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Abstract

The gauge-invariant London equation Js = —p, (A — 2L V¢) states that the
current density in a superconductor (SC) Js is proportional to the vector po-
tential A up to the gradient of the order parameter phase ¢. The proportionality
constant py is called the stiffness which is connected to the penetration depth A
by the relation ps = ﬁ When cooling a SC at zero A, ¢ will be uniform to
minimize the kinetic energy. In cases where ¢ is quantized, it remains uniform
upon slightly increasing A, leading to the familiar London equation Js = —p, A.
This relation holds until Jg reaches a critical current J. where ¢ is forced to
change. The coherence length ¢ is proportional to J%, The standard procedure
for measuring ps in a bulk SC is to apply a magnetic field and measure its pen-
etration depth A into the interior of the SC. However, in ultra-thin SC films,
the penetration depth is not well defined since there is no interior although sur-
face current Js and A do exist. A new way of measuring the superconducting
stiffness and coherence length using a Stiffnessometer was developed [1] in our
group. This method measures p, and J. directly, based on the London equation
with a rotor free vector potential. The method, applicable to 3D and 2D SC,
is based on long and narrow excitation coil which pierces a ring-shaped SC and
produces a current in the ring. The ring’s magnetic moment m is then measured
by a superconducting quantum interference device (SQUID) to extract p, and
J. (or the critical SC surface current density J. in the 2D case). In this work,
I will present stiffness and coherence length measurements of a 2D, ultra-thin
0 — NbN and thin Granular Al SC films. The thinnest film that was measured
is a 3[nm] thick NbN film. A surplus of signal to noise ratio (SNR) in this
measurement shows that a reduction of factor 10 in the thickness of the samples
is possible, a fact that will allow in the future to apply this method on a true
2D systems with a single atomic layer. The analysis of the measured signals
with the Pearl equation shows that our new method works appropriately and
gives similar stiffness values found in the literature. Using full analysis of the
two coupled Ginzburg-Landau (GL) equations we extract the coherence lengths
which are similar to those available in the literature. Finally, this work demon-
strates for the first time that the Stiffnessometer agrees with other techniques

while it opens new measurement regimes.
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Symbols and Abbreviations

Abbreviations

BC Boundary Conditions

CP Cooper Pairs

GL Ginsburg Landau

HR High Resistivity

JJE  Josephson Junction Effect

LR Low Resistivity

PDE Partial Differential Equation

SC Superconductor / Superconducting
SNR Signal to Noise Ratio

SQUID Superconducting Quantum Interference Device
TI Topological Insulator

ZGFC Zero Gauge-Field Cooling

Symbols

A Vector Potential

B Total Magnetic Field

c Speed of Light

e Electron Charge

H External Magnetic Field

H, First Superconducting Critical Field
H. Second Superconducting Critical Field
I Current

J s Current Density

Je Critical Current Density

m Magnetic Moment
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1 Introduction

1.1 Motivation

The Stiffnessometer is a new measuring device that was developed [1] in our
group to measure the superconducting stiffness ps and the coherence length &
of superconducting materials. The Stiffnessometer technique will be explained
in detail in chapter 2. The method is based on a current I passing through a
conducting long and narrow excitation coil. In that case, a curl-free (zero mag-
netic field) vector potential which is proportional to I is formed outside of the
coil. The coil pierces a ring-shaped SC and induces a superconducting current
density Js in the ring according to the London equation Js = —psA. The ring’s
magnetic moment is then measured by a superconducting quantum interference

device (SQUID) to extract ps which is connected to the penetration depth A
1
HoA”
not hold anymore we determine the critical current density J.. The coherence

by the relation p; = By increasing A until the London equation does
length ¢ is a property which is directly connected to J.. One can define two
regimes when measuring the stiffness of superconducting materials. The first
regime is the 3D regime which occurs when the penetration depth A is smaller
compared to all dimension of the SC ring, especially to the ring thickness d.
In this case, the method is sensitive to very small stiffness, which translates to
penetration depths on the order of A ~ 1[mm] and to extremely low critical
current densities J. ~ 1 [Acm_2] or long coherence lengths ¢ ~ 1 [pm]. Those
kinds of measurements were demonstrated in the work of Dr. Itzik Kapon [1]
on high-temperature SC LSCO compound (Lag_,Sry,CuQO,4) which is part of
the cuprates family. The second regime is the 2D regime, when A>>d. In this
case, the penetration depth is not well defined since there is no interior to the
sample although surface current J; and A do exist. Therefore, it is necessary
to define a new length scale when dealing with 2D SC - the Pearl length A = %.

There are two main motivations for this research work. The first one is
to approve the new method by showing extraction of absolute SC stiffness val-
ues from base temperature all the way to T, that agrees with other known
methods. That couldn’t have to be done with a bulk SC sample because in the
3D regime, the method sensitivity is limited to penetration depths on the order
of the smallest dimension of the sample (as will be shown in section 2.3), i.e.
A ~ 1[mm]. This leads to saturated measurement (Fig. 1.1a) below T, when A

is much smaller. Therefore we were encouraged to measure thin film samples.

The second motivation is to examine the ability of the Stiffnessometer to

measure ultra-thin SC films as a proof of concept. This is the first step towards
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Figure 1.1: (a) Stiffness measurement of bulk LSCO ring. From the Vjqio
value, one can extract the stiffness (as will be explained in chapter 2). Below
the critical temperature (T, = 35[k]), the measurement value is saturated and
the stiffness temperature dependency can’t be extracted because its value is out
of the sensitivity range of the Stiffnessometer (the penetration depth A becomes
much smaller than any geometrical length of the sample). (b) Illustration of the
double-layered SC\TI sample. Having a stiffness signal from such a device will
indicate a superconducting surface state that emerges from a SC\TT proximity
effect.

a bigger project aimed to look for superconductivity emerging from the surface
state of a Topological Insulator (TI). The idea is to fabricate double-layered
ring-shaped sample with a close ring TI layer on top of an open ring SC layer
(Fig. 1.1b) in such a way that Cooper-pairs (CP) will tunnel from the SC to the
conducting surface state of the TT and will form a proximity effect [2]. Upon
measuring with the Stiffnessometer, only superconducting close ring will have
the ability to run super-currents in a loop and produce a magnetic moment [1],
unlike in a standard magnetization measurement where both types of rings will
have a detectable magnetic moment as shown in Fig. 1.2. Therefore, having
a signal from such a SC\TI device will indicate a TI superconducting surface

state.

In this work, I will show that the Stiffnessometer is indeed capable of mea-
suring the Pearl length of ultra-thin 2D SC from which one can extract directly
the stiffness and the penetration depth. As will be shown in chapter 2, in
the 2D regime, our method is sensitive to a penetration depth in the range of
A [nm] € (60\/&, 6000\/&) where d is the film thickness given in [nm]. A sur-
plus of SNR in 3[nm] thick NbN film measurement shows that a reduction of

factor 10 in the thickness of the samples is possible, a fact that will allow in the
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Figure 1.2: The Stiffnessometer is based on a magnetic moment measurement.
Both graphs present a comparison between SC close ring (red) and open ring
(orange) measurements. The left figure shows a regular magnetic moment mea-
surement of the SC rings in a uniform magnetic field (H = 1[Oe]). The signal
is due to the diamagnetic response of the SC. The right figure shows a Stiff-
nessometer measurement with coil current of I = 1[mA]. There is a signal
only from the close ring which can run super-currents in a loop and produce a
magnetic moment while there is no signal from the open ring.

future to apply this method on a truly 2D systems such as a TI superconducting

surface state.

1.2 Superconductivity

Superconductivity (SC) is a special phase of matter characterized by two main
phenomena. the first is zero electrical resistance and the second is the Meissner
effect - an expulsion of a magnetic field from the interior of the SC, or in other
words, a perfect diamagnetism. Metallic SC can be explained by the BCS theory
named after John Bardeen, Leon Cooper, and John Robert Schrieffer. The BCS
theory describes an attractive interaction between electrons through electron-
phonon coupling which creates CP - a pair of electrons that constitute the charge
carriers in the SC. The critical temperature T, refers to the temperature where
the transition between the SC phase and the normal phase happens.

The coherence length £ can be defined as the size of the CP. In the language
of the GL theory, it is defined as the shortest length scale over which the phase
of the complex order parameter can vary. In the vicinity of an external magnetic
field, the SC will expel the field from its interior by a screening super-currents
in such a way that the external field penetrates to the interior of the SC from
the interfaces with an exponential decaying on the length scale of A\ known as
the penetration depth.

There are two types of SC, depending on the ratio between both length
scales ¢ and A. Type-I SC have A < £ and type-II SC have A > £ . A type-1 SC

will expel all external magnetic field until the field reaches some critical field
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H,.. Above it, the material will turn back to its normal phase, allowing all the
magnetic flux to penetrate into the interior of the material. Type-II SC will
expel the external field up until some critical field H.; which above it, some
field lines with quantized flux will penetrate into the SC at discrete sites in the
form of vortices. The core of each such vortex is in the normal phase while the
outside is still in the SC phase. Increasing the external field above H. causes
more vortices to penetrate into the interior until their density becomes in the
order of ~ 1/£2 such that they start to overlap. In that case, the entire material

becomes normal - that is the second critical field H..o.

1.3 The London Equation and the Meissner Effect

The superconducting Stiffness ps is defined by a local relation between the
superconducting current density J to the vector potential A and the gradient
of the complex order parameter phase, which is defined as ¥ = [t)[e’® . The

relation is given by the gauge-invariant London equation:
Js = A h Vo (1.1)
8= 7Ps 2e '

For simplicity, one can assume isotropy, therefore p is a scalar (although in the

most general case it is a tensor). When V¢ = 0 as in our case, we get:
Js = —psA (1.2)
Applying a rotor over Ampere’s-Maxwell equation, we get:
V XV xB=puyV xdJs

Placing Eq. 1.2 for J and using the definition of A as B = V x A, we get a
partial differential equation (PDE) for the magnetic field B:

V®B = juopsB (1.3)

The solution for the 1D case with boundary condition (BC) depicted in Fig. 1.3
is of the form: B = Bgpe~%. This exponential decaying of the magnetic field
inside the bulk of a SC is called The Meissner Effect and it gives the relation
between the SC stiffness and the penetration depth A:

1
 poA?

Ps (1.4)
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Figure 1.3: The Meissner effect - The magnetic field (red line) decays inside
the SC interior (gray) on a length scale A which called Penetration Depth.

The penetration depth (and hence the stiffness) is a temperature-dependent
property - A (T') increases to infinity when the temperature approaches T,.. One

can define the finite penetration depth at T'= 0 as \g.

1.4 The Ginsburg-Landau Approach

The Ginsburg-Landau (GL) theory gives another way to describe superconduc-
tivity (following [3]). The theory impose a complex order parameter as the SC
quantum macro state denoted as ¥ = |¢|e’® = \/n,e!® where n, is the charge

carriers density. The GL functional of the free energy is given by (in CGS units):

2 B4 L h e 2, (VxA)?
= fn = -V-—A —_ 1.
7= fao+alP + Sl 5 (GV = S A+ (15)
Minimizing the free energy with respect to ¢*, yields:
9 1 A e*
o+ AUy + 5 —(FV = S 4% =0 (1.6)
m* g c
Minimizing with respect to A leads to:
1
J=—VxVxA (1.7)
Ho
e*h * * 6*2 *
= 5 TV — VYY) — YA
m*i m*c
e*

= —WP(Ve - —A) = " |ulv,

m*

Where v is the charge carriers velocity, m* is their mass, e* is their charge and
|1hso|? is their density deep inside the bulk of the SC. One can define f = /15,
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and ¥2, = —a/B > 0 which minimize the free energy deep in the SC bulk where
A =0 and V¢ = 0. Then if indeed there are no magnetic fields and A = 0,
Eq. 1.6 becomes (in the 1D case):
n?  d?
—f+f—f3:0 (1.8)

2m*|a| da?

One can define the GL coherence length as:

2 n?
= — 1.
S(GL) 2m*|a| ( 9)
When using 51 (2V — %A)%ﬁ = mzviz/z in Eq. 1.6, we obtain:

WP = (1 ) gz - (e (1.10)

o 2|al 0 h ’
J = e*p? (l—ﬂ)v (1.11)

- 2laf 7 ’

One can see that J as a function of vs gets a maximum for a specific velocity.

Those are the critical current and the critical velocity:

c 2 2.2]al
Je=¢e wgog(gm*)lp (1.12)
2 |a 1/2
e = (=— 1.13
ve=(3100) (113)

So if we measure the critical velocity v. we can also find £ using the relation:

B h
-~ V3Bmru,

Assuming that m* = 2m,. (m. being the mass of a free electron) and e* = 2e

¢ (1.14)

(e being the charge of a free electron), one can extract from Eq. 1.5 that g =

] 326 A2 and 50 [thao|? = 4657 Then using Eq. 1.12 we get:

mMeC
e = 5oyate (1.15)
And in MKS units:
2m,
m (1.16)

= v
© 3uger? ©
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Figure 1.4: There is a dependency between the critical SC parameters, thus a
critical surface (Blue) is created. In ultra-thin films, superconducting properties
are suppressed and therefore create a shrinkage in the critical surface (Orange).

1.5 The Pearl Equation

In ultra-thin films, superconducting properties often deviate from their bulk
counterparts [4, 5]. In particular, the superconducting energy gap (A) and
the magnetic penetration depth (A) can get strongly affected by the increased
role of disorder [6], formation of vortex-antivortex pairs [7], and thermal phase
fluctuations [8]. So indeed upon thinning the SC thickness d to get a thin film,
there is a suppression of the critical temperature (T.), the critical magnetic
field (H¢) and the critical current (J.) which creates a shrinkage of the critical
surface on the SC phase diagram as illustrated schematically in Fig. 1.4

As was shown in section 1.3, a bulk of a SC material repels the magnetic
field from its interior on a length scale called the penetration depth A. The
repulsion is due to SC currents density which flows close to the walls of the
bulk that creates an opposite magnetic field which yields a zero total field in
the interior. In a 2D SC film there no walls on which super-current density Js
can flow, therefore the magnetic field can easily penetrate and A is increased
in such a way that even a type-I SC becomes type-II (A > £). However, there
is still surface super-current density Js that can flow in the SC, therefore the
relation between the vector potential A to Js can be defined as was shown by

J.Pearl [9]. In the 2D case, the London equation becomes:

d

Jo=—
froA?

A5 (2) (1.17)
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The equation depicts a SC sheet of thickness d in the z = 0 plain. Taking
Ampere’s-Maxwell equation, placing the above expression for Jg and using the
definition of A as B =V x A, we get:

d
—57 45 (2) (1.18)

Under the Coulomb gauge (V - A = 0) and the definition of the new scale length
A= )‘72 as the Pearl length, the Pearl equation is obtained:

VXVX A=

2, 1
VA= - AI(2) (1.19)

This equation characterized the vector potential A in the SC film and is governed

by the Pearl length A which is a property of the film.
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2 The Stiffnessometer

2.1 Principle of Operation

As was described in the previous chapter 1, the Stiffnessometer is a new measur-
ing device that was developed [1] in our group to measure the superconducting
stiffness ps; and the coherence length ¢ of superconducting materials. The ideal
Stiffnessometer is made out of an infinitely long conductive excitation-coil pierc-
ing a ring-shaped SC sample (for now, we will assume a bulk SC ring). Driving
a current I through the conductive excitation-coil generates a uniform magnetic

field inside the coil, parallel to its symmetry axis and zero magnetic field outside.

ugnITrRz
2rr

coil, where n is the windings density and r is the distance from the coil’s symme-

Nevertheless, there is a vector potential Acpiy = ‘1;67;’;1 P = ¢ outside the
try axis. A Zero-Gauge-Field-Cooling (ZGFC) is a process where the described
setup of excitation-coil and SC ring is Cooled down below T, in the absence
of any magnetic field and zero vector potential A¢or = Acoit + Aring = 0, i€
without driving any current in the excitation coil. In this case, the SC will
choose the phase ¢ to be such that the free energy will be minimized - given
that A¢or = 0 under ZGFC, the phase ¢ will be constant along the SC i.e,
V¢ = 0 and the familiar London equation- Eq. 1.2 is valid. furthermore, chang-
ing ¢ is energetically costly for the SC, so upon driving current I in the coil,
the vector potential Acoy # 0 anymore and super-currents J, inside the SC
ring will be formed (and therefore also a vector potential Aying ) such that the
relation J, = —ps Aot will be satisfied. Those super-currents going around in
a loop create a magnetic moment m which can be measured using a pickup-loop
connected to a SQUID. The London equation shows a linear relation between
Js and Agor. Since Agop is proportional to the current I in the excitation coil,
and J is proportional to the sample’s magnetic moment m, we get a linear re-
lation between the applied current and the measured signal. Therefore, one can
extract the stiffness ps. This linearity breaks down at some critical current 1.
due to the fact that V¢ # 0 anymore. One can measure the magnetic moment
m in a constant temperature as a function of the current I and determines I.
and hence, the critical vector potential A., the critical current density .J. and
the penetration depth £. Alternatively, one can measure the magnetic moment
m in a constant current I (as long it is in the linear regime) at varying temper-
ature and detect the stiffness as a function of the temperature. Both types of

measurements will be described in detail in sections 2.3 and 2.4.
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Figure 2.1: (a) MPMS3 Stiffnessometer custom-made coil and sample holder.
(b) Ilustration of the excitation coil with a SC ring on it, the Gradiometer and
the External Coil.

2.2 Experimental Setup

A major part of my experimental work was to implement the Stiffnessometer in
an all-new QUANTUM DESIGN - MPMS3 Magnetometer that arrived at our
group on Mar. 2019. The MPMS3 got a liquid He* cryostat with a base tem-
perature of 1.8 [k]. All measurements presented in this work were taken in the
MPMS3 Stiffnessometer. The implementation included fabrication of a custom-
made coil and sample holder (Fig. 2.1a) that connects to a measurement rod
with electrical wires in it. The excitation-coil that was used in all measurement
is a 60 [mm] long, Cu double-layered coil with an external diameter of 0.8 [mm]
and a total of 1940 windings. The ring-shaped SC sample is threaded onto the
coil and placed in its center (Fig. 2.1a). The pickup loop is rather a second-order
gradiometer. It is made of three winding groups. The outer two are made of
two, clockwise winding loops each and the inner group is made of 4 loops wind-
ing anticlockwise (8 loops in total, as can be seen in Fig. 2.1b). The radius of
the gradiometer is Rpy, = 8.5 [mm]. Upon measuring, the gradiometer is static
and fixed at z = 0, while the coil and the SC ring moving rigidly, altogether, up
and down through it in the z direction. Therefore, the magnetic flux through
the gradiometer is changing. An external coil is used to minimize the external

magnetic field in the vicinity of the SC sample up to 10 [mG].

The gradiometer is connected to a SQUID that measures the change in the
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Figure 2.2: Stiffness measurements of LSCO ring with a current of I = 1 [mA].
During the measurements the ring and the excitation coil are moving along the
z direction (the z-axis), in and out of the gradiometer which is fixed at z = 0.
When they move, the magnetic flux through the gradiometer is changing, the
SQUID measures the change and a corresponding output voltage is accepted (y-
axis). Measuring below T, (purple) yields a combined signal of the ring-shaped
SC sample and the coil. Measuring above T, (red) produce only the coil’s signal
because the ring doesn’t have a superconducting response. By subtracting the
coil signal from the combined signal we get the ring signal (green). AV, is the
difference between the maximum and the minimum voltage of the ring signal
and AV, is the same for the coil signal.

magnetic flux, based on the Josephson junction effect (JJE) and gives a cor-
responding voltage readout which is proportional to the magnetic flux through
the gradiometer. The gradiometer’s geometry yields a unique SQUID voltage
output signal which is explained in detail in App. A.1. The output voltage of
the MPMS3 can be translated to units of magnetic moment with a resolution
of ~ 1071 [Amz}. Fig. 2.2 presents such measurements of HTSC LSCO ring,
above and below T,. The coil contribution to the signal is obtained from the
measurement above T.. By subtracting the coil’s signal from the total signal
(measurement below T.), we get the ring’s signal. The difference between the
maximum voltage and the minimum voltage of the ring’s signal is defined as
AVying and accordingly AV, is defined for the coil’s signal. The measurable
parameters AV, s and AV,y; are proportional to the magnetic flux generated

by the ring and coil respectively.
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2.3 Thin Films Stiffness Measurement

The description of the stiffnessometer that was introduced up until now is valid
also when measuring SC thin films. The only difference is that the super-
currents that are created in the ring satisfies the 2D London equation (Eq. 1.17).
Following section 1.5, we get the Pearl equation for the stiffnessometer case and
Eq. 1.19 then becomes:

1
V2Am’ng = K(Acoil + 147"z'ng)(S (Z) (21)
Where A = )‘72 is the Pearl length, Acoi = %@ = Ao (RprL) BeL p and due

T

to the cylindrical symmetry Aying = Aping(r, 2)¢. Upon normalization:

T
Rpr T

ATing
Acoir(RprL) A

A
Rpy, A

zZ
Rpyr

—z
We get the unit-less, normalized Pearl equation:

L (1 + A)d(2) (2.3)

2 —
VA_AT

Because % — 0 outside the SC ring, one can solve Laplace’s equation:

VZA=0 (2.4)

In the box 0 < z,7 < L where Rpy, < L is the box side length (the solution
is symmetrical in ¢). The ring is located at z = 0, 7, < 7 < T4y and the
following BC are obtained as a result of the jump condition in the magnetic
field:

%:ﬁ(%+A) z2=0, rip <r <Tout
94 _ 2=0,0<7r<rm

o= (2.5)

%:O z2=0, rou <7 <L
A=0 else

We solved numerically the above PDE for different values of A, using finite
elements method on the FreeFem + + software and confirmed the solution with
Comsol — 5.3a (calculated by Prof. Nir Gavish). From the numerical solutions,
one can get the Pearl length as function of the solution in r = Rpy, , 2 =0, i.e

A(A(Rpr,0)) as presented in Fig. 2.3. As can be seen in the numerical solution,
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MPMS3 - 2D ring simulation (r;,=0.5[mm] ; r,,=2[mm])
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Figure 2.3: Numerical solution of the normalized Pearl equation (Eq. 2.3) for
different Pearl lengths A and for ring size of r;, = 0.5 [mm)] and ry,; = 2.0 [mm)].
In the MPMSS3 case, the radius of the gradiometer is Rpy, = 8.5 [mm].

there are two saturated regions (A < 0.001 and A > 10) where small variations in
A(Rpr,0) cause a big deviation in A. In this case, the Stiffnessometer method
loses its sensitivity and it is not applicable anymore. Therefore, one can extract
Pearl lengths of 0.001 < A < 10 which are translated to penetration depth of
in the range of A [nm] € (60\/&7 6000\/&) where d is the film thickness given
in [nm]. In App. A.2 properties of the Pearl equation numerical solution are

shown.

As was already defined, A (Rpr,z =0) = %. Those vector po-

tentials are proportional to the magnetic flux created by the SC ring and the coil,
respectively, through a pickup-loop with radius Rpy, i.e., Peoii = f B.oida =
[ Acoirdl = 2mRpAcoi (Rpr). On the previous section 2.2 we introduced the
entities AVyng and AVey, (see Fig. 2.2). Had we used a single pickup-loop, we
would be able to define AVEL similarly, from the voltage as function of the

displacement measurement. In this case the ralation AVCI;% = k®.o;, where k is

. . . . AVT};ﬁ] Aring(Rpr,2=0) .
some proportionality factor is valid. Therefore, 7 = = Re Since
coil cot

we use a gradiometer, there is a geometrical factor G that relates between the
pickup-loop’s voltages ratio and the gradiometer’s voltages ratio. Therefore, in
total:

Avvring _ GAring(RPLa Z = O)

Vratio = N Acoit(Rpr)

=GA (RPLa z = 0) (26)
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G can be found experimentally by using the saturation value of A (A) or can be
calculated directly, based on the geometrical factors of the gradiometer and the
sample as shown in App. A.1.1. For the MPMS3 gradiometer, we found that
G =~ 3.18 experimentally by measuring a high T, SC ring- shaped LSCO sample
as explained in App. A.1.2. One can now relates the voltage measurement to the

normalized Pearl length by using the solutions of the normalized Pearl equation:

A(A(Rpp,z=0)) — A (VGt) (2.7)

Multiplying the result by a Rpy, factor will give the proper Pearl length. Since
AVying is temperature dependent and so Vj.qi0, measuring from some base tem-
perature all the way to some temperature above T, will yields a A (T') measure-
ment which leads (by using the defintion A = )‘72, where d is the film thickness)
to the penetration depth A (T") and the stiffness p; (7).

2.4 Thin Films Coherence Length Measurement

As was described in section 2.1, upon ZGFC the phase ¢ of the complex order-
parameter will be constant along the SC (V¢ = 0), due to free energy minimiza-
tion. In that case, the relation Js = —psA¢or holds. Since Aot is proportional
to the current [ in the excitation coil, and Jg is proportional to the sample’s
magnetic moment m, we get a linear relation between the applied current and
the measured signal. This linearity breaks down in some critical current I, since
V¢ # 0 anymore so the valid relation is given by the gauge-invariant London
equation (Eq. 1.1). In thin SC films, the inhomogeneous phase can be trans-
lated to flux vortices that escape out from the center of the ring so, as will be
shown in chapter 4, there are jumps in the ring’s magnetic moment signal upon
arriving at the critical current I..

To extract the coherence length ¢ from the critical current, one needs to use
the GL approach and to solve the minimization of the GL free energy. The work
on this problem is in progress and done in a collaboration with Prof. Nir Gavish
from the department of Mathematics in the Technion and Dr. Oded Kenneth
from the Physics department. The GL free energy minimization yields coupled

unitless PDE system under azimuthal symmetry assumption (giant vortex):

VXVXAHA:—%—K(A—F%)@
~ [l = e = [, + (A+ 27 ] = & (vl - 1wl”)

Where J represents the number of flux quanta in the coil and [ is an integer

(2.8)

number representing the phase winding number. Fig. 2.4 presents numerical

solutions for the total vector potential A;,; and the complex order-parameter
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Infinite SC Cylinder Solutions— GL Free Energy Minimization
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Figure 2.4: Numerical solutions of the normalized Pearl equation (Eq. 2.3) for
different Pearl lengths A and for ring size of r;, = 0.5 [mm)] and ry,; = 2.0 [mm)].
In the MPMSS3 case, the radius of the gradiometer is Rpy, = 8.5 [mm].

amplitude |¢| for an infinite SC cylinder sample with different coil’s current I
(which is propotional and represented by J). This is not the case we deal with
in our measurements but it gives the idea of what happens. Upon increasing J,
the order-parameter starts weakened from the inner radius, in other words, the
SC gives up the superconductivity in the inner parts in order to drive super-
currents on bigger loops and create an opposite magnetic flux more easily. In
some critical current J., when the order-parameter weakening reaches the outer
radius, 1| # 1 and A4 # 0 at all points inside the SC and flux vortices can
escape, i.e. there is a phase accumulation so V¢ # 0.

From those results, we understand that the outer radius of the SC ring roq¢
plays an important role in the coherence length calculation, and indeed Oded
Kenneth was able to show (work in progress), by solving analitically Eq. 2.8

close to J., that for the cases where £ < A, an elegant relation is accepted:

% _ Tout
D 3

Where & is the magnetic flux quantum and @, is the magnetic flux in the coil

T

(2.9)

at the critical current I. - for an infinite coil, the relation is given by:

P, = ponwR*I, = I, (2.10)

Where n is the coil’s windings density and R is its radius. Therefore, the

coherence length is given by:

(I)Orout
= — 2.11
¢ DI, ( )
For the double-layered Cu coil we used in all measurements, ® = 1.031 -

10~ [Wb/mA] which is equivalent to q;% = 4986 [mA™'].
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3 Samples Fabrication

In this research work, the stiffness and coherence length measurements was
done on polycrystalline § — NbN and granular Al films. Both materials are
fabricated in a process of growing layers on top of Si substrate - the NbN films
by a sputtering process and the granular Al films by thermal evaporation. As
was described in the previous chapter 2, the Stiffnessometer method demands
to work with ring-shaped SC films. Therefore, the first step is to fabricate
an appropriate ring-shaped Si substrates. That was done by laser cutting a
Si wafers on the ELAS Master Femto Laser System in Tel Aviv University
Nanoscience Center with the help of Dr. Stanislav Stephanov. The ELAS laser
system can emit ultra-short femtosecond laser pulses (down to 2.80 - 10713 [s])
that cause minimal heat-affected zone and maximize spatial precision. The
main effort was to calibrate the laser parameters to get minimal surface damage.
Fig. 3.1 presents a single ring-shaped Si substrate. The next fabricating step is
to grow the SC film on the substrate.

N S— S — S

f _ 5[mm

Figure 3.1: Ring-Shaped Si substrate that was laser cut in the ELAS Master
Femto Laser System. the inner radius is r;, = 0.5 [mm] and the outer is 74, =
2.5 [mm]

3.1 NDBN Ultra-Thin Films Fabrication

Niobium nitride (NbN) is a well known superconducting material with a rela-
tively high bulk critical temperature T ~ 16[K] [10] compared to a pure Nb
which presents a transition at T, ~ 9.2[K] [10]. In recent years, NbN thin films
have emerged as a popular material for fabricating sensitive superconducting
bolometers capable of detecting up to a single photon. The ease of fabricat-

ing NbN films through magnetron sputtering and pulsed laser deposition, high
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Si0, —< —— >

(a) (b)

Figure 3.2: (a) An illustration of the ultra-thin ring-shaped polycrystalline
J —NbN film. The substrate is Si (yellow) with 300 [nm] thick SiOq layer (blue).
The NbN (pink) is sputtered on top of the oxide layer. (b) 3[nm] thick Poly-
crystalline § — NbN ring-shaped film sputtered on Si (with 300 [nm] oxide layer)
substrate. The inner radius is 7, = 0.5 [mm] and the outer is 7y, = 2.0 [mm]
which is smaller than the outer radius of the substrate (2.5 [mm]) due to the
use of a circular ring holder that attaching the substrate to the heating plate
during the sputtering.

transition temperature T,, mechanical strength and chemical stability make it a
material of choice for this application. As was described in section 1.5, supercon-
ductors usually suffer from miniaturization because their functional properties
are suppressed with thickness reduction. Thanks to the relatively high T, of
bulk NbN, the functional properties of this material are maintained also at
ultra-thin films (< 5[nm]), i.e the T, of 3 [nm] thick NbN film is T, ~ 7[K]
which enables to conduct SC properties measurements on an He* cryostat such
as in our MPMS3 magnetometer. The cubic phase is called § — NbN where Nb
and N atoms are arranged alternatingly in a cubic lattice. That phase got a su-
perior T, relative to other phases and a bulk penetration depth of Ay &~ 200 [nm].

Growing an ultra-thin NbN films with controllable properties is a non-trivial
task because the SC properties deteriorate upon shrinking the SC thickness
(Fig. 1.4). Thus, we used a sputtering fabrication process developed by Prof. Yachin
Ivry and his student Itamar Holzman [11] from the Materials Engineering Fac-
ulty at The Technion to fabricate an ultra-thin ring-shaped polycrystalline
d — NbN films on a Si substrate with a 300 [nm] thick SiOs layer on top of
it (Fig. 3.2a).

The sputtering itself was done by Dr. Guy Ankonina from the Technion
Nano-center. The fabrication was carried out on ATC 2200 sputtering system
(AJA International, Inc. USA) in a reactive DC magnetron setup. In the pro-
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Substrate and film growth
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Figure 3.3: (a) ATC 2200 sputtering system (AJA International, Inc. USA)
in the clean-room of the Nano-center at the Technion where the NbN films
fabrication took place. (b) Sputtering process illustration. A Nb target is
bombarded by a mix of Ar : Ny plasma which causing an ejection of Nb particles
from the target that hits the Si substrate which is heated to 760°C to form a
deposited § — NbN layer.

Sputtering Target

cess, a Nb target is bombarded by a mix of Ar: Ny plasma causing an ejection
of Nb particles from the target that hits the Si substrate to form a deposited
layer. The desired § — NbN phase is not thermodynamically stable at room
temperature. Hence, the ring-shaped Si substrate is heated while sputtering to
760°C. There are numerous control parameters for the sputtering procedure,
changing each of them affects the deposition process and therefore the proper-
ties of the deposited layer, among them: the power applied on the Nb target,
the partial pressure of the reactive gas (Ar : Ny), the substrate temperature and
the deposition time. The applied power mainly affects the sputtering rate, while
the partial pressure determines the deposited film composition. The substrate
temperature affects the mobility of the deposited atoms and defines the crys-
tallographic phase of the resulting film. Lastly, the deposition time determines
the film thickness. The optimization and characterization process was carried
out by Ivry’s group [11], therefore the control parameters were already known
and the NbN rings fabrication was done similarly according to them. Fig. 3.2b
presents a 3 [nm] thick 6 — NbN ring-shaped film.

3.2 Granular Al Thin Films Fabrication

The Granular Al research was done in collaboration with Prof. Guy Deutscher
and his student Aviv Glezer Moshe from the Tel Aviv University Physics de-
partment. Granular Al is a material composed of Al grains with a diameter on
the order of @ ~ 1 — 10 [nm], separated by thin insulating barriers of Al oxide
(Al303). The coupling between the grains can be controlled during film growth,
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Figure 3.4: Granular Al phase diagram [13] - T, vs room temperature resistivity
which characterized the grains’ coupling strength. The dashed line marks the
bulk Al critical temperature T,y = 1.2 [K].

leading to samples with strong coupling and low resistivity (LR) in electrical
transport, compared to high resistivity (HR) samples with weak intergrain cou-
pling. In LR samples, T, can be enhanced up to 3.2 [K] which is several times
the bulk-value Ty = 1.2 [K], whereas it is suppressed in HR samples to form
a superconducting dome in the phase diagram [12] (Fig. 3.4). Moreover, this
confinement of electrons inside the nanoscale metallic grains reduces the value
of the coherence length. Thereby, a BCS to BEC crossover is detected over
changing the grains size [13].

The ring-shaped Granular Al films were fabricated in a thermal evaporation
process by Aviv. That process includes heating a clean Al pallet in a vacuum
chamber with base pressure of ~ 11077 [Torr] which cause evaporation of
Al atoms that hit the Si ring-shaped substrate. The deposition is done in a
controlled Os pressure while the substrate is cooled down to ~ 77 [K] by a liquid
nitrogen cold finger. Films with various degree of grain coupling were obtained
by carefully varying the O, partial pressure in the range of 2-5 - 1075 [Torr]
and the deposition rate to about 541 [A / S]. Varying those parameters lead to
different grains size distribution and therefore to different coupling. As was said
earlier, the characterization of the samples is done by resistivity measurement
at room temperature which indicates upon a strong or weak coupling of the

grains.
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Figure 3.5: Granular Al thermal evaporation setup at Deutscher’s lab at Tel Aviv
University. (1) High vacuum chamber with a base pressure of ~ 11077 [Torr]
where the evaporation and deposition is done. The Al pallet sitts in the bottom
of the chamber and the substrate is mounted on a cold finger in the upper part
(2) Heated Al pallet. (3) The Oxygene source for evaporating in a controlled Ox
pressure. (4) Thickness monitor measures the frequency change of a piezoelectric
sensor due to a mass accumulation.
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4 Results & Data Analysis

4.1 Stifflness Measurements
4.1.1 NbN Ultra-Thin Films:

Fig. 4.1 presents the ring’s signal (as described in section 2.2) of a 3 [nm] thick
NbN film as a function of temperature. As can be seen, there is a surplus of
SNR in this measurement which indicates that a reduction of factor 10 in the

thickness of the samples is possible.

NbN 3[nm] Thick — Ring’s Signal
T T T 8[1(]
0.25 - 4

0.20

e 4
i s
o o

Voltage (V)
o
&

Temperature

g
o
s}

-0.05

-0.10 i
-I 1 1 Z[K]

z (cm)

Figure 4.1: Ring’s signal (described in section 2.2) of 3 [nm] thick NbN sample
at various temperatures. The y-axis is the SQUID voltage and the z-axis is the
displacement of the ring relative to the gradiometer center. As expected, upon
increasing the temperature from the base temperature T = 2 [K], the signal of
the SC is decreased until it vanishes above T, ~ 7 [K].

Fig. 4.2 presents Vqti, measurements (described in section 2.2) of 3 [nm)]
and 5 [nm] thick NbN rings as function of the temperature. As can be seen,
T, is decreased with thickness. The temperature errors in all measurements
conducted in this work are 7 < £6 - 1073 [K].

Using the analysis described in section 2.3, we extracted the Pearl length as a
function of the temperature A (T') (Fig. 4.3a) and from it, by using the definition
A= %2 where d is the film thickness, the stiffness ps oc A=2 (T) (Fig. 4.3b) and
the penetration depth at the lowest temperature which gives an approximation
for the penetration depth at T' = 0[K], i.e. Ag. For the 5 [nm] thick NbN ring,
we found that A (7' = 2 [k]) = 366 £ 36 [am] and for the 3 [nm] thick NbN ring,
AT = 2[k]) = 602 = 20 [nm].
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Figure 4.2: Stiffness measurements of 3[nm] (red marks) and 5[nm] (black
marks) thick NbN rings as a function of the temperature for current I = 5 [mA].
The z-axis is the temperature in [k], and the y-axis is the ratio of the voltages
Vratio = AVring/AVeoi described in section 2.2.
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Figure 4.3: (a) The Pearl length A as a function of temperature for 3 [nm] (red
marks) and 5 [nm] (black marks) thick NbN rings. (b) The Stiffness (ps oc A72)
as a function of temperature for the same rings.
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Figure 4.4: Epitaxial § — NbN thin films penetration depth measurements from
various thicknesses using two coils mutual inductance technique [14]. The left
figure presents the stiffness p, o« A=2 as a unction of temperature. The Right
figure presents Ao as a function of 7.

Comparing those results with a two coils mutual inductance measurements of
epitaxial ultra-thin 6 —NbN films [14], we get a similar film-thickness dependency
of T, and the stiffness with a partial agreement on Ao - For a 3[nm] thick
d — NDbN film, a penetration depth of A\g = 529 [nm| was measured. Moreover,
the stiffness temperature dependence is fundamentally different from ours - in
the literature, the stiffness is temperature independent up to half of T, while
in the Stiffnessometer measurement, the dependency already arises from much

lower temperatures.

4.1.2 Granular Al Thin Films:

Fig. 4.5 presents the same V.44, measurements (with current I = 5[mA]) for
3 different granular Al rings, which differ in their room temperature resistivity
and their thickness (Table 4.1). T, and the base-temperature V,..;;, values are
with inverse relation with the room temperature resistivity.

The same analysis was done as for the NbN films which yields the Pearl
length as a function of the temperature A (T') (Fig. 4.6a) and the stiffness ps
A=2(T) (Fig. 4.6b).

y | AL-231019 [ AI-170919 [ Al-241019

Thickness d [nm)] 100 100 85

Room Temp. Resistivity p [uf2em] 238 310 810

Critical Temp. T, [K] 3.0 31 2.8
Penetration Depth Ag [um] 1.38+0.17 | 1.66 +£0.16 | 2.36 £0.11
Coherence Length &y [nm)] 10.08 = 0.31 | 15.42+0.53 | 14.04 £ 0.64

Table 4.1: Granular Al Samples

Fig. 4.7a presents the penetration depth at base temperature (7' = 1.8 [K]) as

function of room temperature resistivity in [uQ2cm]. For all granular Al samples
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Figure 4.5: Stiffness measurements of 3 different granular Al rings (see Table 4.1)
as a function of the temperature for current I = 5[mA]. The z-axis is the tem-
perature in [K], and the y-axis is the ratio of the voltages Vyqtio = AVying/AVeoi
described in section 2.2.
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Figure 4.6: (a) The Pearl length A as a function of temperature for 3 different
granular Al rings, which differ in their room temperature resistivity and their
thickness. (b) The Stiffness (ps & A™2) as a function of temperature for the
same rings.
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Figure 4.7: (a) Granular Al penetration depth at 7' = 1.8 [K] as a function of
room temperature resistivity in [ufdem]. The fit presents a square root relation
between those properties. (b) Penetration depth comparison with optical THz
spectroscopy measurements [12].

measured, the penetration depth is in the order of A\g ~ 1 [um] (Table 4.1).

Comparing those results with optical THz spectroscopy measurements done
on various granular Al films [12] (Fig. 4.7b), we get a significant agreement of
the penetration depth’s absolute values and the same square root dependency

at the room temperature resistivity.

4.2 Coherence Length Measurements
4.2.1 NbDN Ultra-Thin Films:

Fig. 4.8 presents AV, measurements (described in section 2.2) of 3 [nm] and
5 [nm] thick NbN rings as a function of the coil current I at the base temperature
T = 2[K]. As described in section 2.4, the critical current I, is the lowest current
for which the linearity between the ring magnetization (proportional to AV,.,,)
and the coil’s vector potential (proportional to I) breaks. As can be seen, the
critical current of the 5 [nm] thick NbN ring is I. = 44.5 [mA] and for the 3 [nm)]
is I, = 26 [mA].

Using the analysis described in section 2.4 and given that for both rings
Tout = 2.0 [mm], we extracted the coherence lengths according to Eq. 2.11 and
found that £ = 7.07 £ 0.36 [nm] for the 5 [nm] ring and & = 10.84 + 0.66 [nm] for
the 3 [nm] ring. Those results are with a good agreement to Hco measurements
of 10 [nm] NbN film which measured a coherence length of &, = 6.5 [nm] [15].
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NbBN Critical Current (T = 2[K] ; 7oy = 2[mm])
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Figure 4.8: Critical current measurements of 3 [nm| (red marks) and 5 [nm]
(black marks) thick NbN rings at the base temperature 7' = 2 [k]. the y-axis is
AVying described in section 2.2 and the z-axis is the current I in the coil. The
critical current of the 5 [nm] thick NbN ring is I. = 44.5 [mA] and for the 3 [nm]
is I, = 26 [mA].

4.2.2 Granular Al Thin Films:

Fig. 4.9 presents similar AV}, measurements for 3 different granular Al rings
(Table 4.1) as a function of the coil current I at the base temperature T =
1.8 [K].

Using the analysis described in section 2.4 and given that for all rings 7., =
2.5 [mm], we extracted the coherence lengths according to Eq. 2.11. Fig. 4.10
presents the coherence length at the base temperature (T' = 1.8 [K]) as a function
of room temperature resistivity in [p{dcm] in comparison to Heo measurements
that were done on various granular Al samples by Aviv Glezer Moshe (work in
progress - yet to be published). Our results give the same order of coherence

lengths but yield a different behavior as a function of the resistivity.
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Granular Al Critical Current (T = 1.8[K]; 7,,; = 2.5[mm])
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Figure 4.9: Critical current measurements of 3 different granular Al rings (see
Table 4.1) at the base temperature T' = 1.8 [K]. the y-axis is AV}, described
in section 2.2 and the z-axis is the current I in the coil.
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Figure 4.10: Comparison of Granular Al coherence lengths as a function of
room temperature resistivity in [ufdcm]. The Red marks are stiffnessometer
measurements and the Blue marks are coherence lengths calculated from Heo
measurements done by Prof. Guy Deutscher and Aviv Glezer Moshe (work in
progress - yet to be poblished).
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4 RESULTS & DATA ANALYSIS
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5 Discussion

In this research work, we presented the Stiffnessometer and its ability to measure
the penetration depth A and coherence length £ of ultra-thin SC films. Measure-
ments of 3 [nm] thick polycrystalline § — NbN film were introduced and proved
that the Stiffnessometer indeed has the ability in terms of SNR and sensitivity to
measure a true 2D SC systems such as in the case of a superconducting surface
state of a TI induced by a proximity effect. Moreover, we measured different
samples of polycrystalline § — NbN and granular Al thin films and made a com-
parison with previous measurements done in known methods such as two coil
inductance technique and optical THz spectroscopy. The comparison showed a
good agreement with most of the measurement done in those known methods
which validate the Stiffnessometer as a new method to measure thin SC films.
The work presented so far could be published once we add few more films of
NbN and improve the systematics of the granular Al results. Also, we have to
understand why the temperature dependence of the stiffness measured by the
Stiffnessometer is so different from other techniques. It might be that we need
to solve the two coupled GL equations in 2D for analyzing the film data. This

will require further theoretical development.
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A Appendix

A.1 The Gradiometer G Factor

As was described in section 2.3, the geometrical factor G can be found experi-
mentally by using the saturation value of A (A (Rpr,z = 0)) or can be calculated
directly, based on the geometrical properties of the gradiometer and the sample.

In this section, we will introduce both ways to calculate G.

A.1.1 G Calculation from Geometrical Properties

The SQUID signal is proportional to the total magnetic flux in the gradiometer
which is the sum of the flux through each one of the 8 loops of the gradiometer.
Those are arranged such that 4 loops with the same winding orientation are
located in the center of the gradiometer and the other 4 loops have an oposite
orientation and are split into two pairs. One is set 8 [mm] above the center and
the other one is set 8 [mm] below (as can be seen in Fig. 2.1b). Therefore, the
total flux is:

Dyor = —2P(2 — 8) + 4P(2) — 28(z + 8) (A1)

Where z is the displacement of the sample relative to the gradiometer center.
In a way, the ®;,; term have the structure of a second derivative of the total
magnetic flux through a single pickup loop. The magnetic flux of a ring with
magnetic moment m depends on the vector potential of the ring which is given
by:
2rmR?2
Aring(RPLa Z) = 27% (A2)
(Rpp, +22)%

The ratio between the total ring’s vector potential on the gradiometer and the

ring’s vector potential on a single pickup loop at z = 0 is:

AR (Rpr,2) 2R3, L ARh, 2R3,
AL (Rpp,z2=0) (R:,+(2+8)2)%  (R2,+22)3 (R%,+(z—8)?)%
(A.3)
The difference between the maximum and minimum of this function is:
AGrad (RPL)
A ty =3.173 A4
(Aggg(RPL, 220 (A.4)

Similarly, we can define and manage the same process for the finite 60 [mm] long

coil we used in the experiment and get:

Grad
A (A Acoil* (Rr1) )> =11 (A.5)

PL _
coil(RPL7Z =0
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The voltage output is proportional to the sum of the flux through all 8 pickup

loops of the gradiometer:

V(Z):K-EPL/B(Z—ZPL)'da:K-ZpL/A(Z—ZpL)~dl

=K- ZWRPLAGrad(RPL, Z) (Aﬁ)

Where K is a coefficient defined as V = K - ®pr. Therefore, one expects that:

A‘/ring -9 885A5£L9(RPL’ z = 0)
AVeoir T APL(Rpp,2=0)

coil

(A7)

Following the definition of the G factor in section 2.3, one simply get that:

G =2.885 (A.8)

A.1.2 G Calculation from Saturation Value

In this work, we calculated the G factor experimentally by measuring a high
T. SC LSCO bulk sample (Fig. 1.1a). The extraction of the stiffness of a bulk
SC (which is explained in details in the work of Dr. Itzik Kapon [1]) is done in
a similar way to the thin films stiffness. The only difference is that the Pearl
equation is not valid anymore (since A < d) and one needs to solve the unitless
3D-case PDE (instead of the normalized Pearl equation) with BC defined by

the geometrical properties of the measured sample:

1,1
VA= 55+ 4) (A.9)

Where A = m, as was defined similarly in section 2.3. Fig. A.1
presents the solution of the PDE with the LSCO ring geometrical properties
(rin, = 0.5 [mm] , royr = 1.24 [mm] , d = 1 [mm]) as a function of the penetration

depth A.

As can be seen, for penetration depth A < 0.01[A.U] &~ 0.1 [mm] which
satisfies A < d there is a saturation in the A (Rpr, z = 0) value, i.e it’s constant
(A%** (Rpp,z = 0) = 0.161) over a wide range of A\. And indeed, as can be
seen in Fig. 1.1a, the V.4, value saturates below T, (V% = 0.512) since the
penetration depth of the bulk LSCO sample is smaller than any other dimension.
Therefore, one will require that:

Vsat Vsat

ratio __ sat _ Yratio __
e = A = G=—ur =318 (A.10)
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MPMS3 - LSCO ring simulation
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Figure A.1: Numerical solution of the normalized PDE (Eq. A.9) for different
penetration depth A and for ring size of r;, = 0.5[mm] , 7oyr = 1.24 [mm] ,

d = 1[mm]. The gradiometer radius of the MPMS3 is Rpy, = 8.5 [mm].

A.2 The Pearl Equation

In this short section, we will present two properties of the Pearl equation so-
lutions (Eq. 2.3). Fig. A.2 shows that indeed the Pearl equation solution is
the limit of the 3D-case PDE solution (Eq. A.9) when the thickness of the SC
sample d goes to zero while the other geometrical properties of the ring remain
the same. This shows that the Pearl equation indeed describes the 2D case.
Fig. A.2 shows the dependency of the Pearl equation in r;, and 7,,:. One
can see that the solution has a strong dependency on r,,; while almost none on
7in. 1t can be explained by the fact that upon changing the outer radius, the
vector potential changes more drastically because of the 72 dependency of the
flux. However, for all cases, the A sensitivity regions remain the same and yield
the ability to detect penetration depth of A [nm] € (60\/37 6000\/3). Having

that and remembering that the 2D case is valid for d < A, one can measure SC
films with thickness up to d = 360 [nm)].
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The Pearl Limit
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Figure A.2: The normalized vector potential A (Rpr,z =0) as a function of

the normalized Pearl length A = %. The Pearl equation solution is the
limit of the 3D-case PDE solution (Eq. A.9) when the thickness d — 0 while
rin = 0.5 [mm] and r4,; = 2.5 [mm] remains the same.

MPMSS3 - 2D ring simulation

100 T T T T T T T T T T T
A~60d'2-6,000d"2[nm] d<360[nm]
10
Y
1E %-"‘L\ i
o
-
o1k "‘\,\"‘\: s, ]
o Ly e,
— 0 01 f.l\\ T\!\\
- 001 ]
S R Y
< 0.001 ¥ 1
r|n X rout ‘:“ “‘.
1E-4 |k |—*— 0.25X2[mm] a i _
—e— 0.5X2[mm] !! !l
1E.55 L |+ 0.75X2[mm] o b
—e— 0.25X2.5[mm] !! l !
1E-6 L 0.5X2.5[mm] 1 ]
. 0.75X2.5[mm] i ] i
E 7 1 1 1 1 1 1 1 1 ‘.F 1 1 ‘.1‘ 1
-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

A(Rp,z=0)(U.L)
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REFERENCES 41

References

1]

I. Kapon, “Stiffnessometer, a magnetic-field-free superconducting stiffness
meter and its application,” in Springer Theses (Springer International Pub-
lishing, 2019) pp. 19-33.

L. Fu and C. L. Kane, “Superconducting proximity effect and majorana
fermions at the surface of a topological insulator,” Physical Review Letters
100 (2008), 10.1103/physrevlett.100.096407.

M. Tinkham, Introduction to Superconductivity: v. 1 (Dover Publications
Inc., 2004).

Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, “Superconducting
properties and crystal structures of single-crystal niobium nitride thin films
deposited at ambient substrate temperature,” Journal of Applied Physics
79, 78377842 (1996).

A. Semenov, B. Glinther, U. Bottger, H.-W. Hiibers, H. Bartolf, A. Engel,
A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gip-
pius, “Optical and transport properties of ultrathin NbN films and nanos-
tructures,” Physical Review B 80 (2009), 10.1103/physrevb.80.054510.

A. Finkel'stein, “Suppression of superconductivity in homogeneously dis-
ordered systems,” Physica B: Condensed Matter 197, 636-648 (1994).

A. F. Hebard and A. T. Fiory, “Evidence for the Kosterlitz-Thouless tran-
sition in thin superconducting aluminum films,” Physical Review Letters
44, 291-294 (1980).

S. J. Turneaure, T. R. Lemberger, and J. M. Graybeal, “Effect of thermal
phase fluctuations on the superfluid density of two-dimensional supercon-
ducting films,” Physical Review Letters 84, 987-990 (2000).

J. Pearl, “Current distribution in superconducting films carrying quantized
fluxoids,” Applied Physics Letters 5, 65-66 (1964).

B. T. Matthias, T. H. Geballe, and V. B. Compton, “Superconductivity,”
Reviews of Modern Physics 35, 1-22 (1963).

I. Holzman and Y. Ivry, “On-chip integrable planar nbn nanosquid with
broad temperature and magnetic-field operation range,” Appl. Phys. Lett.
http://arxiv.org/abs/1904.07739v1 .


http://dx.doi.org/10.1007/978-3-030-23061-6_2
http://dx.doi.org/10.1103/physrevlett.100.096407
http://dx.doi.org/10.1103/physrevlett.100.096407
https://www.ebook.de/de/product/3429695/michael_tinkham_introduction_to_superconductivity_v_1.html
http://dx.doi.org/10.1063/1.362392
http://dx.doi.org/10.1063/1.362392
http://dx.doi.org/ 10.1103/physrevb.80.054510
http://dx.doi.org/10.1016/0921-4526(94)90267-4
http://dx.doi.org/10.1103/physrevlett.44.291
http://dx.doi.org/10.1103/physrevlett.44.291
http://dx.doi.org/10.1103/physrevlett.84.987
http://dx.doi.org/10.1063/1.1754056
http://dx.doi.org/10.1103/revmodphys.35.1
http://arxiv.org/abs/http://arxiv.org/abs/1904.07739v1

42

[12]

[13]

REFERENCES

U. S. Pracht, N. Bachar, L. Benfatto, G. Deutscher, E. Farber, M. Dressel,
and M. Scheffler, “Enhanced cooper pairing versus suppressed phase coher-
ence shaping the superconducting dome in coupled aluminum nanograins,”
Physical Review B 93 (2016), 10.1103/physrevb.93.100503.

A. G. Moshe, E. Farber, and G. Deutscher, “Optical conductivity of gran-
ular aluminum films near the Mott metal-to-insulator transition,” Physical
Review B 99 (2019), 10.1103/physrevb.99.224503.

A. Kamlapure, M. Mondal, M. Chand, A. Mishra, J. Jesudasan, V. Bagwe,
L. Benfatto, V. Tripathi, and P. Raychaudhuri, “Measurement of
magnetic penetration depth and superconducting energy gap in very
thin epitaxial nbn films,” Applied Physics Letters 96, 072509 (2010),
https://doi.org/10.1063/1.3314308 .

D. Hazra, N. Tsavdaris, A. Mukhtarova, M. Jacquemin, F. Blanchet,
R. Albert, S. Jebari, A. Grimm, E. Blanquet, F. Mercier, C. Chape-
lier, and M. Hofheinz, “The role of coulomb interaction in
superconducting nbtin thin films,” 10.1103/PhysRevB.97.144518,
http://arxiv.org/abs/1711.04585v1 .


http://dx.doi.org/ 10.1103/physrevb.93.100503
http://dx.doi.org/10.1103/physrevb.99.224503
http://dx.doi.org/10.1103/physrevb.99.224503
http://dx.doi.org/10.1063/1.3314308
http://arxiv.org/abs/https://doi.org/10.1063/1.3314308
http://dx.doi.org/10.1103/PhysRevB.97.144518
http://arxiv.org/abs/http://arxiv.org/abs/1711.04585v1

NPT N2AOWN .PVAIPN NMVINVN DYN DNV MTINN »axn Moya (Granular Al)
DTN YYD MR DN DY M 900n)) 3 Y raya NbN naow nyn N7 anva
TNYA IWONNY NTAY 1 NAOYO 10 D2 INY MPT MAOY TITHD NN DY Nyasn i
JPDON TN N25W MOYa NYTNTIT MOIYN TTNd

NMN MINN ATTH MOW DY ONIN JON TOMNYPNIY NNYNID DTN 1 NTaY
M2y MOMNYPN MYSNND ITTOIN MNYPN 2DTY INNIYNL .YVTN AT TH NMNIVON
POPDIILPAD NVIVYA ITTVIYV MOV DDIYD NNDN NNPNRNN NNNNDI 2PV DIPDIOND
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ONN M®ax D Oy J; = —p, (A — %ng)) P30 PPOINIMPND PTND INNYN
SY MINON VINTI MTD TY A OPVNNN PMOPIN ONNIVIAY TPNNONNT ; NIOM DyN
AP N DYN MMYPI TN pg PNNNINION WIAP ¢ 221NN ITON VNI
STOM OYN SV NMVINVIA NONN DTV IPM pg = ﬁ NIYNN Y A DTN PYY
(MPPYPN MIVP NPNRNNY) NPTNN POIY DT Td POVAIPN NNVINLY OATPNNIY 9D
NMOIVNVN DYN IMIND DV PONRNIIN NPIAND 2NN ON I2YNI NOONN MITINND TY
PON ¢ MR ,A PV INVPI INNIVID TN PO DY DAIIPN IWRD .1POIPN
,NVLIMPN ¢ DN DIPNI .TPVIPN TPITNVNRN NN WY NIN DY PHM Syn Y53 NTNN
PTNY INNVYNI NVIIIND IWPY 222mY N, A DY 0TI NOTINA DY NYIAP NINYI NN
NIONND @ 1AV Je 20 TWY wan J R TY 9pn it wp L Js = —ps A naomn
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