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Abstract

The gauge-invariant London equation Js = −ρs
(
A− ~

2e∇φ
)
states that the

current density in a superconductor (SC) Js is proportional to the vector po-
tential A up to the gradient of the order parameter phase φ. The proportionality
constant ρs is called the stiffness which is connected to the penetration depth λ
by the relation ρs = 1

µoλ2 . When cooling a SC at zero A, φ will be uniform to
minimize the kinetic energy. In cases where φ is quantized, it remains uniform
upon slightly increasing A, leading to the familiar London equation Js = −ρsA.
This relation holds until Js reaches a critical current Jc where φ is forced to
change. The coherence length ξ is proportional to 1

Jc
. The standard procedure

for measuring ρs in a bulk SC is to apply a magnetic field and measure its pen-
etration depth λ into the interior of the SC. However, in ultra-thin SC films,
the penetration depth is not well defined since there is no interior although sur-
face current Js and A do exist. A new way of measuring the superconducting
stiffness and coherence length using a Stiffnessometer was developed [1] in our
group. This method measures ρs and Jc directly, based on the London equation
with a rotor free vector potential. The method, applicable to 3D and 2D SC,
is based on long and narrow excitation coil which pierces a ring-shaped SC and
produces a current in the ring. The ring’s magnetic momentm is then measured
by a superconducting quantum interference device (SQUID) to extract ρs and
Jc (or the critical SC surface current density Jc in the 2D case). In this work,
I will present stiffness and coherence length measurements of a 2D, ultra-thin
δ −NbN and thin Granular Al SC films. The thinnest film that was measured
is a 3[nm] thick NbN film. A surplus of signal to noise ratio (SNR) in this
measurement shows that a reduction of factor 10 in the thickness of the samples
is possible, a fact that will allow in the future to apply this method on a true
2D systems with a single atomic layer. The analysis of the measured signals
with the Pearl equation shows that our new method works appropriately and
gives similar stiffness values found in the literature. Using full analysis of the
two coupled Ginzburg-Landau (GL) equations we extract the coherence lengths
which are similar to those available in the literature. Finally, this work demon-
strates for the first time that the Stiffnessometer agrees with other techniques
while it opens new measurement regimes.

Nitsan Blau
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1 Introduction

1.1 Motivation

The Stiffnessometer is a new measuring device that was developed [1] in our
group to measure the superconducting stiffness ρs and the coherence length ξ
of superconducting materials. The Stiffnessometer technique will be explained
in detail in chapter 2. The method is based on a current I passing through a
conducting long and narrow excitation coil. In that case, a curl-free (zero mag-
netic field) vector potential which is proportional to I is formed outside of the
coil. The coil pierces a ring-shaped SC and induces a superconducting current
density Js in the ring according to the London equation Js = −ρsA. The ring’s
magnetic moment is then measured by a superconducting quantum interference
device (SQUID) to extract ρs which is connected to the penetration depth λ

by the relation ρs = 1
µ0λ

. By increasing A until the London equation does
not hold anymore we determine the critical current density Jc. The coherence
length ξ is a property which is directly connected to Jc. One can define two
regimes when measuring the stiffness of superconducting materials. The first
regime is the 3D regime which occurs when the penetration depth λ is smaller
compared to all dimension of the SC ring, especially to the ring thickness d.
In this case, the method is sensitive to very small stiffness, which translates to
penetration depths on the order of λ ∼ 1 [mm] and to extremely low critical
current densities Jc ∼ 1

[
Acm−2] or long coherence lengths ξ ∼ 1 [µm]. Those

kinds of measurements were demonstrated in the work of Dr. Itzik Kapon [1]
on high-temperature SC LSCO compound (La2−xSrxCuO4) which is part of
the cuprates family. The second regime is the 2D regime, when λ�d. In this
case, the penetration depth is not well defined since there is no interior to the
sample although surface current Js and A do exist. Therefore, it is necessary
to define a new length scale when dealing with 2D SC - the Pearl length Λ ≡ λ2

d .

There are two main motivations for this research work. The first one is
to approve the new method by showing extraction of absolute SC stiffness val-
ues from base temperature all the way to Tc that agrees with other known
methods. That couldn’t have to be done with a bulk SC sample because in the
3D regime, the method sensitivity is limited to penetration depths on the order
of the smallest dimension of the sample (as will be shown in section 2.3), i.e.
λ ∼ 1 [mm]. This leads to saturated measurement (Fig. 1.1a) below Tc when λ
is much smaller. Therefore we were encouraged to measure thin film samples.

The second motivation is to examine the ability of the Stiffnessometer to
measure ultra-thin SC films as a proof of concept. This is the first step towards
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(a) (b)

Figure 1.1: (a) Stiffness measurement of bulk LSCO ring. From the Vratio
value, one can extract the stiffness (as will be explained in chapter 2). Below
the critical temperature (Tc = 35 [k]), the measurement value is saturated and
the stiffness temperature dependency can’t be extracted because its value is out
of the sensitivity range of the Stiffnessometer (the penetration depth λ becomes
much smaller than any geometrical length of the sample). (b) Illustration of the
double-layered SC\TI sample. Having a stiffness signal from such a device will
indicate a superconducting surface state that emerges from a SC\TI proximity
effect.

a bigger project aimed to look for superconductivity emerging from the surface
state of a Topological Insulator (TI). The idea is to fabricate double-layered
ring-shaped sample with a close ring TI layer on top of an open ring SC layer
(Fig. 1.1b) in such a way that Cooper-pairs (CP) will tunnel from the SC to the
conducting surface state of the TI and will form a proximity effect [2]. Upon
measuring with the Stiffnessometer, only superconducting close ring will have
the ability to run super-currents in a loop and produce a magnetic moment [1],
unlike in a standard magnetization measurement where both types of rings will
have a detectable magnetic moment as shown in Fig. 1.2. Therefore, having
a signal from such a SC\TI device will indicate a TI superconducting surface
state.

In this work, I will show that the Stiffnessometer is indeed capable of mea-
suring the Pearl length of ultra-thin 2D SC from which one can extract directly
the stiffness and the penetration depth. As will be shown in chapter 2, in
the 2D regime, our method is sensitive to a penetration depth in the range of
λ [nm] ∈

(
60
√
d , 6000

√
d
)
where d is the film thickness given in [nm]. A sur-

plus of SNR in 3[nm] thick NbN film measurement shows that a reduction of
factor 10 in the thickness of the samples is possible, a fact that will allow in the
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Figure 1.2: The Stiffnessometer is based on a magnetic moment measurement.
Both graphs present a comparison between SC close ring (red) and open ring
(orange) measurements. The left figure shows a regular magnetic moment mea-
surement of the SC rings in a uniform magnetic field (H = 1 [Oe]). The signal
is due to the diamagnetic response of the SC. The right figure shows a Stiff-
nessometer measurement with coil current of I = 1 [mA]. There is a signal
only from the close ring which can run super-currents in a loop and produce a
magnetic moment while there is no signal from the open ring.

future to apply this method on a truly 2D systems such as a TI superconducting
surface state.

1.2 Superconductivity

Superconductivity (SC) is a special phase of matter characterized by two main
phenomena. the first is zero electrical resistance and the second is the Meissner
effect - an expulsion of a magnetic field from the interior of the SC, or in other
words, a perfect diamagnetism. Metallic SC can be explained by the BCS theory
named after John Bardeen, Leon Cooper, and John Robert Schrieffer. The BCS
theory describes an attractive interaction between electrons through electron-
phonon coupling which creates CP - a pair of electrons that constitute the charge
carriers in the SC. The critical temperature Tc refers to the temperature where
the transition between the SC phase and the normal phase happens.

The coherence length ξ can be defined as the size of the CP. In the language
of the GL theory, it is defined as the shortest length scale over which the phase
of the complex order parameter can vary. In the vicinity of an external magnetic
field, the SC will expel the field from its interior by a screening super-currents
in such a way that the external field penetrates to the interior of the SC from
the interfaces with an exponential decaying on the length scale of λ known as
the penetration depth.

There are two types of SC, depending on the ratio between both length
scales ξ and λ. Type-I SC have λ < ξ and type-II SC have λ > ξ . A type-I SC
will expel all external magnetic field until the field reaches some critical field
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Hc. Above it, the material will turn back to its normal phase, allowing all the
magnetic flux to penetrate into the interior of the material. Type-II SC will
expel the external field up until some critical field Hc1 which above it, some
field lines with quantized flux will penetrate into the SC at discrete sites in the
form of vortices. The core of each such vortex is in the normal phase while the
outside is still in the SC phase. Increasing the external field above Hc1 causes
more vortices to penetrate into the interior until their density becomes in the
order of ∼ 1/ξ2 such that they start to overlap. In that case, the entire material
becomes normal - that is the second critical field Hc2.

1.3 The London Equation and the Meissner Effect

The superconducting Stiffness ρs is defined by a local relation between the
superconducting current density J to the vector potential A and the gradient
of the complex order parameter phase, which is defined as ψ = |ψ|eiφ . The
relation is given by the gauge-invariant London equation:

Js = −ρs
(

A− ~
2e∇φ

)
(1.1)

For simplicity, one can assume isotropy, therefore ρ is a scalar (although in the
most general case it is a tensor). When ∇φ = 0 as in our case, we get:

Js = −ρsA (1.2)

Applying a rotor over Ampere’s-Maxwell equation, we get:

∇×∇×B = µ0∇× Js

Placing Eq. 1.2 for J and using the definition of A as B = ∇ ×A, we get a
partial differential equation (PDE) for the magnetic field B:

∇2B = µ0ρsB (1.3)

The solution for the 1D case with boundary condition (BC) depicted in Fig. 1.3
is of the form: B = B0e

− xλ . This exponential decaying of the magnetic field
inside the bulk of a SC is called The Meissner Effect and it gives the relation
between the SC stiffness and the penetration depth λ:

ρs = 1
µ0λ2 (1.4)
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Figure 1.3: The Meissner effect - The magnetic field (red line) decays inside
the SC interior (gray) on a length scale λ which called Penetration Depth.

The penetration depth (and hence the stiffness) is a temperature-dependent
property - λ (T ) increases to infinity when the temperature approaches Tc. One
can define the finite penetration depth at T = 0 as λ0.

1.4 The Ginsburg-Landau Approach

The Ginsburg-Landau (GL) theory gives another way to describe superconduc-
tivity (following [3]). The theory impose a complex order parameter as the SC
quantum macro state denoted as ψ = |ψ|eiφ = √nseiφ where ns is the charge
carriers density. The GL functional of the free energy is given by (in CGS units):

f = fn0 + α|ψ|2 + β

2 |ψ|
4 + 1

2m∗ |(
~
i
∇− e∗

c
A)ψ|2 + (∇×A)2

8π (1.5)

Minimizing the free energy with respect to ψ∗, yields:

αψ + β|ψ|2ψ + 1
2m∗ (~

i
∇− e∗

c
A)2ψ = 0 (1.6)

Minimizing with respect to A leads to:

J = 1
µ0
∇×∇×A (1.7)

= e∗~
2m∗i (ψ

∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψ∗ψA

= e∗

m∗
|ψ|2(~∇φ− e∗

c
A) = e∗|ψ|2vs

Where vs is the charge carriers velocity, m∗ is their mass, e∗ is their charge and
|ψ∞|2 is their density deep inside the bulk of the SC. One can define f = ψ/ψ∞
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and ψ2
∞ = −α/β > 0 which minimize the free energy deep in the SC bulk where

A = 0 and ∇φ = 0. Then if indeed there are no magnetic fields and A = 0,
Eq. 1.6 becomes (in the 1D case):

~2

2m∗|α|
d2f

dx2 + f − f3 = 0 (1.8)

One can define the GL coherence length as:

ξ2
(GL) = ~2

2m∗|α| (1.9)

When using 1
2m∗ (~

i∇−
e∗

c A)2ψ = m∗v2
s

a ψ in Eq. 1.6, we obtain:

|ψ|2 = ψ2
∞(1− m∗v2

s

2|α| ) = ψ2
∞[1− (ξm

∗vs
~

)2] (1.10)

J = e∗ψ2
∞(1− m∗v2

s

2|α| )vs (1.11)

One can see that J as a function of vs gets a maximum for a specific velocity.
Those are the critical current and the critical velocity:

Jc = e∗ψ2
∞

2
3(2

3
|α|
m∗

)1/2 (1.12)

vc = (2
3
|α|
m∗

)1/2 (1.13)

So if we measure the critical velocity vc we can also find ξ using the relation:

ξ = ~√
3m∗vc

(1.14)

Assuming that m∗ = 2me (me being the mass of a free electron) and e∗ = 2e
(e being the charge of a free electron), one can extract from Eq. 1.5 that β =
|α| 8πe

2

mec2λ
2 and so |ψ∞|2 = mec

2

8πe2λ2 . Then using Eq. 1.12 we get:

Jc = mec
2

6πeλ2 vc (1.15)

And in MKS units:

Jc = 2me

3µ0eλ2 vc (1.16)



1.5 The Pearl Equation 11

Figure 1.4: There is a dependency between the critical SC parameters, thus a
critical surface (Blue) is created. In ultra-thin films, superconducting properties
are suppressed and therefore create a shrinkage in the critical surface (Orange).

1.5 The Pearl Equation

In ultra-thin films, superconducting properties often deviate from their bulk
counterparts [4, 5]. In particular, the superconducting energy gap (∆) and
the magnetic penetration depth (λ) can get strongly affected by the increased
role of disorder [6], formation of vortex-antivortex pairs [7], and thermal phase
fluctuations [8]. So indeed upon thinning the SC thickness d to get a thin film,
there is a suppression of the critical temperature (Tc), the critical magnetic
field (HC) and the critical current (Jc) which creates a shrinkage of the critical
surface on the SC phase diagram as illustrated schematically in Fig. 1.4

As was shown in section 1.3, a bulk of a SC material repels the magnetic
field from its interior on a length scale called the penetration depth λ. The
repulsion is due to SC currents density which flows close to the walls of the
bulk that creates an opposite magnetic field which yields a zero total field in
the interior. In a 2D SC film there no walls on which super-current density Js

can flow, therefore the magnetic field can easily penetrate and λ is increased
in such a way that even a type-I SC becomes type-II (λ > ξ). However, there
is still surface super-current density Js that can flow in the SC, therefore the
relation between the vector potential A to Js can be defined as was shown by
J.Pearl [9]. In the 2D case, the London equation becomes:

Js = − d

µ0λ2 Aδ (z) (1.17)
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The equation depicts a SC sheet of thickness d in the z = 0 plain. Taking
Ampere’s-Maxwell equation, placing the above expression for Js and using the
definition of A as B =∇×A, we get:

∇×∇×A = − d

λ2 Aδ (z) (1.18)

Under the Coulomb gauge (∇ ·A = 0) and the definition of the new scale length
Λ = λ2

d as the Pearl length, the Pearl equation is obtained:

∇2A = − 1
ΛAδ (z) (1.19)

This equation characterized the vector potential A in the SC film and is governed
by the Pearl length Λ which is a property of the film.
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2 The Stiffnessometer

2.1 Principle of Operation

As was described in the previous chapter 1, the Stiffnessometer is a new measur-
ing device that was developed [1] in our group to measure the superconducting
stiffness ρs and the coherence length ξ of superconducting materials. The ideal
Stiffnessometer is made out of an infinitely long conductive excitation-coil pierc-
ing a ring-shaped SC sample (for now, we will assume a bulk SC ring). Driving
a current I through the conductive excitation-coil generates a uniform magnetic
field inside the coil, parallel to its symmetry axis and zero magnetic field outside.
Nevertheless, there is a vector potential Acoil = Φcoil

2πr ϕ̂ = µ0nIπR
2

2πr ϕ̂ outside the
coil, where n is the windings density and r is the distance from the coil’s symme-
try axis. A Zero-Gauge-Field-Cooling (ZGFC) is a process where the described
setup of excitation-coil and SC ring is Cooled down below Tc in the absence
of any magnetic field and zero vector potential Atot = Acoil + Aring = 0, i.e
without driving any current in the excitation coil. In this case, the SC will
choose the phase φ to be such that the free energy will be minimized - given
that Atot = 0 under ZGFC, the phase φ will be constant along the SC i.e,
∇φ = 0 and the familiar London equation- Eq. 1.2 is valid. furthermore, chang-
ing φ is energetically costly for the SC, so upon driving current I in the coil,
the vector potential Acoil 6= 0 anymore and super-currents Js inside the SC
ring will be formed (and therefore also a vector potential Aring ) such that the
relation Js = −ρsAtot will be satisfied. Those super-currents going around in
a loop create a magnetic moment m which can be measured using a pickup-loop
connected to a SQUID. The London equation shows a linear relation between
Js and Atot. Since Atot is proportional to the current I in the excitation coil,
and Js is proportional to the sample’s magnetic moment m, we get a linear re-
lation between the applied current and the measured signal. Therefore, one can
extract the stiffness ρs. This linearity breaks down at some critical current Ic
due to the fact that ∇φ 6= 0 anymore. One can measure the magnetic moment
m in a constant temperature as a function of the current I and determines Ic
and hence, the critical vector potential Ac, the critical current density Jc and
the penetration depth ξ. Alternatively, one can measure the magnetic moment
m in a constant current I (as long it is in the linear regime) at varying temper-
ature and detect the stiffness as a function of the temperature. Both types of
measurements will be described in detail in sections 2.3 and 2.4.



14 2 THE STIFFNESSOMETER

(a) (b)

Figure 2.1: (a) MPMS3 Stiffnessometer custom-made coil and sample holder.
(b) Illustration of the excitation coil with a SC ring on it, the Gradiometer and
the External Coil.

2.2 Experimental Setup

A major part of my experimental work was to implement the Stiffnessometer in
an all-new QUANTUM DESIGN - MPMS3 Magnetometer that arrived at our
group on Mar. 2019. The MPMS3 got a liquid He4 cryostat with a base tem-
perature of 1.8 [k]. All measurements presented in this work were taken in the
MPMS3 Stiffnessometer. The implementation included fabrication of a custom-
made coil and sample holder (Fig. 2.1a) that connects to a measurement rod
with electrical wires in it. The excitation-coil that was used in all measurement
is a 60 [mm] long, Cu double-layered coil with an external diameter of 0.8 [mm]
and a total of 1940 windings. The ring-shaped SC sample is threaded onto the
coil and placed in its center (Fig. 2.1a). The pickup loop is rather a second-order
gradiometer. It is made of three winding groups. The outer two are made of
two, clockwise winding loops each and the inner group is made of 4 loops wind-
ing anticlockwise (8 loops in total, as can be seen in Fig. 2.1b). The radius of
the gradiometer is RPL = 8.5 [mm]. Upon measuring, the gradiometer is static
and fixed at z = 0, while the coil and the SC ring moving rigidly, altogether, up
and down through it in the z direction. Therefore, the magnetic flux through
the gradiometer is changing. An external coil is used to minimize the external
magnetic field in the vicinity of the SC sample up to 10 [mG].

The gradiometer is connected to a SQUID that measures the change in the
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Figure 2.2: Stiffness measurements of LSCO ring with a current of I = 1 [mA].
During the measurements the ring and the excitation coil are moving along the
z direction (the x-axis), in and out of the gradiometer which is fixed at z = 0.
When they move, the magnetic flux through the gradiometer is changing, the
SQUID measures the change and a corresponding output voltage is accepted (y-
axis). Measuring below Tc (purple) yields a combined signal of the ring-shaped
SC sample and the coil. Measuring above Tc (red) produce only the coil’s signal
because the ring doesn’t have a superconducting response. By subtracting the
coil signal from the combined signal we get the ring signal (green). ∆Vring is the
difference between the maximum and the minimum voltage of the ring signal
and ∆Vcoil is the same for the coil signal.

magnetic flux, based on the Josephson junction effect (JJE) and gives a cor-
responding voltage readout which is proportional to the magnetic flux through
the gradiometer. The gradiometer’s geometry yields a unique SQUID voltage
output signal which is explained in detail in App. A.1. The output voltage of
the MPMS3 can be translated to units of magnetic moment with a resolution
of ∼ 10−11 [Am2]. Fig. 2.2 presents such measurements of HTSC LSCO ring,
above and below Tc. The coil contribution to the signal is obtained from the
measurement above Tc. By subtracting the coil’s signal from the total signal
(measurement below Tc), we get the ring’s signal. The difference between the
maximum voltage and the minimum voltage of the ring’s signal is defined as
∆Vring and accordingly ∆Vcoil is defined for the coil’s signal. The measurable
parameters ∆Vring and ∆Vcoil are proportional to the magnetic flux generated
by the ring and coil respectively.
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2.3 Thin Films Stiffness Measurement

The description of the stiffnessometer that was introduced up until now is valid
also when measuring SC thin films. The only difference is that the super-
currents that are created in the ring satisfies the 2D London equation (Eq. 1.17).
Following section 1.5, we get the Pearl equation for the stiffnessometer case and
Eq. 1.19 then becomes:

∇2Aring = 1
Λ(Acoil + Aring)δ (z) (2.1)

Where Λ = λ2

d is the Pearl length, Acoil = Φcoil
2πr ϕ̂ = Acoil (RPL) RPLr ϕ̂ and due

to the cylindrical symmetry Aring = Aring(r, z)ϕ̂. Upon normalization:

r
RPL

−→ r

Aring
Acoil(RPL) −→ A

Λ
RPL

−→ Λ
z

RPL
−→ z

(2.2)

We get the unit-less, normalized Pearl equation:

∇2A = 1
Λ(1

r
+A)δ (z) (2.3)

Because 1
Λ → 0 outside the SC ring, one can solve Laplace’s equation:

∇2A = 0 (2.4)

In the box 0 < z, r < L where RPL < L is the box side length (the solution
is symmetrical in ϕ̂). The ring is located at z = 0 , rin < r < rout and the
following BC are obtained as a result of the jump condition in the magnetic
field:



∂A
∂z = 1

2Λ
( 1
r +A

)
z = 0 , rin < r < rout

∂A
∂z = 0 z = 0 , 0 < r < rin

∂A
∂z = 0 z = 0 , rout < r < L

A = 0 else

(2.5)

We solved numerically the above PDE for different values of Λ, using finite
elements method on the FreeFem + + software and confirmed the solution with
Comsol− 5.3a (calculated by Prof. Nir Gavish). From the numerical solutions,
one can get the Pearl length as function of the solution in r = RPL , z = 0, i.e
Λ (A (RPL, 0)) as presented in Fig. 2.3. As can be seen in the numerical solution,
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Figure 2.3: Numerical solution of the normalized Pearl equation (Eq. 2.3) for
different Pearl lengths Λ and for ring size of rin = 0.5 [mm] and rout = 2.0 [mm].
In the MPMS3 case, the radius of the gradiometer is RPL = 8.5 [mm].

there are two saturated regions (Λ < 0.001 and Λ > 10) where small variations in
A (RPL, 0) cause a big deviation in Λ. In this case, the Stiffnessometer method
loses its sensitivity and it is not applicable anymore. Therefore, one can extract
Pearl lengths of 0.001 < Λ < 10 which are translated to penetration depth of
in the range of λ [nm] ∈

(
60
√
d , 6000

√
d
)
where d is the film thickness given

in [nm]. In App. A.2 properties of the Pearl equation numerical solution are
shown.

As was already defined, A (RPL, z = 0) = Aring(RPL,z=0)
Acoil(RPL) . Those vector po-

tentials are proportional to the magnetic flux created by the SC ring and the coil,
respectively, through a pickup-loop with radius RPL, i.e., Φcoil =

∫
Bcoilda =∫

Acoildl = 2πRPLAcoil (RPL). On the previous section 2.2 we introduced the
entities ∆Vring and ∆Vcoil (see Fig. 2.2). Had we used a single pickup-loop, we
would be able to define ∆V PLcoil , similarly, from the voltage as function of the
displacement measurement. In this case the ralation ∆V PLcoil = kΦcoil, where k is
some proportionality factor is valid. Therefore, ∆V PLring

∆V PL
coil

= Aring(RPL,z=0)
Acoil(RPL) . Since

we use a gradiometer, there is a geometrical factor G that relates between the
pickup-loop’s voltages ratio and the gradiometer’s voltages ratio. Therefore, in
total:

Vratio ≡
∆Vring
∆Vcoil

= G
Aring(RPL, z = 0)

Acoil(RPL) = GA (RPL, z = 0) (2.6)
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G can be found experimentally by using the saturation value of Λ (A) or can be
calculated directly, based on the geometrical factors of the gradiometer and the
sample as shown in App. A.1.1. For the MPMS3 gradiometer, we found that
G ≈ 3.18 experimentally by measuring a high Tc SC ring- shaped LSCO sample
as explained in App. A.1.2. One can now relates the voltage measurement to the
normalized Pearl length by using the solutions of the normalized Pearl equation:

Λ (A (RPL, z = 0)) −→ Λ
(
Vratio
G

)
(2.7)

Multiplying the result by a RPL factor will give the proper Pearl length. Since
∆Vring is temperature dependent and so Vratio, measuring from some base tem-
perature all the way to some temperature above Tc will yields a Λ (T ) measure-
ment which leads (by using the defintion Λ = λ2

d , where d is the film thickness)
to the penetration depth λ (T ) and the stiffness ρs (T ).

2.4 Thin Films Coherence Length Measurement

As was described in section 2.1, upon ZGFC the phase φ of the complex order-
parameter will be constant along the SC (∇φ = 0), due to free energy minimiza-
tion. In that case, the relation Js = −ρsAtot holds. Since Atot is proportional
to the current I in the excitation coil, and Js is proportional to the sample’s
magnetic moment m, we get a linear relation between the applied current and
the measured signal. This linearity breaks down in some critical current Ic since
∇φ 6= 0 anymore so the valid relation is given by the gauge-invariant London
equation (Eq. 1.1). In thin SC films, the inhomogeneous phase can be trans-
lated to flux vortices that escape out from the center of the ring so, as will be
shown in chapter 4, there are jumps in the ring’s magnetic moment signal upon
arriving at the critical current Ic.

To extract the coherence length ξ from the critical current, one needs to use
the GL approach and to solve the minimization of the GL free energy. The work
on this problem is in progress and done in a collaboration with Prof. Nir Gavish
from the department of Mathematics in the Technion and Dr. Oded Kenneth
from the Physics department. The GL free energy minimization yields coupled
unitless PDE system under azimuthal symmetry assumption (giant vortex):∇×∇×Aθ̂ = − |ψ|

2

λ2

(
A+ J−l

r

)
θ̂

− |ψ|rr −
|ψ|r
r − |ψ|zz +

(
A+ J−l

r

)2 |ψ| = 1
ξ2

(
|ψ| − |ψ|3

) (2.8)

Where J represents the number of flux quanta in the coil and l is an integer
number representing the phase winding number. Fig. 2.4 presents numerical
solutions for the total vector potential Atot and the complex order-parameter
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Figure 2.4: Numerical solutions of the normalized Pearl equation (Eq. 2.3) for
different Pearl lengths Λ and for ring size of rin = 0.5 [mm] and rout = 2.0 [mm].
In the MPMS3 case, the radius of the gradiometer is RPL = 8.5 [mm].

amplitude |ψ| for an infinite SC cylinder sample with different coil’s current I
(which is propotional and represented by J). This is not the case we deal with
in our measurements but it gives the idea of what happens. Upon increasing J ,
the order-parameter starts weakened from the inner radius, in other words, the
SC gives up the superconductivity in the inner parts in order to drive super-
currents on bigger loops and create an opposite magnetic flux more easily. In
some critical current Jc, when the order-parameter weakening reaches the outer
radius, |ψ| 6= 1 and Atot 6= 0 at all points inside the SC and flux vortices can
escape, i.e. there is a phase accumulation so ∇φ 6= 0.

From those results, we understand that the outer radius of the SC ring rout
plays an important role in the coherence length calculation, and indeed Oded
Kenneth was able to show (work in progress), by solving analitically Eq. 2.8
close to Jc, that for the cases where ξ � λ, an elegant relation is accepted:

Jc ≡
Φc
Φ0

= rout
ξ

(2.9)

Where Φ0 is the magnetic flux quantum and Φc is the magnetic flux in the coil
at the critical current Ic - for an infinite coil, the relation is given by:

Φc = µ0nπR
2Ic ≡ Φ̃Ic (2.10)

Where n is the coil’s windings density and R is its radius. Therefore, the
coherence length is given by:

ξ = Φ0rout

Φ̃Ic
(2.11)

For the double-layered Cu coil we used in all measurements, Φ̃ = 1.031 ·
10−11 [Wb/mA] which is equivalent to Φ̃

Φ0
= 4986

[
mA−1].
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3 Samples Fabrication

In this research work, the stiffness and coherence length measurements was
done on polycrystalline δ − NbN and granular Al films. Both materials are
fabricated in a process of growing layers on top of Si substrate - the NbN films
by a sputtering process and the granular Al films by thermal evaporation. As
was described in the previous chapter 2, the Stiffnessometer method demands
to work with ring-shaped SC films. Therefore, the first step is to fabricate
an appropriate ring-shaped Si substrates. That was done by laser cutting a
Si wafers on the ELAS Master Femto Laser System in Tel Aviv University
Nanoscience Center with the help of Dr. Stanislav Stephanov. The ELAS laser
system can emit ultra-short femtosecond laser pulses (down to 2.80 · 10−13 [s])
that cause minimal heat-affected zone and maximize spatial precision. The
main effort was to calibrate the laser parameters to get minimal surface damage.
Fig. 3.1 presents a single ring-shaped Si substrate. The next fabricating step is
to grow the SC film on the substrate.

Figure 3.1: Ring-Shaped Si substrate that was laser cut in the ELAS Master
Femto Laser System. the inner radius is rin = 0.5 [mm] and the outer is rout =
2.5 [mm]

3.1 NbN Ultra-Thin Films Fabrication

Niobium nitride (NbN) is a well known superconducting material with a rela-
tively high bulk critical temperature Tc ≈ 16[K] [10] compared to a pure Nb
which presents a transition at Tc ≈ 9.2[K] [10]. In recent years, NbN thin films
have emerged as a popular material for fabricating sensitive superconducting
bolometers capable of detecting up to a single photon. The ease of fabricat-
ing NbN films through magnetron sputtering and pulsed laser deposition, high
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(a) (b)

Figure 3.2: (a) An illustration of the ultra-thin ring-shaped polycrystalline
δ−NbN film. The substrate is Si (yellow) with 300 [nm] thick SiO2 layer (blue).
The NbN (pink) is sputtered on top of the oxide layer. (b) 3 [nm] thick Poly-
crystalline δ−NbN ring-shaped film sputtered on Si (with 300 [nm] oxide layer)
substrate. The inner radius is rin = 0.5 [mm] and the outer is rout = 2.0 [mm]
which is smaller than the outer radius of the substrate (2.5 [mm]) due to the
use of a circular ring holder that attaching the substrate to the heating plate
during the sputtering.

transition temperature Tc, mechanical strength and chemical stability make it a
material of choice for this application. As was described in section 1.5, supercon-
ductors usually suffer from miniaturization because their functional properties
are suppressed with thickness reduction. Thanks to the relatively high Tc of
bulk NbN, the functional properties of this material are maintained also at
ultra-thin films (< 5 [nm]), i.e the Tc of 3 [nm] thick NbN film is Tc ≈ 7 [K]
which enables to conduct SC properties measurements on an He4 cryostat such
as in our MPMS3 magnetometer. The cubic phase is called δ −NbN where Nb
and N atoms are arranged alternatingly in a cubic lattice. That phase got a su-
perior Tc relative to other phases and a bulk penetration depth of λ0 ≈ 200 [nm].

Growing an ultra-thin NbN films with controllable properties is a non-trivial
task because the SC properties deteriorate upon shrinking the SC thickness
(Fig. 1.4). Thus, we used a sputtering fabrication process developed by Prof. Yachin
Ivry and his student Itamar Holzman [11] from the Materials Engineering Fac-
ulty at The Technion to fabricate an ultra-thin ring-shaped polycrystalline
δ − NbN films on a Si substrate with a 300 [nm] thick SiO2 layer on top of
it (Fig. 3.2a).

The sputtering itself was done by Dr. Guy Ankonina from the Technion
Nano-center. The fabrication was carried out on ATC 2200 sputtering system
(AJA International, Inc. USA) in a reactive DC magnetron setup. In the pro-
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(a) (b)

Figure 3.3: (a) ATC 2200 sputtering system (AJA International, Inc. USA)
in the clean-room of the Nano-center at the Technion where the NbN films
fabrication took place. (b) Sputtering process illustration. A Nb target is
bombarded by a mix of Ar : N2 plasma which causing an ejection of Nb particles
from the target that hits the Si substrate which is heated to 760◦C to form a
deposited δ −NbN layer.

cess, a Nb target is bombarded by a mix of Ar : N2 plasma causing an ejection
of Nb particles from the target that hits the Si substrate to form a deposited
layer. The desired δ − NbN phase is not thermodynamically stable at room
temperature. Hence, the ring-shaped Si substrate is heated while sputtering to
760◦C. There are numerous control parameters for the sputtering procedure,
changing each of them affects the deposition process and therefore the proper-
ties of the deposited layer, among them: the power applied on the Nb target,
the partial pressure of the reactive gas (Ar : N2), the substrate temperature and
the deposition time. The applied power mainly affects the sputtering rate, while
the partial pressure determines the deposited film composition. The substrate
temperature affects the mobility of the deposited atoms and defines the crys-
tallographic phase of the resulting film. Lastly, the deposition time determines
the film thickness. The optimization and characterization process was carried
out by Ivry’s group [11], therefore the control parameters were already known
and the NbN rings fabrication was done similarly according to them. Fig. 3.2b
presents a 3 [nm] thick δ −NbN ring-shaped film.

3.2 Granular Al Thin Films Fabrication

The Granular Al research was done in collaboration with Prof. Guy Deutscher
and his student Aviv Glezer Moshe from the Tel Aviv University Physics de-
partment. Granular Al is a material composed of Al grains with a diameter on
the order of � ∼ 1 − 10 [nm], separated by thin insulating barriers of Al oxide
(Al2O3). The coupling between the grains can be controlled during film growth,
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Figure 3.4: Granular Al phase diagram [13] - Tc vs room temperature resistivity
which characterized the grains’ coupling strength. The dashed line marks the
bulk Al critical temperature Tc0 = 1.2 [K].

leading to samples with strong coupling and low resistivity (LR) in electrical
transport, compared to high resistivity (HR) samples with weak intergrain cou-
pling. In LR samples, Tc can be enhanced up to 3.2 [K] which is several times
the bulk-value Tc0 = 1.2 [K], whereas it is suppressed in HR samples to form
a superconducting dome in the phase diagram [12] (Fig. 3.4). Moreover, this
confinement of electrons inside the nanoscale metallic grains reduces the value
of the coherence length. Thereby, a BCS to BEC crossover is detected over
changing the grains size [13].

The ring-shaped Granular Al films were fabricated in a thermal evaporation
process by Aviv. That process includes heating a clean Al pallet in a vacuum
chamber with base pressure of ∼ 1 · 10−7 [Torr] which cause evaporation of
Al atoms that hit the Si ring-shaped substrate. The deposition is done in a
controlled O2 pressure while the substrate is cooled down to ∼ 77 [K] by a liquid
nitrogen cold finger. Films with various degree of grain coupling were obtained
by carefully varying the O2 partial pressure in the range of 2–5 · 10−5 [Torr]
and the deposition rate to about 5± 1

[
Å/s

]
. Varying those parameters lead to

different grains size distribution and therefore to different coupling. As was said
earlier, the characterization of the samples is done by resistivity measurement
at room temperature which indicates upon a strong or weak coupling of the
grains.
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Figure 3.5: Granular Al thermal evaporation setup at Deutscher’s lab at Tel Aviv
University. (1) High vacuum chamber with a base pressure of ∼ 1 · 10−7 [Torr]
where the evaporation and deposition is done. The Al pallet sitts in the bottom
of the chamber and the substrate is mounted on a cold finger in the upper part
(2) Heated Al pallet. (3) The Oxygene source for evaporating in a controlled O2
pressure. (4) Thickness monitor measures the frequency change of a piezoelectric
sensor due to a mass accumulation.
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4 Results & Data Analysis

4.1 Stiffness Measurements

4.1.1 NbN Ultra-Thin Films:

Fig. 4.1 presents the ring’s signal (as described in section 2.2) of a 3 [nm] thick
NbN film as a function of temperature. As can be seen, there is a surplus of
SNR in this measurement which indicates that a reduction of factor 10 in the
thickness of the samples is possible.

Figure 4.1: Ring’s signal (described in section 2.2) of 3 [nm] thick NbN sample
at various temperatures. The y-axis is the SQUID voltage and the x-axis is the
displacement of the ring relative to the gradiometer center. As expected, upon
increasing the temperature from the base temperature T = 2 [K], the signal of
the SC is decreased until it vanishes above Tc ≈ 7 [K].

Fig. 4.2 presents Vratio measurements (described in section 2.2) of 3 [nm]
and 5 [nm] thick NbN rings as function of the temperature. As can be seen,
Tc is decreased with thickness. The temperature errors in all measurements
conducted in this work are δT ≤ ±6 · 10−3 [K].

Using the analysis described in section 2.3, we extracted the Pearl length as a
function of the temperature Λ (T ) (Fig. 4.3a) and from it, by using the definition
Λ = λ2

d where d is the film thickness, the stiffness ρs ∝ λ−2 (T ) (Fig. 4.3b) and
the penetration depth at the lowest temperature which gives an approximation
for the penetration depth at T = 0 [K], i.e. λ0. For the 5 [nm] thick NbN ring,
we found that λ (T = 2 [k]) = 366± 36 [nm] and for the 3 [nm] thick NbN ring,
λ (T = 2 [k]) = 602± 20 [nm].
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Figure 4.2: Stiffness measurements of 3 [nm] (red marks) and 5 [nm] (black
marks) thick NbN rings as a function of the temperature for current I = 5 [mA].
The x-axis is the temperature in [k], and the y-axis is the ratio of the voltages
Vratio ≡ ∆Vring/∆Vcoil described in section 2.2.

(a) (b)

Figure 4.3: (a) The Pearl length Λ as a function of temperature for 3 [nm] (red
marks) and 5 [nm] (black marks) thick NbN rings. (b) The Stiffness

(
ρs ∝ λ−2)

as a function of temperature for the same rings.



4.1 Stiffness Measurements 29

Figure 4.4: Epitaxial δ−NbN thin films penetration depth measurements from
various thicknesses using two coils mutual inductance technique [14]. The left
figure presents the stiffness ρs ∝ λ−2 as a unction of temperature. The Right
figure presents λ0 as a function of Tc.

Comparing those results with a two coils mutual inductance measurements of
epitaxial ultra-thin δ−NbN films [14], we get a similar film-thickness dependency
of Tc and the stiffness with a partial agreement on λ0 - For a 3 [nm] thick
δ − NbN film, a penetration depth of λ0 = 529 [nm] was measured. Moreover,
the stiffness temperature dependence is fundamentally different from ours - in
the literature, the stiffness is temperature independent up to half of Tc while
in the Stiffnessometer measurement, the dependency already arises from much
lower temperatures.

4.1.2 Granular Al Thin Films:

Fig. 4.5 presents the same Vratio measurements (with current I = 5 [mA]) for
3 different granular Al rings, which differ in their room temperature resistivity
and their thickness (Table 4.1). Tc and the base-temperature Vratio values are
with inverse relation with the room temperature resistivity.

The same analysis was done as for the NbN films which yields the Pearl
length as a function of the temperature Λ (T ) (Fig. 4.6a) and the stiffness ρs ∝
λ−2 (T ) (Fig. 4.6b).

Al-231019 Al-170919 Al-241019
Thickness d [nm] 100 100 85

Room Temp. Resistivity ρ [µΩcm] 238 310 810
Critical Temp. Tc [K] 3.0 3.1 2.8

Penetration Depth λ0 [µm] 1.38± 0.17 1.66± 0.16 2.36± 0.11
Coherence Length ξ0 [nm] 10.08± 0.31 15.42± 0.53 14.04± 0.64

Table 4.1: Granular Al Samples

Fig. 4.7a presents the penetration depth at base temperature (T = 1.8 [K]) as
function of room temperature resistivity in [µΩcm]. For all granular Al samples



30 4 RESULTS & DATA ANALYSIS

Figure 4.5: Stiffness measurements of 3 different granular Al rings (see Table 4.1)
as a function of the temperature for current I = 5 [mA]. The x-axis is the tem-
perature in [K], and the y-axis is the ratio of the voltages Vratio ≡ ∆Vring/∆Vcoil
described in section 2.2.

(a) (b)

Figure 4.6: (a) The Pearl length Λ as a function of temperature for 3 different
granular Al rings, which differ in their room temperature resistivity and their
thickness. (b) The Stiffness

(
ρs ∝ λ−2) as a function of temperature for the

same rings.
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(a) (b)

Figure 4.7: (a) Granular Al penetration depth at T = 1.8 [K] as a function of
room temperature resistivity in [µΩcm]. The fit presents a square root relation
between those properties. (b) Penetration depth comparison with optical THz
spectroscopy measurements [12].

measured, the penetration depth is in the order of λ0 ∼ 1 [µm] (Table 4.1).

Comparing those results with optical THz spectroscopy measurements done
on various granular Al films [12] (Fig. 4.7b), we get a significant agreement of
the penetration depth’s absolute values and the same square root dependency
at the room temperature resistivity.

4.2 Coherence Length Measurements

4.2.1 NbN Ultra-Thin Films:

Fig. 4.8 presents ∆Vring measurements (described in section 2.2) of 3 [nm] and
5 [nm] thick NbN rings as a function of the coil current I at the base temperature
T = 2 [K]. As described in section 2.4, the critical current Ic is the lowest current
for which the linearity between the ring magnetization (proportional to ∆Vring)
and the coil’s vector potential (proportional to I) breaks. As can be seen, the
critical current of the 5 [nm] thick NbN ring is Ic = 44.5 [mA] and for the 3 [nm]
is Ic = 26 [mA].

Using the analysis described in section 2.4 and given that for both rings
rout = 2.0 [mm], we extracted the coherence lengths according to Eq. 2.11 and
found that ξ = 7.07± 0.36 [nm] for the 5 [nm] ring and ξ = 10.84± 0.66 [nm] for
the 3 [nm] ring. Those results are with a good agreement to HC2 measurements
of 10 [nm] NbN film which measured a coherence length of ξ0 = 6.5 [nm] [15].
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Figure 4.8: Critical current measurements of 3 [nm] (red marks) and 5 [nm]
(black marks) thick NbN rings at the base temperature T = 2 [k]. the y-axis is
∆Vring described in section 2.2 and the x-axis is the current I in the coil. The
critical current of the 5 [nm] thick NbN ring is Ic = 44.5 [mA] and for the 3 [nm]
is Ic = 26 [mA].

4.2.2 Granular Al Thin Films:

Fig. 4.9 presents similar ∆Vring measurements for 3 different granular Al rings
(Table 4.1) as a function of the coil current I at the base temperature T =
1.8 [K].

Using the analysis described in section 2.4 and given that for all rings rout =
2.5 [mm], we extracted the coherence lengths according to Eq. 2.11. Fig. 4.10
presents the coherence length at the base temperature (T = 1.8 [K]) as a function
of room temperature resistivity in [µΩcm] in comparison to HC2 measurements
that were done on various granular Al samples by Aviv Glezer Moshe (work in
progress - yet to be published). Our results give the same order of coherence
lengths but yield a different behavior as a function of the resistivity.
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Figure 4.9: Critical current measurements of 3 different granular Al rings (see
Table 4.1) at the base temperature T = 1.8 [K]. the y-axis is ∆Vring described
in section 2.2 and the x-axis is the current I in the coil.

Figure 4.10: Comparison of Granular Al coherence lengths as a function of
room temperature resistivity in [µΩcm]. The Red marks are stiffnessometer
measurements and the Blue marks are coherence lengths calculated from HC2
measurements done by Prof. Guy Deutscher and Aviv Glezer Moshe (work in
progress - yet to be poblished).
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5 Discussion

In this research work, we presented the Stiffnessometer and its ability to measure
the penetration depth λ and coherence length ξ of ultra-thin SC films. Measure-
ments of 3 [nm] thick polycrystalline δ −NbN film were introduced and proved
that the Stiffnessometer indeed has the ability in terms of SNR and sensitivity to
measure a true 2D SC systems such as in the case of a superconducting surface
state of a TI induced by a proximity effect. Moreover, we measured different
samples of polycrystalline δ−NbN and granular Al thin films and made a com-
parison with previous measurements done in known methods such as two coil
inductance technique and optical THz spectroscopy. The comparison showed a
good agreement with most of the measurement done in those known methods
which validate the Stiffnessometer as a new method to measure thin SC films.
The work presented so far could be published once we add few more films of
NbN and improve the systematics of the granular Al results. Also, we have to
understand why the temperature dependence of the stiffness measured by the
Stiffnessometer is so different from other techniques. It might be that we need
to solve the two coupled GL equations in 2D for analyzing the film data. This
will require further theoretical development.
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A Appendix

A.1 The Gradiometer G Factor

As was described in section 2.3, the geometrical factor G can be found experi-
mentally by using the saturation value of Λ (A (RPL, z = 0)) or can be calculated
directly, based on the geometrical properties of the gradiometer and the sample.
In this section, we will introduce both ways to calculate G.

A.1.1 G Calculation from Geometrical Properties

The SQUID signal is proportional to the total magnetic flux in the gradiometer
which is the sum of the flux through each one of the 8 loops of the gradiometer.
Those are arranged such that 4 loops with the same winding orientation are
located in the center of the gradiometer and the other 4 loops have an oposite
orientation and are split into two pairs. One is set 8 [mm] above the center and
the other one is set 8 [mm] below (as can be seen in Fig. 2.1b). Therefore, the
total flux is:

Φtot = −2Φ(z − 8) + 4Φ(z)− 2Φ(z + 8) (A.1)

Where z is the displacement of the sample relative to the gradiometer center.
In a way, the Φtot term have the structure of a second derivative of the total
magnetic flux through a single pickup loop. The magnetic flux of a ring with
magnetic moment m depends on the vector potential of the ring which is given
by:

Aring(RPL, z) = 2πmR2
PL

(R2
PL + z2) 3

2
(A.2)

The ratio between the total ring’s vector potential on the gradiometer and the
ring’s vector potential on a single pickup loop at z = 0 is:

AGradring (RPL, z)
APLring(RPL, z = 0)

= − 2R3
PL

(R2
PL + (z + 8)2) 3

2
+ 4R3

PL

(R2
PL + z2) 3

2
− 2R3

PL

(R2
PL + (z − 8)2) 3

2

(A.3)
The difference between the maximum and minimum of this function is:

∆
(

AGradring (RPL)
APLring(RPL, z = 0)

)
= 3.173 (A.4)

Similarly, we can define and manage the same process for the finite 60 [mm] long
coil we used in the experiment and get:

∆
(

AGradcoil (RPL)
APLcoil(RPL, z = 0)

)
= 1.1 (A.5)
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The voltage output is proportional to the sum of the flux through all 8 pickup
loops of the gradiometer:

V (z) = K · ΣPL
∫

B(z − zPL) · da = K · ΣPL
∫
A(z − zPL) · dl

= K · 2πRPLAGrad(RPL, z) (A.6)

Where K is a coefficient defined as V = K · ΦPL. Therefore, one expects that:

∆Vring
∆Vcoil

= 2.885
APLring(RPL, z = 0)
APLcoil(RPL, z = 0)

(A.7)

Following the definition of the G factor in section 2.3, one simply get that:

G = 2.885 (A.8)

A.1.2 G Calculation from Saturation Value

In this work, we calculated the G factor experimentally by measuring a high
Tc SC LSCO bulk sample (Fig. 1.1a). The extraction of the stiffness of a bulk
SC (which is explained in details in the work of Dr. Itzik Kapon [1]) is done in
a similar way to the thin films stiffness. The only difference is that the Pearl
equation is not valid anymore (since λ� d) and one needs to solve the unitless
3D-case PDE (instead of the normalized Pearl equation) with BC defined by
the geometrical properties of the measured sample:

∇2A = 1
λ2 (1

r
+A) (A.9)

Where A ≡ Aring
Acoil(RPL,z=0) , as was defined similarly in section 2.3. Fig. A.1

presents the solution of the PDE with the LSCO ring geometrical properties
(rin = 0.5 [mm] , rout = 1.24 [mm] , d = 1 [mm]) as a function of the penetration
depth λ.

As can be seen, for penetration depth λ < 0.01 [A.U] ≈ 0.1 [mm] which
satisfies λ < d there is a saturation in the A (RPL, z = 0) value, i.e it’s constant
(Asat (RPL, z = 0) = 0.161) over a wide range of λ. And indeed, as can be
seen in Fig. 1.1a, the Vratio value saturates below Tc (V satratio = 0.512) since the
penetration depth of the bulk LSCO sample is smaller than any other dimension.
Therefore, one will require that:

V satratio

G
= Asat =⇒ G = V satratio

Asat
= 3.18 (A.10)
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Figure A.1: Numerical solution of the normalized PDE (Eq. A.9) for different
penetration depth λ and for ring size of rin = 0.5 [mm] , rout = 1.24 [mm] ,
d = 1 [mm]. The gradiometer radius of the MPMS3 is RPL = 8.5 [mm].

A.2 The Pearl Equation

In this short section, we will present two properties of the Pearl equation so-
lutions (Eq. 2.3). Fig. A.2 shows that indeed the Pearl equation solution is
the limit of the 3D-case PDE solution (Eq. A.9) when the thickness of the SC
sample d goes to zero while the other geometrical properties of the ring remain
the same. This shows that the Pearl equation indeed describes the 2D case.

Fig. A.2 shows the dependency of the Pearl equation in rin and rout. One
can see that the solution has a strong dependency on rout while almost none on
rin. It can be explained by the fact that upon changing the outer radius, the
vector potential changes more drastically because of the r2 dependency of the
flux. However, for all cases, the Λ sensitivity regions remain the same and yield
the ability to detect penetration depth of λ [nm] ∈

(
60
√
d , 6000

√
d
)
. Having

that and remembering that the 2D case is valid for d� λ, one can measure SC
films with thickness up to d = 360 [nm].
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Figure A.2: The normalized vector potential A (RPL, z = 0) as a function of
the normalized Pearl length Λ ≡ λ2

dRPL
. The Pearl equation solution is the

limit of the 3D-case PDE solution (Eq. A.9) when the thickness d → 0 while
rin = 0.5 [mm] and rout = 2.5 [mm] remains the same.

Figure A.3: The normalized vector potential A (RPL, z = 0) as a function of the
normalized Pearl length Λ ≡ λ2

dRPL
for different ring radii. The solution have a

strong dependency on rout while almost none on rin
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