Arp (t) = Aje >/ cos (wit + @) + AgeTF21) cog (wat + ) + By (3.7)

to our data in the time domain globally, where the parameters R; and w; are
the relaxation and angular frequency of the byproduct, and Ry and w, are the
relaxation and angular frequency of the Kagomé part. The parameters A; =
0.0049(4), Ay = 0.125(3), Ry = 0.13(1)(usec™'), ¢ and B, are shared in the fit,
while Ry, wp,wy are free. The quality of the fit is represented in the inset of
Fig. 3.8 by the solid lines. The ratio of A; to A, supports the assignment of the

fast relaxing signal to Cu(1,3-bdc).
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FIGURE 3.8: FFT of the asymmetry data in a field of 1 kOe transverse to the
initial muon spin direction. fy is the reference frequency in pure silver. Inset:
transverse field asymmetry in the time domain and rotating reference frame

In Fig. 3.9 we plot the shift, K, = =%, versus temperature, where w; = 27 f;.
As expected K increases with decreasing temperatures. The small decrease of K
is not expected and is not clear to us at the moment.

The muon transverse relaxation, Rs, is also presented in Fig. 3.9. It has roughly
the same temperature behavior as the shift, K. However, at T'= 1.8 K, R, seems

to flatten out before increasing again around 1 K. This is somewhat surprising.
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FIGURE 3.9: K3, black squares, is the Muon shift from muons that stopped at

C32H24CugO96 (the non-magnetic by product) and K, red spots, the muon shift

from muons that stopped at Cu(1,3-bdc) depicted versus temperature. Ra, green
triangles, the relaxation rate from Cu(1,3-bdc) depicted versus temperature.

In Fig. 3.10(a) we depict the macroscopic magnetization M measured with a super-
conducting quantum interference device magnetometer versus K,. The magneti-
zation is also measured at 1 kOe. The plot indicates that in the temperature range
where both M and K2 are available they are proportional to each other. There-
fore, > A}, is temperature independent. As described in the experimental methods
chaptgr, we expect Roox Ky if the o (see Eq. 2.11) are temperature-independent
parameters. A plot of Ry versus Kj, shown in Fig. 3.10(b), indicates that Ry is
not proportional to or even does not depend linearly on K, and a kink is observed
at Top = 1.8 K. This result suggests a change in the hyperfine field distribution
at Ty. An interesting possible explanation for such a change is a response of the
lattice to the magnetic interactions via a magnetoelastic coupling [19, 20].

However, unlike a similar situation in a pyrochlore lattice [21], it seems that here
the lattice is becoming more ordered upon cooling since the rate of growth of Ry

below Tj is lower than at higher temperatures.
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FIGURE 3.10: (a) Magnetization versus the muon shift in Cu(1,3-bdc). (b) The
muon relaxation versus the muon shift in Cu(1,3-bdc).
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3.3.2 LF uSR

The longitudinal-field (LF) measurements were taken at several different fields be-
tween 50 Oe and 3.2 kOe with a constant temperature of 0.9 K. The zero-field
measurements were taken in the longitudinal configuration at a temperature rang-
ing from 0.9 K to 2.8 K.

The pSR LF data including ZF are presented in Fig. 3.11. The LF data at the
lowest temperature of 0.9 K are depicted in panel (a). At this temperature and
a field of 50 Oe, the muon asymmetry shows a minimum at around 0.1usec. At
longer times the asymmetry recovers. The ZF data at three different temperatures
are shown in Fig. 3.11(b). The relaxation rate increases as temperature decreases
due to slowing down of spin fluctuations, until at the lowest temperature the dip
appears. We saw no difference in the raw data between 1.0 K and 0.9 K and
therefore did not cool any further. Both LF and ZF data fit the theory expected.
These are unusual uSR data in a Kagomé magnet, in the sense that spin fluctu-
ations are slow enough compared to the internal field scale to expose the static
nature of the muon spin relaxation function, namely, the dip, and to allow cali-
bration of the internal field distribution. Other Kagomé magnets show the same
general behavior but without this dip [22-24].

The experimental asymmetry is fitted with App = AP, (v, H,A,t) + B,.
P.(v,H,A,t) is the Dynamic Gaussian Kubo-Toyabe. The relaxation from the
second green phase is very small and is absorbed in the background factor B,. In
the fit of the field-dependence experiment at the lowest temperature, presented in
Fig. 3.11(a) by the solid lines, A, v, Ay and By are shared parameters. We found
A =19.8(4) MHz and v = 3.6(2)usec™".

This indicates that the spins are not completely frozen even at the lowest temper-
ature [25].

When analyzing the ZF data at a variety of temperatures, shown in Fig. 3.11(b)
by the solid lines, we permit only v to vary. The fit is good at the low tempera-
tures but does not capture the 2.8 K data at early times accurately. However, the
discrepancy is not big enough to justify adding more fit parameters. We plot the

the temperature dependence of the fluctuation rate in Fig. 3.12.
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v hardly changes while the temperature decreases from 7" = 2.8 K down to
Ty = 1.8 K. From Ty, v decreases with decreasing temperatures, but saturates be-
low 1 K. This type of behavior was observed in a variety of frustrated Kagomé [22—
24] and pyrochlore [26, 27] lattices. It is somewhat different from classical numeri-
cal simulation where v decreases with no saturation [28, 29]. In fact, the numerical

v is a linear function of the temperature over three orders of magnitude in 7" [29)].
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FIGURE 3.11: (a) The asymmetry at various longitudinal fields and 7" = 0.9 K.
(b) The asymmetry at zero field for various temperatures.
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on a log-log scale. (The error bars are smaller than the symbol size)
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Discussion

In this chapter we will discuss the experimental results and try to connect between

theory and experiment.

4.1 Susceptibility in an anisotropic spin Hamil-

tonian

Magnetization measurements reveal anisotropy susceptibility. Therefore we would
like to examine how anisotropic spin Hamiltonian including the Dzyaloshinsky
Moriya interactions (DMI) influence the susceptibility. The Hamiltonian wich we

consider is:

i<j

where D;; is the Dzyaloshinsky Moriya vector and D;; is Ising anisotropy. By using
the vector relation, A- (B x C') = B - (C x A), the Hamiltonian can be written as,

1 ~

JFi

37
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where,
J. 0 0
jij = 0o J, 0
0 0 J,

and J, = J+ D, J = J, = J, = J. This Hamiltonian can be written as

H = gupY, Si- Hers, where the effective field,

11

Heff = §W—B : <jSJ +Dij X S]> +H

The mean field approximation means S; — g% thus,

Heff: <jM+D><M>+H

1
2 (QMB)Z

where D = % z D;;, and Z is the number of near neighbors.
j

Therefore the magnetization is given by,

cC/1 Z ~
_C <__2 (JM+D>< M> +H)
T \2(gpup)
(' is the Curie constant, C' = %#

(4.3)

(4.4)

) where N is the number of atoms in a

unit cell,g is the g-factor and S the spin number. Since we are interested in the

magnetization we get,

MzC(TI—écw—A>_1H

J, 0 0
oy = 12 0 J, 0
T 2(gup)? .
0 0 J,
125 (S+1)J
2l = 57—

2 3kp

(4.5)
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0 -D., D,
cz
A = 3 D. 0 —-D,
(QMB)
-D, D, 0

Another form to write Eq. 4.5 is by defining

T—-0, D! —D;
B = -D, T-0, D,
D’ -D, T-90,
and
A
D = ¢ 5D
(QMB)
then getting,
M=CB'H

Now, we can calculate B3 = B!,

(T —6,)° +D?

B:))_:% =C 2 ~/ D) ’
(T —0.)(T —0,)> +TD? — D20, — D20,

In the high temperature regime,

1
. -1
jlggo B3,3 - (T . 92) (46)
31_11 = B! can also calculate,
. (T —0.)(T—0.)+D;
B, =C 2 =3 ; ;
’ (T—06,)(T—0.)"+TD?—-D?2, — D20,
Again, let’s look at the high temperature regime,
lim Bl — (4.7)
T—o0 1,1 (T — Hl) )

From the calculation above we conclude that, D, Dzyaloshinsky Moriya interac-

tions does not contribute to Curie-Weiss temperature in the z or the perpendicular
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directions. In general, the susceptibility, xy = %, gets the form,

(T —6.)""(T = 0.)" "+ pD2 + (1 — p) D?
(T —6,) (T —6,)>+TD?— D20, — D2,
1 z

x=C (4.8)
using p = 1 for x, and p = 0 for x,.

Since DMI is not contributing to #cw another term must be added to the Hamil-
tonian. Before we look directly at the Hamiltonian we will introduce the method

of moments.

4.2 ESR linewidth in terms of moments

The ESR line-shape is a resonance curve which can be described by a Gaussian
or a Lorentzian curve. Our data is best fitted to a Lorentzian curve hence we will
not consider the Gaussian curve in this discussion. The Lorentzian normalized

function is described by the function,

X" (H,w) :l oz (4.9)
H 7 (76)* — (H — Ho) '
We assume,
X'(H,w) 1 )
== 4.1
w 0% — (W — wp) (4.10)

where ¢ is the Half Width Half Intensity (HWHI) and wy is the absorption fre-
quency. f(w) has maximum at wy. The nth moment for a resonance curve defined

by

My = [ 0 w0)'s (@) do

To calculate the second and forth moments of a Lorentzian a cut-off must be used

since they diverge. One model which can be used is describing Eq. 4.9 within the
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interval |w — wy| < o with o > § and zero outside the interval thus we get [30],

200 2028
My="22 "M==
T 3

(4.11)

Hence we find that,

s M2
5=A = ——My/— 4.12
V12 2\/§ 2 M4 ( )

Avyjp is the HWHI and M, and My are the second and 4th moment of a resonance
curve. The linewidth turns out to be independent of the cut-off a.
Using the method of moments [30] we will show the connection between the imag-

inary susceptibility (Eq. 4.14) and My, My. The total Hamiltonian is
H =Ho+ Hi
where H, is the Zeeman Hamiltonian
Hy = g,uBHZ S (4.13)
J
and H; is a perturbing Hamiltonian. The resonance line shape is symmetric with
respect to the central frequency wy, to each transition at frequency wg + u corre-

sponds an equal intensity transition at wg—u. If f(w) is the symmetric normalized

shape function, h(u) = f(wy + u) is an even function of u.

The resonance curve is described by x", as explained earlier,in Chapter 2.

In terms of the electronic spins x" (H,w) is given by,

Xag (H,w) = (915 / ({8L(t), S%(0)}) exp (iwt) dt (4.14)

where

1) = exp (”%t) S, exp (—”%t) (4.15)
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where H is the Hamiltonian. Thus for the moments calculation we will use
Eq. 4.14. we define G (t) = ({SL(t), S} (0)}). Previously we described the time
evaluation of the spin operator by Eq. 4.15. Using H = Hy+ H; and the fact that
Zeeman Hamiltonian only determined the position of the line and not the shape

of the line, hence the shape of the line is determined by the relaxation function

0= (foro (T s (7Y 5 1Y paag

Using the inverse Fourier transform of Eq. 4.14, G(t) up to a temperature depen-

dent normalization factor can be written as,

L X0,
Gy (t) = ’ ~Wldw. 4.17
()= g [ e (4.17)
where & = %FET and the moments of a curve are given by,
s 1!
0
w
where X"(g’w) is an even function of w. The odd moments vanish and the even

moments are given by

(e
G1(0)

My, = (4.18)

From the definition of G1(t) 4.16 we find that the value of its nth derivative for
t=01s

<d"§tln(t))t0 = ()" {[H1, [H1, [ s [H1, ) - ]] 5 Sa b (4.19)

Finally, From Eq. 4.19 and 4.18 we obtain the second and forth moments,

- TT’ ([Hl, Sg;]Q)
My = e (4.20)
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Tr ([Ha, [Hi, S.]]%)

Mi= =015

(4.21)

In order to calculate the second and forth moments obtained in Eq. 4.20 and
Eq. 4.21 we must define our spin Hamiltonian.

We consider a fully anisotropy Hamiltonian, not including the DMI,

H=Y" [ijﬁj - S+ DjiS;.Sks + Eji (SjwSke — Sjysky)] (4.22)
j<k

where J;; is the exchange anisotropy coupling coefficient and D;;, E;; are the spin-
orbit coupling coefficients for the z direction and the x — y plane respectively (as
mentioned before, the kagomé planes are at the z — y plane). We analyze the
Hamiltonian just with J, E and D to see if we can understand the compound with
these three interactions only.
After calculating the theoretical moments for a lattice given, the calculated linewidth
can be compared to the experimental linewidth. This comparison additionally to
02, = J + D (explained in 4.1), taken from magnetization measurements, yields

the Hamiltonian parameters .J, D, E.

Before we start with the calculations, let us go through the notations. We shall
suppose that the constant magnetic field H is applied in the z direction, and that
the oscillating field whose absorption is being studied is along the x axis. In that
case, we will calculate ]\42H and MJl'. When the applied magnetic field is in the x
direction we will calculate M- and Mj . All following calculations are done for
spin 1/2 and nearest neighbors interaction.

To practice the method of moments, we start by looking at a 1D spin chain
(Fig. 4.1). Now, we can calculate the second and forth moments for the chain

using Eq. 4.20 and Eq. 4.21.

The scalar product §z . §j will not contribute, to the second moment calculation,

j<k
The contribution of the symmetric anisotropy exchange to the commutator takes

since | Y ijgi . 5}, Sx] =0.
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FIGURE 4.1: One dimensional spins chain.

the form,

Z Dijszkz + Ejk (ijskx - Sjysky)a Sx = (423)

j<k

i " (Dji+ Ejr) (SiySe= + SjzShy)-

i<k

Using the relations,

Tr(SuSs)? =12%1  af=u y 2 (4.24)
Tr (8,558, = 25 aBy=a, g, 2

Finally we get for the second moment,
M) = (D + E)*
and
My = 4E2

Despite the fact that the exchange coupling, Jj;, does not contribute to the second

moment, it greatly increases the fourth moment.
For spin 1/2 nearest neighbors interaction we get:

3

1
Mj = E? §J2+3E2+§D2+JD
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al = (E + D)? {3 3

I+ ZE*+D>*+JD+ ED
1 2+2++ +

Hence the linewidth, using Eq. 4.12, for each direction is,

1
sl= "~ (D+ E)? 4.25
\/3( ) [3J2+3E?+ D>+ JD + ED)| (4.25)
5L:LE2\/ — 5 ! — (4.26)
V3 [3J2+3E%+ {D?+ JD]

For example, the case where D, E < J yields,

™2 (D + E)? 5L_7r\/§E_2

sl = —
3 J ’ 3 J

i.e. the exchange coupling , J, narrows the ESR lines. The spin-orbit coupling, F,
affects ESR lines in both directions of measurements, but the spin-orbit coupling
in the z direction does not contribute the perpendicular linewidth. After doing
the calculation for 1D spins chain let’s look at a single triangle. We have to
write the interactions by taking projections of the spins onto vectors parallel and

perpendicular to the bond. The bonds shown in Fig. 4.2 are defined by:

FIGURE 4.2: Two dimensional triangle bonds.

Tie =2 ; rg=1
r93 = (—cos60°,sin 60°) ; 753 = (cos30°, sin 30°) (4.27)
r13 = (—cos 60°, —sin 60°) ; 57 = (— cos 30°, sin 30°)
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The Hamiltonian described by Eq. 4.22 becomes slightly more difficult.

Hiriangte = Z [Jijgz‘ : gj + DijSiszz}

1<j
45 (25157 —25)57 — 5258 + 5755 — S35 — 53s1)
V(5250 — 5352 — i) + 51S1) (4.28)

The third term of this Hamiltonian will add non-diagonals elements. Those el-
ements have the form S7SF. They mix the x,y directions. This contribution
increases the difficulty of the forth moment calculation, thus the calculation of the
linewidths become more complicated.

To complete the all picture we would like to look at a kagomé lattice [see Fig.1.3.
The moments calculation for the kagomé lattice combine both the spins chain and
the triangle case. The forth moment, especially, represent a very tedious calcu-

lation involving a large number of terms. The calculation was done by Dr. Ravi

Chandra and Dr. Daniel Podolsky.

M3 = 16 E? (4.29)
M) =4 (E* + D?) (4.30)
and
My =2E*(4D* +9DJ + 8 (E* + J?)) (4.31)
4
M = o opiy— DE2+ (4.32)

4
D? (4E* +3J%) + %EQ (5E*+9J%)
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4.2.1 Hamiltonian parameters

In order to calculate the Hamiltonian parameters, J, D and E we have to solve
the three following equations: The first equation was already presented, Eq. 3.2
which is

0l =J+D=-403K -2=—-806K

and two other which connect theory to experiment,

27Tf .ﬂ_ s M” MQH

- |22 133
20048 Hy 23 2 \ M) (4.33)

2rf 0L T o [Mf

R VAN e B 4.34
20.048 H, 23 * \| M} (4:34)

The numerical solutions of these three equations are: According the chosen Hamil-

JK]  DK]  E[K]
—9.273 1213 +0.477
—6.975 —1.085 +0.449

TABLE 4.1: Numerical solutions for the spin Hamiltonian parameters.

tonian, J+ F and J— E must be positive in order to get AFM interactions. All the
solutions gives FM interactions. There can be several hypothesis for this outcome.
One consideration could be the cut-off selection in the ESR experiment, which af-
fects the moments calculations. Maybe the selection of the cut-off was wrong, but
in order to get AFM interactions a we need to make a robust change in the cut-off
selection. Another possibility can be related to our Hamiltonian. We considered
the simplest anisotropy Hamiltonian with n.n. interactions. Maybe more general
Hamiltonian should be taken into account. Hamiltonian with n.n.n interactions
and even DMI should be considered. The last and interesting option is that the
cut-off selection is correct and the Hamiltion describes well our system. In this
case we can say that we found new state of matter. Kagomé with ferromagnetic

interactions with no long-range order and a dynamic ground state.
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4.3 SR result against theory

J. Robert et al. [29] investigate the classical spin dynamics of the Kagomé AFM
by combining Monte Carlo and spin dynamic simulation. Their numerical simula-
tion show slowing down of spin fluctuation but no spin freezing even at the lowest
temperature Fig. 4.3(a). The numerical relaxation,I’, compered with v, spin re-
laxation rate, exhibit a linear function of the temperature, over three orders of

magnitude.

coplanar spin liquid para
T T

£ =0.99510.018
01§ " -
o £ '
) s
L® 001} H ﬂ\
(% - -/_//A;/—\‘.\\\_\.: -
1E3 0.01 01
TN

FIGURE 4.3: The numerical relaxation, I', compared with v exhibit a linear
function of the temperature.

The inset of Fig. 3.12 shows the fluctuation rate, v, as a function of temperature
near Ty on a log-log scale where slowing down begins. Only near Tj our data are

consistent with a linear relation

V— Vs =1 (T —Ty),

where v, is the high temperature fluctuation rate.

The discrepancy with the numerical work [29] might be because SR probes field
correlation involving several spins nearing the muon, while the simulations con-
centrate on spin-spin auto correlations (with a decay I', compared here with v).
At our lowest temperature the rotations of ensemble of spins are already coherent

therefore field and spin correlations are not identical. Another possibility is that
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the saturation of v with decreasing T is a pure quantum effect not captured by

the classical simulations.
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Conclusions

In this work we characterize the Hamiltonian and investigate the ground state
of the new Kagomé lattice, Cu(1,3-bdc). We found that the susceptibility of
this system is not isotropic, and in particular the Curie-Weiss temperature differs

between different measurement directions.

We demonstrated that DMI does not influence the Curie-Weiss temperature sug-

gesting that the exchange interaction are responsible for the anisotropy.

Electron Spin Resonance experiment combined with the anisotropic exchange as-
sumption allowed us to determine the spin Hamiltonian parameters. The method
of moments for determining the exchange parameters gives ferromagnetic interac-

tions in all directions.

The characterization of Cu(1,3-bdc) ground state was done with ©SR. It shows that
Cu(1,3-bdc) has a special temperature Ty = 1.8 K. The susceptibility, measured
by the puSR frequency shift, grows monotonically upon cooling even past this
temperature. In contrast, the muon spin line-width, which also grows upon cooling,

halts around 1.8 K. This might be explained by a subtle structural transition.

The most important finding of uSR is the absence of long range order and slow
spin fluctuations in the limit of zero temperature. These finding are typical to

system with strong frustration. However, the uSR result are surprising in light of

50
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the presence of ferromagnetic interaction found by ESR; A ferromagnetic Kagomé
is not frustrated and should freeze. Whether we found a new state of matter, or

have a problem with either experiments or interpretations remain to be seen.
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