

Measuring the Stiffness and Coherence Length of 2D Superconductors

Nitsan Blau – Supervised by Prof. Amit Keren Thesis Defense – 16/03/2020

Outline

Introduction & Motivation

- 2D Superconductivity The Pearl equation
- The Stiffnessometer Principle of Operation
- Experimental Setup & Samples Fabrication
- O Stiffness Measurement
- O Coherence Length Measurement
- Summary

Prof. Amit Keren

Dr. Itzik Kapon

The Stiffnesometer

Stiffnessometer, a magnetic-field-free superconducting stiffness meter and its application

Itzik Kapon,¹, Katrine Golubkov,¹ Nir Gavish,² and Amit Keren¹,

¹Department of Physics, Technion-Israel Institute of Technology, Haifa, 3200003, Israel ²Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 3200003, Israel (Dated: November 10, 2017)

Motivations

• TI Proximity effect – how thin can we measure?

3

Outline

Introduction & Motivation

- 2D Superconductivity The Pearl equation
- The Stiffnessometer Principle of Operation
- Samples Fabrication
- O Stiffness Measurement
- O Coherence Length Measurement
- Summary

London's Equation

• The superconducting stiffness is defined by:

$$\mathbf{J}_{s} = -\rho_{s}(\mathbf{A} - \frac{\hbar}{2e}\nabla\varphi)$$

• Where φ is the phase of the complex order parameter:

$$\psi = |\psi|e^{i\varphi(x)}$$

When $\nabla \varphi = 0$ we get the **London's Equation**:

$$\mathbf{J}_{s}=-\boldsymbol{\rho}_{s}\mathbf{A}$$

London's Equation

London's Eq.
$$\mathbf{J}_s = -\rho_s \mathbf{A}$$
 ρ_s is the stiffness

 $\nabla \times$ Ampère's Law:

$$\nabla \times \nabla \times \mathbf{B} = \mu_o \nabla \times \mathbf{J} = -\mu_o \rho_s \nabla \times \mathbf{A} = -\mu_o \rho_s \mathbf{B}$$

Solution

Currents on the wall prevent the field from penetrating, leading to the Meissner effect.

2D Superconductivity

In 2D even type 1 SC behaves like type 2

2D Superconductivity

• In **2D** the question "what is the field inside the sample" is meaningless. • In 2D the question "what are **A** and **J**" is meaningful.

Superconductivity Suppression

- In ultra-thin films, superconducting properties often deviate from their bulk counterparts.
- In particular, the superconducting energy gap (Δ) and the magnetic penetration depth (λ) can get strongly affected by the increased role of disorder, formation of vortex antivortex pairs, and thermal phase fluctuations.

The Pearl Equation

• In 2D there is no wall and very weak Meissner effect.

• However there is Stiffness in 2D:

$$\mathbf{J}_{s} = -\frac{d}{\mu_{0}\lambda^{2}}\mathbf{A}\delta(z)$$

d is the **film thickness**

Pearl J - Appl. Phys. Lett. 5, 65 (1964);

• Ampere with $\mathbf{B} = \nabla \times \mathbf{A}$

$$\nabla \times \nabla \times \mathbf{A} = \mu_0 \mathbf{J} = -\frac{d}{\lambda^2} \mathbf{A} \delta(z)$$

• This is a PDE for **A** determined by $\frac{d}{\lambda^2} \equiv \frac{1}{\Lambda}$ where Λ is the **Pearl length**.

Outline

- Introduction & Motivation
- 2D Superconductivity The Pearl equation

The Stiffnessometer – Principle of Operation

- Experimental Setup & Samples Fabrication
- Stiffness Measurement
- O Coherence Length Measurement
- Summary

Principle of Operation

• Use infinitely long coil in the center of a superconducting 2D ring

$$(B_{coil} = 0) \qquad A_{coil} \propto \frac{I}{r} \hat{\theta} \longrightarrow J_{ring} \longrightarrow A_{ring}$$

• The flux of the ring through a pickup loop (radius R_{PL}) is:

$$\Phi(z) = 2\pi R_{PL} \cdot A_{ring}(R_{PL}, z).$$

• By measuring $\Phi(z)$ we determine the solution of the **Normalized Pearl Equation** of our specific setup:

$$\nabla \times \nabla \times \mathbf{A} = -\frac{1}{\Lambda} \left(\mathbf{A} + \frac{1}{r} \hat{\theta} \right) \delta(z)$$

where
$$\Lambda = \frac{\lambda^2}{d}$$
 and $A = \frac{A_{ring}(r, z)}{A_{coil}(R_{PL})}$.

$J_s = -\rho_s A$	

2D Simulation

• Normalized Pearl Equation:

Ν

$$\nabla \times \nabla \times \mathbf{A} = -\frac{1}{\Lambda} \left(\mathbf{A} + \frac{1}{r} \hat{\theta} \right) \delta(z)$$

$$\downarrow$$

$$\Lambda(A(R_{PL}, \mathbf{0}))$$
where $\Lambda = \frac{\lambda^2}{d}$ and $A = \frac{A_{ring}(r, z)}{A_{coil}(R_{PL})}$.

• Solve numerically (finite elements):

$$\mathbf{F} \quad \mathbf{COMSOL} \quad \nabla^2 A(r,z) = 0$$

• In the box: Boundary conditions:

 $\begin{array}{ll} 0 < z < L \\ 0 < r < L \end{array} \qquad \quad \frac{\partial A}{\partial z} = -\frac{1}{2\Lambda} \Big(\frac{1}{r} + A \Big) \end{array}$

2D Simulation

Measurement

Data Analysis

• The important relation is:

$$V_{ratio} \equiv \frac{\Delta V_{ring}}{\Delta V_{coil}} = G \cdot A(R_{PL}, z = 0)$$

• Where
$$A(R_{PL}, 0) \equiv \frac{A_{ring}(R_{PL}, 0)}{A_{coil}(R_{PL})}$$
.

- *G* is a geometrical factor related to the Gradiometer ($G_{PL} = 1$).
- We need to calculate $A(R_{PL}, z = 0)$ and fit the data, i.e. solve the Pearl equation.

G Factor Calculation

Data Analysis

Outline

- Introduction & Motivation
- 2D Superconductivity The Pearl equation
- The Stiffnessometer Principle of Operation
 - **Experimental Setup & Samples Fabrication**
- O Stiffness Measurement
- O Coherence Length Measurement
- Summary

Experimental Setup

SQUID Magnetometer - Quantum Design MPMS®3

(Superconducting QUantum Interference Device)

- 7 [Tesla] Magnet.
- Temperature Range: 1.8 400 [K]

- The magnetic flux through the pickup loop is connected to the SQUID with a Flux Transformer and the measured voltage is: $V_{SOUID} = K \cdot \Phi^{pl}$
- This magnetic flux is proportional to the samples vector potential via: $\Phi^{pl} - \iint B \cdot da - \int A \cdot dl - 2\pi r A(r)$

$$\Phi^{pl} = \iint_{pl} B \cdot da = \int_{pl} A \cdot dl = 2\pi r_{pl} A(r_{pl})$$

Since: Mar - 2019

Experimental Setup

Cu Coil:

- Length 6 [cm]
- Wire Thickness 50 [μm]
- Outer Diameter 0.8 [mm]
- 1940 turns (2 layers)

Dr. Stanislav Stepanov

Si Rings Fabrication

Specifications:

- Three possible wavelengths: 1064[nm], 532[nm] and 355[nm].
- Pulse length 280 femtosecond.
- Power up to 10[W].
- Pulse rate between 44[KHz] and 200[KHz].
- Stage Precision ±1 [μm].
- Spot size 2[μm] at 355[nm], 30[μm] at 1064[nm].

NbN Fabrication

Prof. Yachin Ivry

Itamar Holzman

ATC 2200 sputtering system (AJA International, Inc. USA)

Nb - NbN

Deposition time is calibrated with Ellipsometry measurements.

arXiv: 1904.07739

NbN Samples

Granular Al Fabrication

Prof. Guy Deutscher Aviv Moshe

- Thermal Evaporation of Al in O_2 environment.
- Cooling the substrate down to $\sim 77 [K]$ increases T_c up to $\sim 3.2 [K]$.
- At higher substrate temperature the grain size increases and Tc decreases.
- Typical film thickness: \sim 100 [nm].
- Characterize of samples by ρ_{300K} or $\rho_{4.2K}$ which is related to T_c in a "dome like" shape.

Outline

- Introduction & Motivation
- 2D Superconductivity The Pearl equation
- The Stiffnessometer Principle of Operation
- Experimental Setup & Samples Fabrication
 - Stiffness Measurement
- O Coherence Length Measurement
- Summary

Reminder – Data Analysis

In comparison with the work of **A. Kamlapure** and **P. Raychaudhuri** - *Measurement of magnetic penetratio*

Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films - Appl. Phys. Lett. 96, 072509 (2010)

Measured for NbN 3[nm] epitaxial film:

 $\lambda(0) = 529[nm]$

using a two coil mutual inductance technique.

Al - 231019: Thickness = **100 [nm]** Room Temp. Resistivity = **238 [μΩcm]** Tc = **3.0 [K]** Al - 170919: Thickness = 100 [nm] Toom Temp. Resistivity= 310 [μΩcm] Tc = 3.1 [K] **Al - 241019:** Thickness = **85 [nm]** Room Temp. Resistivity = **810 [μΩcm]** Tc = **2.8 [K]**

Al - 231019: Thickness = **100 [nm]** Room Temp. Resistivity = **238 [μΩcm]** Tc = **3.0 [K]** Al - 170919: Thickness = 100 [nm] Toom Temp. Resistivity= 310 [μΩcm] Tc = 3.1 [K] **Al - 241019:** Thickness = **85 [nm]** Room Temp. Resistivity = **810 [μΩcm]** Tc = **2.8 [K]**

Al - 231019: Thickness = **100 [nm]** Room Temp. Resistivity = **238 [μΩcm]** Tc = **3.0 [K]** Al - 170919: Thickness = 100 [nm] Toom Temp. Resistivity= 310 [μΩcm] Tc = 3.1 [K] **Al - 241019:** Thickness = **85 [nm]** Room Temp. Resistivity = **810 [μΩcm]** Tc = **2.8 [K]**

PhysRevB.93.100503

Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins

Uwe S. Pracht, Marc Scheffler *et. al.*

Intermediate Summary

- The measured values of λ in NbN and Al are in a good agreement with previous works.
- We showed that λ in the relation $\Lambda = \frac{\lambda^2}{d}$ is not a material property which is independent of the thickness.
- Therefore, When $d \rightarrow 0$, Λ is a finite size, so we might be able to measure stiffness of surface states.

Outline

- Introduction & Motivation
- 2D Superconductivity The Pearl equation
- The Stiffnessometer Principle of Operation
- Experimental Setup & Samples Fabrication
- Stiffness Measurement

Coherence Length Measurement

Summary

Phase Slips

• When measuring the Stiffness as function of the excitation coil's current, we got surprising jumps that can be explained by phase slips.

London's Eq. (ZGFC) $\mathbf{J}_{s} = -\rho_{s}\mathbf{A}$ $\mathbf{J}_{s} = -\rho_{s}(\mathbf{A} - \frac{\hbar}{2e}\nabla\varphi)$

The Full GL Equation

Dr. Oded Kenneth

Prof. Nir Gavish

GL Free Energy minimization

As long as $|\psi| = 1$ in the ring, the SC will expel the flux entering it so that $A_{ring} \propto A_{coil}$ Consequently, r_{out} is important.

$$\xi = \frac{\Phi_0}{\Phi_c} r_{out} = \frac{\Phi_0 r_{out}}{\widetilde{\Phi} I_c}$$

• $\widetilde{\Phi}$ is the magnetic flux per current of the Cu Excitation coil.

• In our case: $\widetilde{\Phi} = 1.031 \cdot 10^{-11} \left[\frac{Wb}{mA} \right]$

$$\frac{\widetilde{\Phi}}{\Phi_0} = 4986[mA^{-1}]$$

• Therefore:

 ξ_{M5} =7.07 ± 0.36[*nm*]

 ξ_{M3b} =10.84 ± 0.66[*nm*]

• The role of Coulomb interaction in superconducting NbTiN thin films Hazra, D. et. Al. PhysRevB.97.144518 – H_{c2} measurement of 10[nm] NbN film: $\xi_0 \approx 6.5[nm]$

$$\xi = \frac{\Phi_0}{\Phi_c} r_{out} = \frac{\Phi_0 r_{out}}{\widetilde{\Phi} I_c}$$

Al - 231019: ξ_{231019} =10.08 ± 0.31[*nm*] Thickness = 100 [nm] Room Temp. Resistivity = 238 [μΩcm] Tc = 3.0 [K]

AI - 170919: ξ_{170919} =15.42 ± 0.53[*nm*] Thickness = 100 [nm] Toom Temp. Resistivity= 310 [μΩcm] Tc = 3.1 [K]

Al - 241019: ξ_{241019} =14.04 ± 0.64[*nm*] Thickness = 85 [nm] Room Temp. Resistivity = 810 [μΩcm] Tc = 2.8 [K]

Prof. Guy Deutscher

Aviv Moshe

$$\xi = \frac{\Phi_0}{\Phi_c} r_{out} = \frac{\Phi_0 r_{out}}{\widetilde{\Phi} I_c}$$

AI - 231019: ξ_{231019} =10.08 ± 0.31[*nm*] Thickness = 100 [nm] Room Temp. Resistivity = 238 [μΩcm] Tc = 3.0 [K]

AI - 170919: ξ_{170919} =15.42 ± 0.53[*nm*] Thickness = 100 [nm] Toom Temp. Resistivity= 310 [μΩcm] Tc = 3.1 [K]

Al - 241019: ξ_{241019} =14.04 ± 0.64[*nm*] Thickness = 85 [nm] Room Temp. Resistivity = 810 [μΩcm] Tc = 2.8 [K]

Summary

- We introduced a new method to measure penetration depth
 & coherence length of ultra-thin SC films.
- We have enough sensitivity to measure **single layer SC**.
- Our extraction of the penetration depth agrees with the literature. in a good agreement with previous works.
- Next Steps:
 - TI/SC device fabrication.
 - Phase slips mechanism.

Special Thanks

Itay Mangel

Daniel Potashnikov

Dr. Anna Eyal

Dr. Stanislav Stepanov

Prof. Amit Keren

Prof. Yachin Ivry Itamar Holzman

Dr. Guy Ankonina

Prof. Guy Deutscher

Aviv Moshe

Oded Kenneth

Prof. Nir Gavish

Thanks for Listening!