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Abstract

Liquids are expected to crystallize at low temperatures. The only exception known
is Helium, which can remain a liquid at 0 K, due to quantum fluctuations. Similarly,
the spins in a magnet are expected to order at a temperature set by their Curie-Wiess
temperature, Ooy,. Geometrically frustrated magnets represent an exception. In these
systems, the pair-wise spin interactions cannot be simultaneously minimized due to
the lattice symmetry. This frustration leads to unconventional magnetic ground states
and macroscopic degeneracies.

In antiferromagnets, the spins align anti-parallel with each other. In the case
of a triangular lattice, only two spins can align anti-parallel leaving the third spin
frustrated and ”baffled” not knowing what to do. The question we are interested in is:
what will happen in this situation. So far, we’ve studied three examples of triangular
frustrated lattices, the 2-dimensional kagome Zn-paratacamite, and the 3-dimensional
pyrochlore lattice YoMoo,O7 and ThyTisO7. In the Zn-paratacamite we’ve found that
the spins continue to fluctuate down to 60mK meaning no spin freezing, also uSR
didn’t detect any lattice deformation, NMR T revealed that the excitation spectrum
is gapless. In the YsMo,O7 pyrochlore, we found that appearance of two (with a
hint of a third) non-equivalent Y sites indicating two (or 3) domains or phases, high

resolution x-ray powder diffraction revealed a magneto-elastic mechanism.
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Chapter 1

Frustrated Lattices

In this chapter we introduce the notion of geometric frustration in magnetic systems
(§1.1)and focus on two lattices, the 2D kagomé (§1.2) and it’s 3D equivalent pyrochlore
(§1.3) lattices. The kagomé lattice is based on the triangular lattice by omitting a
spin from every other site on every other line (see Fig.1.2a). The pyrochlore is the
3-dimensional cousin of the kagomé lattice, e.g. instead of having two dimensional
triangles building up the lattice, the tetrahedra is the single unit cell, where in this
case each tetrahedron has 2 spins frustrated (see Fig.1.4). The pyrochlore structure
can be thought of alternating layers of triangular and kagomé lattices, with interaction

between the planes (see Fig. 1.5).

1.1 Introduction

In a physical system, frustration arises from the fact that one cannot simultaneously
minimize the different energies corresponding to multiple interactions that occur in

the system. Here we focus on frustration that occurs due to the topology i.e., due
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to the geometric constraints of the lattice. The interactions are the same for all
spins on the lattice and it may include interactions between first, second .. nearest
neighbors. For example, in an antiferromagnetic ising spins system situated on a

triangular lattice one bond will always be geometrically frustrated (see Fig. 1.1).

Figure 1.1: Geometric Frustration occurs when it is impossible to satisfy all bonds
simultaneously. The dotted (full) line represents a frustrated (satisfied) bond.

In an antiferromagnetic lattice, there are two ways to frustrate. One, as shown
above, the system can be frustrated due to the geometry (topological frustration).
This is the case for three spins on a triangle, which can be expanded for the kagomé
or pyrochlore lattices. A second way to frustration, is due to interactions. Such is
the case in spin glasses where the crystallographic disorder creates a disorder in the
interactions, i.e., the distance between magnetic moments is random thus so is the
interaction.

Highly frustrated lattices have in common a large degenerate ground state (’super-

degenerate ground-state’). This can easily be seen using the classical nearest-neighbor
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antiferromagnetic heisenberg hamiltonian,
H=J)Y S-S, (1.1)

where the sum < 7,j > is over nearest-neighbor spins, and J is the strength of the
exchange interaction. For ¢ interacting spins, the hamiltonian can also be written,
J © N\
j— .. e . PR — 2
H_J<Z>SZ SJ_QXA:(E;&) QZSZ. (1.2)
] = %

where the last sum is over triangles or tetrahedra. Without the constant term

H= g%w (1.3)

where L = Y7 | S; is the total spin of a unit cell (when S are classical vector of unit
length; JgAS?/2 is just a constant). Therefore, we can see that the ground state
is composed of states where the total spin L vanishes. Since there’s an extensive
possibilities to achieve such state, the ground state is degenerate macroscopically.
This implies that at zero temperature the entropy is non zero and finite, which violates
the third law of the thermodynamics. For example, it was calculated that on the
kagomé lattice, the S(T" = 0) ~ 0.502 [6]. However, it is not necessary to have a
macroscopic degeneracy in order to have a finite entropy as T — 0. It is sufficient
that the system will be gapless in its energy spectrum and that its density of states
increases exponentially with the size of the system[7][8].

With the application of an external field, H, the Hamiltonian (Eq.1.3) will now be

added with a field term (Zeeman) Hz = — ) . gupS; - H, this yields the Hamiltonian,

J 5 giB J h\> h?
H—QZ<L— JHL>_QZ<L—2)—4 (1.4)
A A
where h = (gup/J)H. Thus, the ground state will be such that L —h/2 =0 or,

q

=1
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We still have an extensive ways of producing such states. Furthermore, all states in

this situation bare the same magnetization.

1.2 Kagomé Lattice

As seen in Eq. 1.3 the energy of the heisenberg model on this lattice can be minimized
by placing the spins on each triangle pointing in three different dirrection 120° away
from each other. Let us denote these three dirrection by A, B and C. Two configura-
tion are known to posses long range order. One configuration is known as the ¢ = 0
configuration. In this configuration the spins along any line of the kagomé is repeated
in an alternating way (i.e., ABABAB or ACACAC etc.). The other configuration is
known as the v/3 x v/3. In this case, the spins are aligned in a rotating sequence
(i.e., ABCABC..). The extensive equivalent ground states is greatly enhanced since
the spins do not have to be on the same plane ('noncoplanar’ state). In Fig. 3.1b we
demonstrate how the ground state degeneracy grows with the system size.

On the kagomé lattice, there are two mechanism which destroy such long range
order. One is a chiral domain walls, in which spins are arranged in a different sense
of rotation. (see Fig. 1.3). The generation of such a wall costs no energy however
it increases the entropy. Another possibility is tunneling of spins from the A (or B)

direction to the B direction (or A)[9]. This situation is possible in the v/3 x /3 state.
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Figure 1.2: (a) The kagome lattice, (b) the possibility of the extensive ground state
grows with the systems size
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Figure 1.3: A possible chiral wall on the kagomé.

1.3 Pyrochlore Lattice

As in the kagomé case, the minimum energy state in the heisenberg model (as dictated
by Eq.1.3), for each tetrahedron, is when the sum of the spins of a single unit vanishes.
This constraint leaves two degrees of freedom which can be parameterized as two
angles, as in Fig. 1.6, one is the angle between two spins, «, the other between two
pairs of spins, .

Placing the tetrahedra on a lattice, imposes further constraint; however, we are
still left with one degree of freedom for each tetrahedron. Therefore, each ground state
can be described by a number of continuous degrees of freedom which is proportional
to the number of units creating the macroscopic lattice.

The presence of a macroscopically degenerate ground state has a profound im-
pact on the low temperature modes of the system. In the harmonic approximation

the pyrochlore lattice exhibits soft modes, in which have zero energy. These soft
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Figure 1.4: The pyrochlore lattice - a corner sharing tetrahedra.

modes correspond to displacements in phase space that lie within the ground state
manifold[10]. If a finite number of spins are able to rotate without an energy cost,

then correlations can effectively be destroyed.

Thermal Fluctuations and quantum flucuations

In most materials thermal fluctuations destroy any long-range order however, in a
geometrically frustrated magnet thermal fluctuations can create ordering[11]. In a
geometrically frustrated magnet the degeneracy is very sensitive to small perturba-

tions. Thus, a thermal fluctuation can preferentially select a subset from the ground



CHAPTER 1. FRUSTRATED LATTICES 8

)
SZ
Figure 1.5: The (100) projection of the
pyrochlore lattice. The projection shows
the layered structure of the lattice -
triangular (dashed black lines), kagomé Figure 1.6: Four spins that satisfy
(blue lines), triangular (black lines) S.Si=0

state manifold. Therefore long-range order can form in the system at low tempera-
tures. Due to the ground state degeneracy, one can go between states with no energy
cost. Therefore, in a system that doesn’t go order by disorder there should not be
a phase transition out of the paramagnetic state. It was pointed out that in a geo-
metrically frustrated magnet with sufficiently large levels of defects, such as a doped
pyrochlore antiferromagnet should undergo a phase transition into a spin-glass at a
finite temperature[12]. In the kagomé lattice however, the situtation is different. In
a pure kagomé thermal fluctuations cause the system to select a nematic state (no
topological order but long-range orientational order) and not a conventional spin glass
behavior.

In addition to thermal fluctuations, in frustrated magnets, quantum fluctuations
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can help select a specific configuration. These fluctuations arise from the Heisenberg
uncertainty principle, i.e., from our inherent inability to specify S, S, and S, simul-
taneously. Thus, when two neighboring spins are, on average, parallel (2), there is

still residual interaction between their perpendicular (Z or §) components.

1.3.1 Breaking the groundstate degeneracy

The Heisenberg hamiltonian, Eq. 1.3 therefore leads to macroscopic degeneracy. Thus
the frustrated system is very sensitive to additional terms in the hamiltonian. We
concentrate on 3 possible cases: lattice distortions (through a magneto-elastic term),
changes in the susceptibility (through a Dzyaloshinsky-Moriya interaction) and an
exchange anisotropy. There are other possibilities such as next nearest neighbors

interactions[13] or dipolar interactions[14] or others that we do not expand on here.

Magnetoelastic Distortion

In order to break the groundstate degeneracy, it has been suggested that the lattice
distorts[15][16]. In such distortions, the increase in the elastic energy is outweighed by
a reduction in the magnetic energy. This is similar to a cooperative Jahn-Teller effect
where a degeneracy of the electron groundstate in a molecule is broken by a distortion
of the molecule. The difference of course, is that in geometrically frustrated magnets
there is a spin rather than an electronic degeneracy that drives the distortion.

A magnetoelastic term causes a distortion which results in shorter and larger
bonds in each unitcell (tetrahedron or triangle). Assuming J = J(r), the shorter and
longer bonds will posses J; > J and J; < J respectively. Thus, it becomes favorable

to align the spins anti-parallel in the short bonds and parallel in long bonds. The
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hamiltonian with a magnetoelastic term can be written as,
1 (dJ\’ )
<t,7>
where k is the elastic energy (spring) constant. Thus, the magnetoelastic term causes
the spins to grow closer or farther depending on their relative orientation and the sign

of the derivative of the exchange constant. In the most spectacular case the magneto-

Figure 1.7: A perfect (red) and a Figure 1.8: A perfect (red) and a
distorted (green) pyrochlore distorted (green) triangle.

elastic coupling has been evidenced to lead long range spin order accompanied by a
new lattice structure such as in ZnCryOy4 [17] and CdCryO4[18]. Alternatively, this
coupling might also be responsible to a short range spin order and short range lattice
deformation in YoMo,07[19, 5, 20], in which the original lattice structure is preserved

on average.

Dzyaloshinsky-Moriya

It has been shown, both theoretically[21, 22, 23, 24] and experimentally[25], that
Dzyaloshinky-Moriya Interactions (DMI) can be significant in the magnetic behavior

of kagomé and pyrochlore lattices. The DMI term in the hamiltonian is represented
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as,
Hpm = Z D;; - (Si x Sj)
<>
where D;; < J;; is the DM vector which defines the interaction. D;; is antisymmetric

with regards to site permutation, D;;=—Dj;. A rigorous derivation of the contribution
of this interaction term is presented in Appendix B, here we outline the contributions
of the DM interaction in mean field approach.

In this approach, we write the Hamiltonian with DMI as,

i i
By replacing this S; with AM/gup the Hamiltonian of Eq. 1.6 can be written as
H=—gup>_;S; Hesr where
1

He = —" JSz—f—DZXS + H
= > i X 5;)

i

However, in the kagome (see Fig.1.9) and pyrochlore lattices

J#i
and the DM interaction does not contribute in the mean field level.

Exchange Anisotropy

The exchange anisotropy Hamiltonian is written as,

H=— (LSiS;+JiSS)) —gupy S:-H (1.8)
<i,j> %

we take a mean field approximation, and receive that the magnetization measured in

different directions differs,

C
M=—"-H, 1.
7 Hers (1.9)

C

- — _.H., (1.10)
T+ 0%y

z, L



CHAPTER 1. FRUSTRATED LATTICES 12

Figure 1.9: Orientation of the in-plane and out-of-plane components of the DM
vector.

where QéVLV = C(gup) 27,1

In the kagome case exchange anisotropy leads to an unusual ground state. Accord-
ingly the spins are coplanar, with a single angle, ¢, which determines the direction
of the spins (see Fig. 1.12). We look at the anisotropic super-exchange hamiltonian,

H = JoSIST + J.57 S5

757, and assume all spins are of the same size. Thus, we

can write the energy as a function of the super-exchange constants and the angle .

We observe the contributions of spins in the & — Z plane along each axis,

S1 = S(sin¢, 0, cos p) (1.11)
So = S(—sinp, 0, cos )

S; = 5(0,0,1) (1.12)

thus,

E(Jy, J., @) = —Jysin® o + J, cosp(cos ¢ + 2) . (1.13)
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X axis X axis

Figure 1.10: DM vectors on the pyrochlore lattice are possible in two scenarios.

Minimizing the energy with respect to ¢ results in,

I
= — : 1.14
R Ay (1.14)
Thus, in the isotropic case (where J, = J,), cosp = —1/2 hence ¢ = 120° as

expected and the magnetization vanishes. In the anisotropic case this leads to a finite

magnetization: the magnetization per spin along Z would be,

1+ 2cosyp
B 3

M (1.15)

the 1/3 factor is for 3 spins, 1 4+ 2cos ¢ is from one spin pointing along Z and the
two others pointing anti-parallel with an angle ¢. Thus, the anisotropic kagomé is

expected to have a ferromagnetic ground state.
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Figure 1.11: Expansion of the single tetrahedra DMI onto the pyrochlore lattice.

1.4 Existing Data

Strongly frustrated compounds have also a characteristic susceptibility fingerprint
(See Fig.1.13)- their inverse susceptibility, x~!, follows the usual Curie-Wiess law
down to temperatures well below of their expected ordering temperature fcoy. At
some temperature, T = Tr < fcw, a deviation from the linear behavior occur.
Different compounds enter different states at ' < Tr. This state can be ordered (such
is the case in YoRuyO7) or glassy (as in the case of Y;Mo0,07). In some circumstance
it can be neither, such is the case of Y5 Th,O7, this compound remains in a fluctuating
state down to extremely low temperatures (50 mK). The smallness of the frustration
parameter, f = Tr/Ocw, represents a 'strong’ geometric frustration. At T > fow

the state is usually paramagnetic, whereas at T' < Tr the state differs from one
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Figure 1.12: The Ising kagomé lattice has one angle which defines the orientation of
the spins in the triangle unit cell.

compound to another. At Tr < T < Ocyy, the intermediate regime, is the cooperative
paramagnetic, where spin correlations remain weak although the temperature is below

the scale set by the interactions.

1.4.1 Spin 1/2 Kagomé Zn,Cu,_,(OH),Cl,

The Herbertsmithite is considered the Holy Grail compound since it is the first ex-
perimental realization of a perfect S=1/2 Kagomé structure. It is a part of the
Paratacamite family Zn,Cuy_,(OH)gCly. The Herbertsmithite (z = 1) is named af-
ter Herbert Smith who first discovered it in a mine in Chile in the early 1970s. The
Paratacamite family can be found in mines in Iran as well. Unfortunately, the natu-

rally occurring single crystals lack the purity needed for physical measurements. The
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Figure 1.13: Characteristic susceptibility of a highly frustrated compound, below 7%
the susceptibility behavior is compound specific.

magnetism of the Paratacamite family is obtained from the Cu?* electronic spin car-
rying a S=1/2. The electronic spin couple to its nearest neighbors through oxygen
super-exchange.

The parent compound of the family is the Clinoatacamite, (z = 0, Cuz(OH)3Cl)
which has a distorted pyrochlore structure. The system consists of Cu tetrahedra with
a distortion along and perpendicular to the kagomé planes. The structure reveals three
different Cu sites, two in the plane and another out of the plane (see Fig.1.14). At
x > 0.33 the distortion along the kagomé plane is removed and the system consists
of two different Cu sites. The Cu sites in the kagomé plane are identical, leaving
elongated tetrahedra. When all out-of-plane Cu?* are replaced with non-magnetic
7Zn*t we obtain the Herbertsmithite, where the kagomé planes are fully decoupled
(see Fig.1.14).

X-ray diffraction reveals the unit cell parameters of the Herbertsmithite, which is
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Cu ‘Cul

Herbertsmithite Zn-Paratacamite Clinoatacamite
ZnCu,(OH) Cl, Zn Cu, (OH)CL Cu,(OH),CI

Figure 1.14: Three members of the paratacamite family. Each bond color represent
a different bond length. The two extremes, the Clinoatacamite and the
Hebertsmithite, x = 0 and x = 1, are shown on the left and right hand-sides
respectively.

found to have a=b=6.834A and c¢=14.032A, the three vectors of the unit cell form
the angles a = = 90° and v = 120°. Thus the planes are well separated, thereby
creating a perfect kagomé lattice. The octahedron around a planar Cu site consists
of four groups of hydroxyl (OH™) and two chlorine ions (C17). This octahedron is
elongated along the CI-Cl axis. On the other hand, the octahedron around a Zn site
(between planes) has six hydroxyl groups, all with the same bond lengths creating a
symmetric octahedron. Thus, this site is of higher symmetry relative to the in-plane
Cu site. The original sample makers note that because of this symmetry difference,

during the synthesis of the sample, Cu occupy preferentially the plane sites whereas
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the Zn remain out the plane. Furthermore, X-ray powder diffraction analysis indicate
a better likelihood of a 100% Cu on the kagome site and the interlayer site covered
with 100% Zn. [26].

Various compositions of the paratacamite family were studied by susceptibility
measurements[27]. The inverse susceptibility (x ') data shows antiferromagnetic cor-
relations, but shows no signature of a transition at the measured temperature range
2 < T < 350 K. At high temperatures (7" > 100 K) the susceptibility shows a Curie-
Wiess behavior and a linear fit to x~'(7 > 100) reveals 6oy to be in the 200-300 K
range (200 K for z = 0 then increases almost linearly to 314 K for z = 1). The

exchange constant is can then be calculated from[28]

zJ
2kp

J =190 K ~ 170 meV.

QCW =

Below ~ 75 K a sharp increase in the susceptibility occurs, deviating from the
ideal kagomé Heisenberg model[27] [29]. This upturn was accounted for by DMI
[22, 30] or anisotropy in the bonds [31, 32]. Recent low temperature[33] (0.1 < T <
3 K) magnetization of the hebertsmithite was measured using dc-magnetization with
a squid magnetometer. At low temperatures, 0.1 < T < 10 K the susceptibility
increases more rapidly down to ~ 0.5 K where it eventually saturates. KEven at
these low T' there is no sign of a magnetic transition. The study suggested that the
low temperature magnetization is dominated by defect contribution[33].However, free
impurities, or even interacting impurities that generate an additional ferromagnetic
Curie-Weiss law [22][34], have been shown not to describe this upturn completely.

Several neutron studies [35, 36, 37| performed on powder samples of Herbert-

smithite. Ref. [35, 36] indicated that there might be a presence of defects in the
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system. They attributed the anomalous behavior to a substitution of Cu?*-Zn?*. In
such a case there’s two magnetic defects: (i) an introduction of a non-magnetic Zn?*
ion in the kagomé plane, and (ii) the presence of a magnetic Cu** ion between the
planes. Calculation suggests approximately 8% Zn ions in the kagomé plane. How-
ever, The super exchange interaction between nearest-neighboring Cu?* moments
mediated via oxygen is very sensitive to the Cu-O-Cu bond angle, 8, and it changes
from strongly antiferromagnetic when 6 = 180°, to zero when 6 ~ 95° to ferromag-
netic < 95°. From neutrons data refinement, # found to be 115 < 6 < 119.2°,
indicating that the interactions between the kagome Cu?* and the doped triangular
Cu?* spins are weak, which makes the Cu moments at the triangular sites almost in-
dependent spins and thus makes Zn,Cuy_,(OH)gCly a weakly coupled kagome system
for all Zn concentrations x < 1. Susceptibility measurements from the same group
suggested a 5% to 10% defects.

Local probes measurements were also performed. NMR was performed on different
nuclei (for the atomic environment, see Fig. 1.15), 'H[3], 'O in enriched samples|[1],

83Cu[2] and **Cl[2].

Proton

The proton posses a nuclear spin 1/2 which has a big gyromagnetic ratio (y =
42.57 MHz/T) and gives an excellent NMR signal. The NMR spectrum does not re-
veal any shift, which indicated the absence of hyperfine coupling between the protons
and the copper atoms. Thus this nuclei could not reveal susceptibility information

on the kagome planes.[3]
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Figure 1.15: The structure of the Hertbertsmithite. Two Cu triangles of successive
kagome planes are represented.

Copper

The copper nuclei has two isotopes carrying both a spin 3/2. The NMR spectrum
was studied in detail at temperature 1.9 < 7" < 40 KJ[2]. Above that temperature
the relaxation becomes too fast so Cu NMR signal cannot be detected. The ®Cu
NMR shift measurements were not successful due to technical difficulties. However,
T, measurements were carried out indicating that below 30 K, 1/7} decreases with
negative curvature revealing that paramagnetic spin fluctuations show no magnetic

instabilities.
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Oxygen-17

The oxygen is therefore found to be ideal for probing the magnetic kagome planes since
they are bound to planar coppers. The 7O carries a spin 5/2 thus a unique central
—1/2 — 1/2 transition is observed. The shift of this peak reflects the susceptibility of
the two neighboring Cu (K o« Axcy - where A = 35kG/up is the hyperfine constant
between O and Cu™? electronic orbital). This shift is depict in Fig. 1.16 as the
intrinsic 'O shift. In the observed 7O line, two different central transitions were
found indicating a possibility of the existence of two different environments. As with
previous neutrons scattering this second environment was attributed to a possible
Zn/Cu interchange. This shift is noted as O defect. Spin-lattice relaxation, T,

were also conducted.
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Figure 1.16: O NMR Knight shifts. Data is taken from Ref.[1]
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Chlorine

In parallel to our work, a different group[2] have taken dynamic and static mea-
surements with great precision on oriented powder samples. Here we describe these
measurements.

Due to the orientation of the samples, it was possible to follow the NMR spec-
trum down to 4.2 K. The center peak of the line, which originated from oriented
crystallines, was measured with high accuracy, thus extracting the shift correspond-
ing to this resonance (**Kpeut). Since the **Cl lineshape begins to tail off to lower
fields with decreasing temperatures, an additional shift measurements were taken at
the half-intensity position on the lower field side (*’K;2) as well at the edge of the
line (% K.44¢). These shifts are shown in Fig.1.17 along with the squid measurement
from §3.1.1. Clearly, the ** K7/ behaves as the bulk squid measurements which there-
fore represent a bulk average of this susceptibility. The % K,.q and % K 4. at low-T
behaves differently, it follows Curie-Wiess down to ~ 25 K, whereas the bulk sus-
ceptibility begins to deviate below ~ 100 K. The 1/7; data agreed with our premier
measurements (§3.1.1) 17O and %Cu NMR.

To conclude these NMR measurements, the T variations of the NMR T} of 7O

63Cu and ?3Cl are similar. These measurements point to a zero-gap,
T o exp(—A/T) (1.16)

where A is the energy gap, data fits shows A < 1 eV <« J. The shift (susceptibility)

however, differs one from another as well as from bulk measurements except from

(1.
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Figure 1.17: 3°Cl NMR Knight shifts. The solid line is a fit to a Curie-Wiess
behavior, —22.14973/(x + Ocw ) + 0.02062 where 0oy = —237(40) K. Cl shifts are
taken from Ref.[2]. The bulk susceptibility, Xy measured using a SQUID.

1.4.2 A,B,0; Pyrochlores

The oxide pyrochlores family, with the chemical formula A;B,0O7, has a variety of
magnetic compounds each with its own magnetic characteristics. A more general
chemical formula is A;B>OgO’. In Fig.1.19 we depict the A, B and O sites. The A
and B sites, each form a network of corner-sharing tetrahedra, forming an interwoven
kagomé nets. However, the A and B sites differs in their oxygen environment, the A
site has an eightfold oxygen coordination and is occupied by a rare-earth ion (such
as Y (S =1/2), Nd (S =7/2), Tb (S = 3/2) and others). The B site has a six-fold
coordination and is occupied by a metal ion (as Mo (S = 1), Ru(S = 3/2, S = 5/2),

Mn and others). The O’ site creates an FCC structure, since the O’ sites are situated
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Figure 1.18: Comparison of T measurements for different nuclei, 17O, 3°Cl and
03Cu. Data taken from [3] (17O) and [2] (**Cl, %3Cu).

in the middle of the A-site tetrahedra the pyrochlore lattice can be seen as an FCC

structure (see Fig. 1.20).

Y2M0207

Y2Mo,O7 is a narrow band gap semiconductor, its magnetic Mo** (S = 1) forms
a pyrochlore lattice. Susceptibility indicates antiferromagnetic interactions (o ~
200 K) with an effective moment of 2.55u5. Early susceptibility measurements reveal
evidence for a spin-glass transition at 7, ~ 22 K[39][40]. Fig. 1.21 shows the suscep-
tibility with (zero) field splitting in the susceptibility which is indicative of spin-glass
transition. This transition is appears without the presence of disorder (randomness)
since the samples used were of very high purity (less than 1%). This spin glass tran-

sition was also observed by nonlinear dc susceptibility, xn[39]. xu diverges at T} in
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Figure 1.19: The pyrochlore lattice showing the A (black spheres), B (blue spheres)
and O (green circles) sites

a thermodynamic spin glass phase transition as,

T-T,\""
Xnt ~ 7T = ( g) (1.17)

T,

a detailed investigations on the critical exponents reveal similarity to those found in
conventional spin-glasses despite the immeasurably small disorder in YoMo,07[39].
A similar analysis to other frustrated lattices such as SrCugGas019 (SCGO) demon-
strate resemblance to typical spin glass (a field splitting of the linear susceptibility)
however, scaling of the non linear susceptibility is inconsistent with conventional spin
glasses behavior.

The first indication of randomness (distortion) in the structure of YoMoyO7 was

found by X-ray absorption fine structure (XAFS)[20]. The Mo-Mo pair distance
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Figure 1.20: The pyrochlore as an FCC. Showing the A (black dots) and O" (hollow
circles) sites

has a relatively large amount of pair-distance disorder (about 0.15A  compared to
3.5A Mo-Mo mean pair separation). This results indicate that although the high
purity of the sample, there is still bond modulation. Thus, a disorder in J exists
for spin-glass transition to occur. The second indication of disorder was from %Y
NMRJ[19]. A multiple discrete values of the local susceptibility at the Y sites were
found at T" > 92 K. These discrete values results from small discrete changes in the
Mo-Mo bond lengths. At high temperatures, " > |fcw| the NMR line is smooth,
whereas as the temperature decreases below 6y, more discrete changes appear in
the spectra. Therefore, this distortion along the Mo sublattice relieves the magnetic

geometric frustration. The third indication, of such magneto-elastic distortion, was
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Figure 1.21: Zero-field-cooled (ZFC) and field-cooled (FC) susceptibility
measurements of YosMo,O7. A transition to spin glass is observed at T ~ 20 K
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from pSR[5]. It was shown that at T}, the static field distributions, which is asso-
ciated with lattice deformation, increased with applied magnetic field. Furthermore,
the ratio between the static field distribution width, A, and the susceptibility was
shown to be non linear, hence the distribution of muon coupling to electronic spins is
temperature dependent (see §2.1.1). This was concluded to be the result of random

lattice distortions similar to that seen in the NMR.

Tb,Ti,O7

The TbhyTiyO7 is unique in the oxide pyrochlore family A;B,O7 being a spin-liquid; de-
spite its short-range AFM correlations at temperatures lower than 100K, the ThyTisO7
remains in a fluctuating paramagnetic state down to 70mK (susceptibility indicate
Ocw = —19 K)[41]. A cluster glassy behavior is observed by susceptibility below
0.2 K[42]. However, it was demonstrated that, under pressure[43] high magnetic field
field[44] or both[45], TbyTi,O7 does order magnetically. It was suggested that lattice

distortions caused by the anisotropic pressure induce the magnetic order.

1.5 Summary

Under the constraints of the classical Heisenberg model with nearest neighbor an-
tiferromagentic couplings, Eq. 1.3 raises the T = 0 K ground state condition of
¢ ,S; = 0. In frustrated magnets this condition does not uniquely defines the
ground state, thus there is an extensive ground state degeneracy.
The presence of a macroscopically degenerate ground state on the classical py-

rochlore results in the absence of ordering down to 7' = 0 K. However, all pyrochlores

(here we report on YoMoyO7, §3.2.1) but one (TheTizO7 §3.2.2) freeze.
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On the kagomé lattice, the situation is reversed. Theoretically, the quantum
kagomé /3 x /3 state is expected at T = 0 K whereas the classical kagomé is
predicted to freeze at a finite 7. However, the experimental picture is reversed, the

only quantum kagomé realized (Herbertsmithite §3.1.1) does not freeze.

1.6 Objectives

The frustrated system is very sensitive to additional terms in the Hamiltonian, we’ve
presented the bi-quadric magneto-elastic coupling which result in lattice distortion,
the bi-linear Dzyaloshinksy-Moriya and the linear exchange anisotropy. The most
general hamiltonian we consider is,

1 (dJ\?
M= 3 (LSS +15557) + 30 Dy (S, x 8) — o (%) S,

<iyj> <i\j> i>j
(1.18)
The aim in this thesis is find such perturbation in various compounds, and investigate
their impact of the ground state properties. Using our experimental methods, which
we describe in the next chapter, we can probe for exchange anisotropy and magnetoe-

lastic terms. We are unable to detect DMI without heavily relying on theory, since

it has no effect at the mean field level (see Eq.1.7).



Chapter 2

Experimental Techniques

In this chapter we describe the various techniques used in the thesis. We begin with
an introduction to uSR and elaborate on a Transverse-Field configuration, which was
the main tool used in the study of ZnCuz(OH)gCly; and TbyTisO7. We move on to
give a description of the NMR technique, discussing the methods for powder-averaging
the signal of a powder. This was the main tool in the study of YoMosO7. We then
turn to describe a SQUID, which complemented all of our studies. We finish with a

description of X-ray diffraction which were carried out in the study of Y;Mo,0O7.

2.1 uSR

SR is acronym for muon spin rotation/relaxation. The basic idea behind the tech-
nique is to measure the time evolution of a muon in a sample, which in turn will tell
us about the magnetism of the sample. The positive muon particle (u) is a lepton,

the heavy analogue of the positron. The muons are produced through the decay:

ot — /ﬁ—l—l/u.

30
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Thus in order to conserve the total spin 0 of the pion, and since there are only left
handed neutrinos (spin is antiparallel to the momenta), the muons created are 100%
spin-polarized. The muon is unstable and decays via the weak interaction with an

average lifetime of 7, >~ 2.19703 psec into a positron and two neutrinos:
put — et 4+, + 7.

Because of the parity violation of the weak interaction, the positron from the decay
is emitted preferentially in the direction of the spin of the muon at the instant of the
decay. By ’'preferentially’ that is the positron is emitted asymmetrically relative to
the muon spin direction, and the angular distribution of the decay positrons depends
on their energy. The angular distribution is expressed as

_ 1 +a(e)cost

dN
4

p(€)d cos(0)de

where a(e) = (2¢ — 1) /(3 — 2¢), p(e) = 2(3 — 2¢)e? and € = E/FE,,4, is the normalized
positron energy, £ = FE,,,, when both neutrino are emitted in the same direction,
E = 0 when they are opposite to each other (E.. = m,c®/2 = 52.8 MeV). 6 is
the angle of the positron emission measured from the muon spin direction. After
integrating over the energy e the angular distribution obtained is plotted in Fig.2.1 .
The radial distance represents the relative probability that a positron is emitted in a
given direction.

In conventional magnetic resonance experiments, spin polarization is achieved by
a combination of High-Field and low-Temperature. In puSR the muon produced is
100% spin polarized due to the parity-violation decay of the pion. In the rest-frame
of the pion, the muon and neutrino are emitted 'back-to-back’, and since the neutrino
has chirality —1, the muon will also have chirality of —1. The production of the muon

beam in a muon facility is basically the following,
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Figure 2.1: The angular distribution of the muon. The radial distance represents
the relative probability that a positron is emitted in a given direction.

A beam of protons is accelerated and aimed at a target such as beryllium or

carbon.

e Nuclear reactions occur in target which produce 7+. Some remain in the target,

other have some kinetic energy and are emitted.

e The pions decay, the muons have a distribution of momenta. High momentum
muons from energetic pions decaying in flight, the low momentum muons from

pions within the target.

e A separator is used to filter only muons with a specific momentum which corre-
spond to muons from pions which decay at rest near the surface of the target.

These are surface muons with a well-defined kinetic energy of 4.1 MeV.

e The beam of the surface muons is then focused on the material studied. The
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4.1 MeV kinetic energy of the muon can be converted to a mean stopping range

of 140 mg/cm?.

The decay positrons are detected in one of the scintillator detectors which surround
the sample environment. FEach detector creates an histogram of the time differ-
ences between the muon implantation and decay positron. The number of detected

positrons in a histogram of detector ¢ correspond to
N;(t) = Nige ™ [1 + A;P,(t)] + B;

where N;o is a normalization, B; is time-independent background, A; is the exper-
imental asymmetry (typically 0.24), P; is the muon polarization function in the
direction sample—detector.

The cyclotron based facility in PSI provide us with a continuous muon beam. As
a result, a muon counter on the beam path right before the sample is required to
record the muon arrival time. The timing resolution is limited by electronics to be of
the order of nsec (0.625 nsec in LTF and 1.25 nsec in GPS) and the time window is
about 6 to 10sec.

The time differential measurements fall into three categories depending on the
direction of the field applied relative to the direction of the muon initial polarization:
Longitudinal (LF), transverse (TF) and zero (ZF). The basic idea is to investigate
the nature of the changes in the local environment of the muon as the temperature
decreases. We determine whether only the spin polarization is changing or whether
the lattice is involved as well. Electronic spin polarization contributes to the shift of
the muon spin rotation frequency. Lattice distortions are responsible for muon spin

polarization relaxation.
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ZF pSR is a sensitive site-based probe of static magnetism, in which the muon po-
larization P, is determined by the small internal magnetic fields in the sample itself.
In a LF configuration, the relaxation (Rpr) in P, is usually exponential and stems
from dynamic fluctuating fields within the sample. In a TF configuration, the relax-
ation (Rrp) is a bit more involved. It is a result of both static field inhomogeneities
on the time scale of one muon spin turn, and dynamically fluctuating fields. In the

next section we deal with the physical parameters we extract in a TF experiment.

2.1.1 Transverse Field Configuration

A schematic diagram of a typical setup of a transverse field configuration is shown in
Fig. 2.2 . In a TF geometry, the initial polarization, P,(0), is perpendicular to H.
Thus, P, (t) exhibits oscillations at the Larmor frequency, w, = v,H (v, = 13.554
MHz/kG). The TF relaxation (Rrp) is a result of both static field inhomogeneities
and dynamically fluctuating fields. TF experiment is usually refer to as analogous to
a free induction decay in NMR with Ry identified as (73) .

As a starting point, we assume a static local field distribution that has an isotropic
Gaussian distribution. Thus the muon polarization is exponential gaussian relaxation
combined with oscillations at the muon Larmor frequency,

Pu(t) = Py exp(;—f) cos(wt). (2.1)
2
To investigate the relation between the Ryr and the susceptibility we look at the

muon hamiltonian,

H=hyI B (2.2)

where I is the muon spin and B is the field the muon experiences, which is the
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Figure 2.2: A typical TF pSR configuration. The red box indicates the sample.

contribution of the external and internal fields,
B =Hrp+H;n (2.3)

Hyr is the applied transverse field and H;,; is the magnetic field from neighboring
electrons. The internal fields the muon experiences is created by the coupling between
the muon and electronic spin,

H;., = gun ZAJ' : Sj

J

where the sum j runs over the muon’s neighboring electrons, A = A(r) is the coupling
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between the muon and the electronic spin and S is the electronic spin. For simplicity
we assume the coupling to only one electronic spin thus ) ; A;S; — AS. By a mean
field approximation, we replace S by its expectation value (S) = M = yH. Thus,

the muon experiences a field given by,
B =(1+Ax)Hzp (2.4)
assuming isotropic couplings A and y then the muon polarization,
P,(t) = Pycos[y,(1+ Ax)Hrpt] (2.5)
by averaging over a distribution of couplings (p(A)),
Pult) = [ Pocosl(1+ (A4 64)0Hrrtlp(4)dA (2.6

thus, if the experimental polarization is Eq. 2.1 we can equalize the two equations

and extract p(A),
1 1,A+0A
A) = —= 2
) = e ()

where the width of the gaussian,

1

A= |—— 2.7
T 20
thus,
1
— =0Ay,H - x . (2.8)
1;

Therefore, according to Eq.2.7 if the ratio between (7)™ and y remains constant as
T decreases, one can conclude that dA is T" independent and no lattice deformation
occur.

In this calculations we assumed that the Longitudinal Field Relaxation, R, thus

the dynamically fluctuating fields are orders of magnitude smaller than the Transverse
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Field Relaxation, Rrr = (T5)™!, i.e., the static field inhomogeneities. In such case
that this assumption is not correct, one has to observe the difference between the
relaxation given by the static relaxation rate, A = \/R%, — R, this is described in
Ref.[46].

2.2 NMR

Nuclear Magnetic Resonance (NMR) was first described by Purcell and Bloch during
mid 1940s, they then received the Nobel prize in physics in 1952: "for their develop-
ment of new methods for nuclear magnetic precision measurements and discoveries in
connection therewith”. NMR is possible since nuclei of many atoms possess magnetic
moments and angular momenta. The magnetic moment (spin) of the nuclei interacts
with a static magnetic field (H = HyZ) in such a way that the field polarizes the
nuclear moment (spin) along its direction (2). The result is that the nuclei (spin)
precess about the field. The precession frequency of the moment (spin) is propor-
tional and uniquely determined by the gyromagnetic ratio v and the strength of the
magnetic field Hy,

wo = vHy .

wp is the Larmor velocity (the larmor frequency is, vy = wp/(27)). The gyromagnetic
ratio differs from one nuclei to the other (also, from one isotope to the other) thus
the angular momentum (spin) of each nuclei is defined uniquely by u = ~vIh.

The NMR phenomena can be described by classical and quantum derivation. In
a quantum mechanics treatment, the orientation of a spin in a field is quantized. The

number of allowed orientations is 2/ 41, where [ is the nuclear spin quantum number.
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The energy of each orientation is described by the schrodinger equation,

Hlmp) = Elm;p)
E = —hyB,m; (2.9)
therefore a transition between the energy levels, will occur when AE = hyB,Am;.
This transition can be induced by absorption or emission of a photon of frequency 1

such that,

AFE = hyB,Am; = huy. (2.10)

This energy transfer occurs when another field H; is applied in the z — ¢ plane.
The evolution of the spin under the combined magnetic fields is described by the

hamiltonian,

e,
zha|n> = —vhH -Iln)

= —h[H; (I, cos(wt) + I, sin(wt)) + Hol,||n) (2.11)

Since R.(6)I,R.(—3) = I, cos B+ I,sin 3 (where R;(3) = exp(—ifI,) is the rotation
operator) this can be further developed to
ihdj|n) = —yh[Hol. + Hie ™' [,e™""] |n)
= [Fz+ Pty | In) (2.12)
Using a rotating reference frame of the spin (|72) = R.(—wt)|n) = exp(iwI.t)|n)) will
simplify the hamiltonian giving,
iho|n)y = (—hwl,e™"" +ihe™'='0,)|n)

= —hwle“"n) + e“"(Hy + H,5)|n)

— (_hw.lzeiWIZt+eiw12t<HZ+H7~f))6_iWI2t|ﬁ> (2‘13)

= H|n)
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where,
H = e (Hy + Hop)e ™5 — hw . (2.14)
Lets examine a case where Hy is the only term in H, in that case,
f}:l _ eiwIZtHzefiwIzt — hwl,
= I —yhHyL)e 5 — hwl, (2.15)
= —vhHyl, — hwl,
since rotation along the same axis has no effect. Thus,
H = —~hHyl, — hwl,
= —(wo+w)hl,
= Oohl, (2.16)
In the case with H,,
H = Qohl, — yhe™='H, et
— Qoh[z o ,yheiwfthlefiwlzt[xeiwlztefiwlzt
Pulses
The time dependent solution to Eq.2.14,
1) = % |7) (2.18)
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in the resonance case, where wyg + w = 0 = Q = 0, the expectation value for [ will

therefore,
(L) = 3 palile L) (2.19)
= > palAlL[7) cos(yHn) = pi (il Ly|7) sin(yHit) (2.20)
= (1.(0)) cos(vHit) — (1,(0)) sin(vHit) (2.21)

as a consequence, for I, the result will be,

(I,() = Y paliJe 0t t ) (2.22)
= <Z(0)>sin(7H1t)+<Iy(0)>cos(7H1t) (2.23)
and for I,,,
(L) = Zpﬁ(ﬁle’”H”“Imei’*H”“\ﬁ) (2.24)
= épﬁ(ﬁlfx!m:(h(()» (2.25)
7/2 pulse

The initial conditions dictate the polarization of I, that is all spins are polarized to

the direction of Hy2Z,

—H/kT
(1,(0)) = TrL;/k)]z (2.26)
H
~ Z—lTrIZJrZ—lTr”ZTOff (2.27)
1 yhHo I(I + 1)(21 + 1)
~ 2.2
o7 +1 kT 3 (2.28)
VRH (I + 1)
~ RV T 2.2
3kT (229)

and for I, and I,

(£:(0)) = (1,(0)) = 0 (2.30)
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thus, when vH 7 = /2,

(I.(1)) = (Lu(7)) =0 (2.31)

(I,()) = L(0). (2.32)

When we have electrons producing internal fields in the sample, B, the nuclear spins
will experience a distribution of fields thus they will precess at slightly different fre-

quencies.

Spin Echo

The spin echo (7/2 — 7 — ) sequence is a two-step procedure, the first step, applying
a /2 pulse. The 7/2 pulse rotates the nuclear magnetization 90° to the = — y plane.
The second step takes place after time 7, during which the spin dephase. The second
step is applying a 7 pulse. The 7 pulse rotates the magnetization 180°. In the top
of Fig. 2.3 we plot the spin-echo sequence. At t = 0...t;, RF is applied producing
the /2 pulse (wt; = 7w/2). During 7 = ¢; ...ty the spins precess freely. The second
pulse is applied at 5. ..%3 such that it produces the 7 pulse. In the rotating reference

frame of the nuclei,

ihoph = H
— <(H0 _ g) I+ Hllm) . (2.33)

During the pulses, H; > (Hy — w/7), thus we can write the hamiltonian as time

dependent as

~ —")/hHlfx O<t<t1;t2 <t <t3
A(t) = (2.34)

—’}/FL(HO—UJ) t1 <t <ty

v
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Although H is time dependent, in each step it is independent of time so we can use

1) = exp <—(z/h)7—~{t> 1 to solve for 1. The solution comes about to be,

Y(ty) = eI (0) (2.35)

where during 0 < ¢t < t; we apply the 7/2 pulse i.e., vHit; = /2. The progressive

solutions are therefore,

U(ty) = eOHmET (g
P(ts) = el (ty) = emey(ty) (2.36)
Yt >1t;) = Oy (t)
where at to <t < t3 we apply the 7 pulse. We now define,
T(t) = eOHo-wik

X)) = € (2.37)

T(t) is the development of ¢ during H; = 0, X () is the operator rotating the spins

by an angle 6, thus for example,

XN m/2),X(7/2) = I,

XY m),X(r) = —1I,. (2.38)
Now 9 (t) after the second (7) pulse, can be represented as,

W(t) =Tt —7)X(m)T (1) X (7/2)¥(0) . (2.39)
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Using X 1(0)X(0) = X)X '(0) =1and X 'T'X =T and T(1)T" (1) = 1 we

can calculate the expectation value for I, at ¢t = 27,

(L) = (X7 (7/2)T ()X H(m)T () LT(7) X (m)T(7) X (7 /2)|7)

= (XN (m/QT ()X Hm) T ()X ()X (m) LX (m) X7 (m) T (1) X (m) T (7) X (7 /2)|72)

= (A XN (m/QT N (7) X Hm) T (1) X () LX ™ (m)T (1) X (m)T(7) X (7/2)|7)
= (AX " (r/2)T N (r)T () LT ()T (1) X (n/2)|R)
= (AX N m/2)LX (n/2)|A) = (A|L|7)

= 0

since at t = 0 the magnetization is completely polarized to 2. We apply the same

technique for the calculation of I,

(I,) = (X7 /)T ()X~ H(m)T ()L, T (7) X (m)T(7) X (7/2)|7)

= ...=X"(n/2)L,X(n/2)[n) = (A|L.]A)

thus, the echo we receive at ¢ = 27 has the same magnitude of the net magnetization

just before the sequence began.

Saturation Recovery and T; measurement

At equilibrium, all spins are polarized with the external field, Hy. In order to change
the direction of the spins a transverse field H; is applied. The time constant which
describes how the the spins return to equilibrium is called the spin-lattice relaxation,
T). Ty measures the density of excitation in the frequency vH (Eq. 1.16).

The saturation recovery sequence is a technique to measure T;. The beginning of
the sequence is a series of 7/2 pulses at short repetition times (~ T5), and then a

regular spin echo sequence is applied after a delay 7. The multiple 7/2 pulses destroys

(2.40)
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signal
ACQ ’—‘—
RF J: !
I fO :[1 T2 T3
signal

ACQ TH | I

o TINEL

Time

Figure 2.3: Echo sequences, top: the spin-echo sequence, bottom: a saturation
recovery sequence, each color represents a different delay time, 7, between the 7
pulses and the spin-echo sequence.
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the magnetization at ¢ right after the pulses. The sequence is executed with different
7’s. When 7 — 0 the echo intensity — 0, when 7 —~ 5T} the echo intensity reaches
its almost maximal value (~ 99.3%). Thus at short (long) 7 the echo magnitude
should be small (approximately the same) compared to its maximum value. The

bottom of Fig. 2.3 displays the saturation recovery sequence.

Powder Average

Generally, the greatest amount of information concerning nuclear or paramagnetic
sites in solids can be obtained from measurements in single crystals. However, many
compounds lack single crystals. In other cases, the difficulty or expense in obtaining
a single crystal may not be justified by the nature of the information desired. Thus,
the analysis of the powder spectra is essential in order to extract the relevant infor-
mation. In Appendix A we derive the powder spectrum, here we show an outline for
a completely anisotropic sample.

The NMR hamiltonian can be represented as,
H=-mI-(1-0)-H (2.41)

where ¢ is a magnetic shift tensor, any may represent a chemical shift (in the case of
diamagnetic compounds) or a paramagnetic shift (in the case of a strongly paramag-
netic compound) or a Knight Shift tensor (in the case of metallic compounds). In any
case, all magnetic shifts have the same functionality, so for convenience we concern a
Knight shift tensor (K = —o).

In a single crystal, the resonance frequency depends on the orientation of the single
crystal with respect to the applied magnetic field. In a polycrystalline, the nuclear

spins are randomly oriented with respect to the field, thus the powder pattern is an
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average over the resonance condition for all possible orientations of the nuclear site.
The powder average, S(H), represents the amplitude of the magnetic resonance

signal at field H comes to be,

[ dy Hy Hy H,
S0 = | s

1
(H3—H)H? . 4 (H3-H?)HZ . o
\/1_MSIH¢ 1—WSIH¢

where H; are the locations in the magnetic field of ordinary singularities and is defined

(2.42)

by the principal values of electronic g tensor, H;(v) = hv/(ghy). ¢ is an Euler angle
of external magnetic field, H, relative to the principal axis of K. Eq. 2.42 has the form
of an elliptic integral, K (k) = Oﬂ/z(l—k‘Qsm%)*l/QdQ = fol(l—k2t2)*1/2(1—t2)*1/2dt.
Thus in order to simulate the powder pattern we use the elliptic integral polynomial

approximation[47],

K(m) = lag + aymy + ...+ agmi] + [bo + bymy + ... + bymi]in(1/my) (2.43)

where the coefficients a; and b; are given in table 2.1 . Where m = k? and m, are the
elliptic integral parameter and its complementary parameter respectively, m+m; = 1,

_ H}—H} H}-H?
- H; — H} H}— H?

m (2.44)

In Fig. 2.4 we present a theoretical powder spectrum for a single site. This demon-

strates that a single site contributes one NMR peak under powder averaging.

i 0 1 2 3 4
a | 1.38629 | 0.09666 | 0.0359 | 0.03742 | 0.01451
b 0.5 0.12498 | 0.0688 | 0.03328 | 0.00441

Table 2.1: The polynomial coefficients of Eq.2.43 .
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Figure 2.4: A theoretical powder-averaged NMR for a spin-1/2, v = 2.11MHz/T,
v = 16.44MHz.

2.3 Squid

The SQUID is an acronym for Superconducting Quantum Interference Device. It is
one of the most sensitive form of magnetometry. SQUIDs function as a magnetic
flux-to-voltage transducers. The physical idea behind the squid are the properties
of electron-pair (’cooper pairs’) wave coherence and Josephson junctions thus being
able to detect very small fields (a squid can measure 1 flux quantum where the earth
magnetic field passing through the area of a typical squid correspond to ~ 100 flux
quanta).

Cooper pairs are pairs of electrons which carry the resistanceless current in su-
perconductors. Each pair can be considered as a single particle with double mass

and double charge of a single electron, the velocity of the pair is of the center
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of mass of the pair. Each pair can be represented by a wavefunction of the form
$p = Pexp (i(P - r)/h), where P is the momentum of the pair whose center of mass
is at r. In a uniform current density all electron wavelengths will be equal and with the

superposition of these coherent waves making up the single many-body wavefunction
Up=Wexp (i(P-r)/h) . (2.45)

In a closed superconduncting ring, due to the long coherence of the superconducting
wavefunction (Eq. 2.45), the phase difference between one point X and another point

Y is constant in time,

%
(60)xy = dx — Py = 27T/ %f‘ ~dl (2.46)

X

where T is a unit vector in the direction of the wave propagation and dl is an element
along the path X — Y. In the special case of X =Y, dpxy = 27. Using the
supercurrent density (which is an analogue to the current density f: nqug),

1
Js = Jhs e v (2.47)

where ng is the super fluid density thus 1/2n, is the cooper pair density, (thus,

v = 2js/(nse)) and we can write Eq. 2.46 as,

2m Y
1) = .dl . 2.48
Oxy chn, /X J ( )

Under applied field the momentum P of the cooper pair must be revised to P =
2mv + 2eA where A is the magnetic vector potential. The difference in the phase is

now written,
dpxy = (5¢XY)j + (0pxv)p (2.49)

where the first term is the contribution from the supercurrent,

2m Y

(doxv); = Jsdl (2.50)

ehng Jx
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and the second due to the applied field,

(Gbxy)y = = / Adl . (2.51)

In a closed encircling path (the path can encircle a non superconducting region), the

phase difference can be written as,

2m 2e
= dl+ — @ Adl . 2.52
ehng 7{‘7 + h 7{ ( )

since o F-dr = [V X F - dX (stokes theorem) and B =V x A,

2m

= ]{ d1+— BdS (2.53)
S

where S is the enclosed area. Due to the long coherence of the superconducting
wavefunction, the difference in phase of a closed loop (a ring) must equal 27n where

n is an integer. Thus, we arrive at,

- j’{ judl + / BdS —n— (2.54)

i.e., due to the long coherence, in a closed rings, the flux can only exist in quantized

form, where the flux quantum value is,

h
oy = 5% = 2.07 x 107Wh (2.55)

= 2.07 x 107"G-cm? . (2.56)

The second important physical phenomena needed for a squid to work is Joseph-
son Tunneling. When two superconductors are isolated one from another, the phases
in each of the superconductors may differ. However, when the two are brought closer
together, tunneling may occur and thereby the two superconductor interact. The
tunneling of an electron-pair creates a superconducting current. Thus, the supercur-

rent, ¢, which flows across a gap between two superconductors which have a phase
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difference dy, is given by,
i =1i.sindyp (2.57)

where i, is the critical current. Hence, the maximum current which can flow across
a gap occurs when ¢ = 7/2, giving a current ¢ = i.. The gap can be created by any
weak coupling between two parts of a single superconductor - this maybe microscopic
point contacts, crystallographic grain boundaries or any weakly conducting layers.
As mentioned previously, the SQUID (specifically the de-SQUID) is based on the
long coherence of the superconducting wavefunction, i.e., on the flux quantum, and on
the Josephson effect. The dc-SQUID is a superconducting loop with two Josephson
junctions. When a magnetic field is applied perpendicular to the plane of the ring,
a screening current, i, is induced. Normally, 75 can be sufficient to cancel out the
field in the ring, but the critical current at the junctions might prohibits this. The

magnetic field thus produces a phase difference,

5¢B = 27'('% (258)
P

where @, is the flux of the applied field. ®, may not necessarily be equal to 2mn
therefore to ensure the total phase change is indeed a multiple of 27n a small current
1 flows so that around the loop across the two junctions, dpp + 20¢; = 27n. Using

Eq. 2.57 and Eq. 2.58 the current will be

= 1{.8INT— . .
1 18 W(I)O

Thus, when @, increases from 0 to ®y/2 the current i increases, reaching a maximum
at ®g/2. When @, continues to increase from /2, i changes direction and flows the
other way. This current is periodic in the applied flux. The overall phase difference,

which must be 27, is a sum of the phases produced by currents across the junctions
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and due to the applied field,

@,
01+ o2 + 27{-50 =27n . (2.60)

where ¢ is the phase difference across a junction. When a current flows ¢, and ¢, are

different, however their sum must be constant (since 27®,/®y and 27n are constants),

thus,
P,
Dy
hence it is possible to write,
o
_ S R 2.62
¥1 T (n (I)o) ( )
P,
Yo = T (n — —) +0 (2.63)
i

where ¢ is related to the measuring current I. Using Eq.2.57,

I = i, [sin (ﬂ'% + (5> + sin (W% — 5)}
] o, D, . ) o, D, .
= i, [sm (Wao) cos 0 + cos (7?50) sind — [sm (Wao) cosd — cos (7?(}7)) sin 5”
. D, .
= 2i, {cos (77—) sin 5} . (2.64)
0

since |sind| < 1 thus the absolute critical measuring current is

1(®,)] = 24| cos (w%) | (2.65)

we now see that we have a periodic dependance on the magnetic flux (and field),
with a maximum when ®, = ®yn, with integer n. Assuming that the Josephson
junctions are identical when a bias current, ;. < i., flows across the loop splits to
the two junctions. As long as the current through the junctions is small, there will
be no voltage detected across the ring. As I increases it reaches a critical measuring

current, at which voltage begins to be detected.
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Figure 2.5: A typical paramagnetic SQUID signal. The voltage across the squid as a
function of the samples position.

The measurement in the Cryogenic SQUID is performed by moving the sample
through the pickup coils. As the sample moves through the coils, the magnetic
moments of the sample induces an electric current in the pickup coils thus creating a
change in the magnetic flux which is then detected in the SQUID (see Fig. 2.5).

The pickup coils are a set of three coils configured as a second-order gradiometer.
In this configuration, the upper coil is a a single turn wound clockwise, the center
coil has two turns wound counter-clockwise and the bottom coil is again a single
turn wound clockwise. This gradiometer configuration is used to reduce noise in
the detection circuit. Over long periods of time currents may build up in the coils
thereby producing noise in the system. To prevent this from occurring by heating a

small section of the coil circuit.
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2.3.1 Experimental Setup

Here we describe the experimental setups which were used in the various experiments

conducted in the lab’s Cryogenic SQUID magnetometer.

Herbertsmithite and Y.Mo,0O-

The magnetization measurements were performed in the ’usuall’ manner, that is,
the measurements performed on powdered samples placed in a gel capsule inside the

squid’s Helium dewar. A summary of the measurements is given in table 2.2.

Oriented Herbertsmithite

The sample orientation was done by curing ZnCus(OH)gCly powder overnight with
Stycast in a field of 8 T. The samples were cured in a Teflon form producing a ball
6 mm in diameter. During the first 40 minutes of the orientation, a shaking mechanism
was applied to the sample form. A particularly small amount of powder was used to
avoid saturating the Stycast and eliminating powder residues at the bottom of the
ball. We prepared a second “test” sample in the same manner, but this time without
orientation. In §3.1.2 we refer to the second ball as the powder sample. We also
prepared a ball made of Stycast only.

Measurements of the oriented samples were conducted in two configurations. One
configuration, which we label as ‘z’, is when the orienting and the applied (SQUID)
fields coincide, (H||c). The other configuration, noted as ‘1’; is when the oriented

sample is rotated by 90° and thus the applied field is in the kagomé plane, (H L c¢).
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T K] H [kG]

Oriented ZnCuz(OH)gCly | 2 <T <280 | 0.1 < H <60

Y2yMo,O7 17<T <290 | 10< H <60

Table 2.2: Magnetization measurements performed.

2.4 X-ray diffraction

X-ray diffraction is a powerful experimental tool, its uses ranges almost all fields
of science, from biological specimen to physical or material engineering samples to
medical applications (CT). X-ray is basically an electomagnetic wave. Diffraction
uses a wavelength of 0.5 — 2A which is the order of the distance between planes in a
lattice. Impurity atoms can cause lattice distortions which can be detected by x-rays.
Therefore it is essential to use high purity samples.

The use of synchrotron radiation gives an outstanding x-ray capabilities which
is not available with standard laboratory sources. For example, in such synchrotron
facility, the primary beam can be used to generate intense incident radiation, which is
monochromatized better than AX/X < 107%. Another aspect, it is possible to choose
the optimal x-ray energy for a specific compound, which provides maximum diffraction
intensity with a minimization of absorption effects. Thus, with a high brilliance source
(the number of photons per phase space volume - photon/s/0.1% BW /mm? /mrad? -
0.1%BW denotes a bandwidth 1073w centered around the frequency w) we are able
to perform very high resolution diffraction on a very small sample.

The x-ray work shown here has been carried out in the Material Science beam line

(MS-X04) at Swiss Light Source (SLS) in PSI, Switzerland[48]. This beam line has
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the capability of performing high resolution (> 0.005°), which is powerful for the in-
vestigation of small crystallographic changes. Calibration of the instrument and wave-
length refinement were performed with Si standard samples and NAC (NaCasAl3Fy)
standard.

The instrument is as such that we apply an external field perpendicular to the
incoming beam, K;. The multi-crystal detector scanned the outgoing wavevector K,.
The angle between K; and K, is 20; thus the field made an angle 6 with the scattering

wavevector q = K, — K; (see Fig. 2.6, 2.7). The geometry is therefore fulfills,

q :Ko - Kz

q’ =K2+K? - 2K, -K; = K2+ K? — 2K,K; cos 20

since we are concerned with elastic scattering (hv = 0) |K,| = |K;| = 27/,
¢* = 2k*(1 — cos 20) = 2k*(1 +sin® 6 — 1)

thus,

q= —sinf

2.4.1 The von-laue formulation for x-ray diffraction

We regard the crystal as composed of identical microscopic objects (the ions of the
lattice) placed at sites R of a bravais lattice. Peaks will occur in directions and
wavelengths for which the xray is scattered constructively.

The condition for constructive interference, for 2 scatterers with a displacement

vector d is derived as follows. The incident x-ray with wavelength A hence wavevector
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Figure 2.6: The MS X04 experimental hatch. The incoming beam wavevector K; is
shown by the black arrow, which is diffracted by the sample positioned at the red
dot. The outgoing wavevector K, is marked by the blue arrow.

k = 27/Xn is diffracted to k» = 2r/An’. The path difference of the x-ray beam

diffracted from the 2 scatterers would be ,

dcos(f) +dcos(d') =d - (A —n'). (2.66)

therefore, for a constructive interference,

d-(f— 1) =m\ (2.67)
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Figure 2.7: The incoming and outgoing wavevectors, K; and K,. The field direction
H and q.

or by multiplying 27/,
d-(k—k)=2mm (2.68)

for an array of scatterers in a Bravais lattice, with R Bravias lattice vector, this
equation turns out to be

R-(k—k)=2mm (2.69)

which equivalently is written,

IR — (2.70)

hence, constructive interference will occur whenever the change in the wave vec-
tor, K=Kk’-k, is a vector of the reciprocal lattice. [reminder: K belongs to the re-
ciprocal lattice of a bravias lattice of points R, provided that e (+R) — oK for
any r|. An incident wave k will lead to a diffraction peak if the tip of the wave vector

lies on a k-space Bragg plane.
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2.4.2 Diffraction by monoatomic lattice with a basis

We consider the content of the primitive cell as a set of identical scatterers located
at dy, ...,d,, within the cell. If the bragg peak which is associated with a change in
the wave vector K’ = k’-k, then the phase difference between the rays scattered at
d; and d; will be K - (d; — d;) and the amplitudes of the two rays will differ by a

d;—d;)

factor of ™ . Thus, the amplitudes of the rays scattered from dg, .., d,, will be

eKediei®dn  The sum of all rays scattered from the sites d; is the net ray scattered

from the entire primitive cell. It is known as the geometrical structure factor,

n

Sk=) eKd (2.71)

j=1
This factor expresses the extent to which interference of the waves scattered from
identical ions within the basis can diminish the intensity of the bragg peak associated
with the reciprocal lattice vector K. The intensity of the bragg peak is proportional
to the absolute value of the amplitude, therefore, |Sk|. However it is not the only
K dependance to the intensity, and therefore cannot be used alone to determine the
absolute intensity of the peaks. But it can be used to determine where the intensity
vanishes. This occurs when the elements of the basis are arranged so that there is a

complete destructive interference for the K in question.

2.4.3 BCC scattering

since BCC is a bravais lattice, its reciprocal lattice is a FCC. Bragg reflections will

occur when K will be a vector of the FCC. the basis of the BCC can be written by
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the primitive vector a(z + ¢ + 2) with the basis d; = 0 and dy = a/2(2 + 7 + 2).
Hence, the structure factor is
Sk = 1 + K 2@+i+2) (2.72)
A general vector in the reciprocal lattice can be written as
2m

K= 7(711@ + 71217 + Tlgﬁ) (273)

therefore, the structure factor (substituting K),

Sk = 14 ¢mmtnztns (2.74)
= 1+ (=1)mtnetns (2.75)

= 2,11 +ng + ng3 even (2.76)
0,n1 + ng + n3 odd (2.77)

2.4.4 FCC scattering

FCC is also a bravais lattice, where its reciprocal lattice is a BCC. the basis of the
FCC can be written by the primitive vectors a; = a/2(y + 2), as = a/2(2 + &) and
az = a/2(2+7). Additionally, the FCC can be written with a four-point basis, a; = 0,

as = a/2(2+79), a3 = a/2(g+2) and ag = a/2(2+ ). Therefore, the structure factor,
SK -1 + eiKu/Q(i—H}) + 6iK~a/2(7j+2) + eiK-a/Q(i-}—i) (278)

using a general vector in the FCC reciprocal lattice, K = 27 /a(hi + ky +(2), getting

the structure factor,

Sk =1 + ™ k) o gim (k) 4 gim (L) (2.79)

=1+ (=DM 4 (=D 4 (—1)ith (2.80)
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for example, when h + k odd and k + [ even and | + h odd, Sx = 0 for other

combinations we can arrive to Sx = 4 (when all sums are even).

2.4.5 Experimental Setup

The x-ray powder diffraction experiments were conducted in the Swiss Light Source
Material Science (SLS-MS) beam line powder diffraction station. A collimated 14.9 keV
x-ray beam was used with a high-resolution multicrystal analyzer. In order to per-
form the field-dependent X-ray diffraction experiment, we constructed a sample holder
with two prism-shaped NdFeB permanent magnets (see Fig. 2.8, 2.9). Each prism
was chopped at one edge, and the two chopped faces were held parallel and opposite
each other at a distance of 1.5 mm. A glass capillary containing the powder sample
was placed between these pole pieces in a 1.5 T field. In order to dismiss any grain
orientation with the field, the powder was glued upon insertion to the capillary using
cyanoacrylic glue (merz+benteli, Cementit CA 10) which is amorphi and doesn’t give
x-ray reflections.

The sample holder was placed inside a Janis cryostat in such a way that the field
was perpendicular to the fixed incoming beam (see §2.4). In this configuration, the
field direction could not be changed. The magnets could, of course, be removed for a
ZF measurement. With the pole pieces in place the 20 range was limited to 26 = 32°
giving us access up to a q = 4.18 A~1, revealing clearly the (222), (440), (400) and
(622) Bragg peaks. Other peaks allowed in this g-range have a small structure factor,

and although measured they will not be discussed here.
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Figure 2.9: A sketch of the NdBFe

Figure 2.8: A drawing of the sample permanent magnets, the arrows indicate
holder used in the SLS X04 Material the direction of the magnetic field
Science Beamline. produced.



Chapter 3

Results

In this chapter we review the experiments conducted. We characterize the S = 1/2
Kagomé ZnCuz(OH)gCly (§3.1.1 and §3.1.2) using local probes and susceptibility.
We investigated the nature of the spin glass-like phase transition in the spin glass py-
rochlore YoMo,07 (§3.2.1). Finally, in §3.2.2 we describe our study on the possibility
of temperature-dependent lattice distortions in the pyrochlore compound ThsTisO7

by measuring the internal magnetic field distribution.

3.1 Kagome

In section §3.1.1 we characterize the ground state and excitation spectrum of the
Herbertsmithite using the following measurements: SQUID magnetization, muon spin
rotation frequency shift and transverse relaxation time 75, and Cl nuclear spin-lattice
relaxation 7. We find no sign of a singlet formation, no long-range order or spin freez-
ing, and no sign of a spin-Peierls transition even at 60mK (4 orders of magnitude lower

than expected from Curie-Weiss). We find that the excited states are not gapped. In

62
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section §3.1.2 we show measured data on oriented powder of Herbertsmithite which
indicate a dramatic difference in magnetization measurements between in-plane and
out-of-plane measurements. This difference is biggest at low applied fields or high-
temperature. We believe that this difference emerges from super-exchange anisotropy

and that Herbertsmithite is in fact an Ising-like system.

3.1.1 Herbertsmithite

Here, we present a comprehensive study of ZnCus(OH)gCly using local probes. In
our study, we address four questions which are at the heart of the investigation of the
quantum kagomé system: Do S = 1/2 spins on kagomé lattice freeze? Is the ground
state magnetic? Is there a gap in the spin energy spectra? Finally, does the lattice
distort in order to accommodate spin-Peierls state? We address these questions in
the present work using nuclear magnetic resonance (NMR) and muon spin resonance
(uSR) local probes. We also use magnetization measurements to calibrate the local
probes.

The ZnCuz(OH)Cly samples were prepared by hydrothermal reaction by the No-
cera group at MIT, where it was first synthesized. Magnetic and pXRD data were
consistent with those previously reported for herbertsmithite [27].

Magnetization measurements, m, were performed as described in §2.3.1. In Fig.
3.1 we present mT'/H versus T'. The data collapse onto a single line, especially at low
T, meaning that the susceptibility is field-independent in our range of temperatures
and fields. Also, no peak in the susceptibility is observed, indicating the absence of
magnetic ordering. The only indication of interactions between spin in these measure-

ments is the fact that m7T/H decreases upon cooling whereas in an ideal paramagnetic
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Figure 3.1: Normalized magnetization versus temperature

system this quantity should be constant; a paramagnetic system follows a Curie law,

H

thus, mT/H = C where C is the material Curie constant. In Fig.3.2 we demonstrate

! which reveals ©¢y. The frustration pa-

the linear fit to the high temperature y~
rameter Tr/|Ocw| ~ 0.22, where T ~ 70 K is the temperature at which x™! is no
longer a linear function of T', indicates strong geometric frustration.

Muon spin rotation and relaxation (uSR) measurements were performed at the
Paul Scherrer Institute, Switzerland (PSI) in the GPS spectrometer with an He cryo-
stat, and in the LTF spectrometer with a dilution refrigerator. Data were collected
at temperatures ranging from 60 mK to 200 K with a constant field of 2 kG. In Fig.
3.3 we show real and imaginary transverse field [TF] data taken at H = 2 kG and

T =100 K. The data are presented in a rotating reference frame (RRF). This frame
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Figure 3.2: The inverse susceptibility, measured at 6 kG, of Herbertsmithite shows a
Curie-Weiss constant of |©cw | ~ 300 K.

is always at a field of 100 G less than the applied field (2 kG). The TF asymmetry is
best described by Arp = Agexp (—t?/(2T5?)) cos(wt + ¢) where Ty is the transverse
relaxation time, and w is the frequency of the muon at the RRF. The quality of the
fit is represented by the solid line.

In Fig. 3.4 we depict the frequency shift, K = (wy — w)/wy where wy is the free
muon rotation frequency in a field of 2 kG. The difference in frequency between free
and implanted muons is a consequence of the sample magnetization; therefore, K is
expected to be proportional to the susceptibility and field independent (See §2.1.1).
Indeed, as shown in Fig. 3.4, for a fixed H there is a linear relation between K and

the susceptibility x = m/H, with the temperature as an implicit parameter; some

representative temperatures are shown on the upper axis. In Fig. 3.5 we present
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Figure 3.3: A plot of the real and imaginary transverse field asymmetry for
T =100 K.

the field dependence of K at T = 100 K. Surprisingly, K is field dependent. This
anomalous field dependence of K is not clear at the moment.

In Fig. 3.6, we depict K as a function of temperature down to 60 mK. An addi-
tional axis is presented where K has been converted to x as discussed above. We find
that K (and hence y) increases with decreasing temperatures and saturates below
T ~ 200 mK at a value of x = 15.7(5) x 107® ¢m?®/mol Cu; the error is from the
calibration. It should also be pointed out that the energy scale associated with spin
1/2 in a field of 2 kG is 200 mK, and the saturation could be a consequence of the
external field. This behavior could also be a consequence of an ising-like kagomé
system, which is explained in §3.1.2. The saturation of x is a strong evidence for the

lack of impurities in our sample. More importantly, it indicates the lack of singlet
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Figure 3.4: The muon shift K against susceptibility.

formation or spin freezing. The last conclusion is also in agreement with neutron
scattering measurements [37] and zero field SR [49].

The muon transverse relaxation rate 1/75 is also presented in Fig. 3.6. Roughly
speaking, it has the same temperature behavior as the shift (and as the susceptibility).
T3 relaxation is a result of defects in the sample causing a distribution of muons to
electronic spin coupling constants or a distribution of susceptibilities. It has been
shown that when the muon relaxation rate behaves similarly to the shift [50](see
§2.1.1) (or susceptibility [5][46]) upon cooling, it indicates quenched distribution of
either the coupling constants or susceptibilities. In this case the relaxation increases
simply because the average moment size increases. Since the coupling constants and
susceptibility are functions of distances between muon and electronic spin or between

two electronic spins, our results are consistent with a lack of lattice deformation in
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Figure 3.5: The muon shift K versus external field H at T = 100 K.

ZnCus(OH)4Cls.

We also performed 37Cl and 3°Cl NMR experiments on the same sample. Using
the two isotopes, we are able to determine the origin of 77. The first step in such
a measurement is to find the line shape and to identify the isotopes and transitions.
This measurement was done at a constant applied frequency of v,,, = 28.28 MHz
and a varying external field H. A standard spin-echo pulse sequence, 7/2 — 7 — T,
was applied, and the echo signal was integrated for each H. In Fig. 3.7 we show a
field sweep for both Cl isotopes obtained at T" = 100 K. A rich spectrum is found
and is emphasized using five x-axis and one y-axis breakers. This rich spectrum is
a consequence of the Cl having spin 3/2 for both isotopes. In the case where the

nuclei reside in a site with non cubic local environment and experience an electric
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Figure 3.6: A plot of the muon shift K and transverse relaxation time o, versus
temperature.

field gradient, their spin Hamiltonian could be written as
H=—hyl- (1+K) -H+ (hvg)/6 [312 — I* + 1 (12 — I2)]

where v is the quadrupole frequency, 0 < n < 1 is the anisotropy parameter, K is
the shift tensor, and v; = yH/(2mw). The powder spectrum of such nuclei has two
satellite peaks corresponding to the 3/2 «— 1/2 and —3/2 «— —1/2 transitions,
and a central line from the 1/2 «— —1/2 transition, which is split due to the powder
average. The transition names are presented in the figure. The satellite peaks at
T =100 K of 3Cl are at 6.52 and 7.07 T, and for 3"Cl at 7.91 and 8.41 T. The lack of
singularity in the satellite spectrum indicates that the Cl resides in a site with > 0,
namely, with no xy symmetry.

In contrast to the two satellites, the splitting of the central lines at T" = 100 K
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is clear, and appear for the 3°Cl at 6.778 and 6.801 T and for the 37Cl at 8.148
and 8.161 T. Under some assumptions these values could be used to determine the
parameter of the nuclear spin Hamiltonian [51]; assuming that the nuclear spin op-
erators, I, I, and I, are collinear with the principal axes of the shift tensor, and
that the in-plane shift is isotropic with K| = (K, + K,)/2, we find for both iso-
topes, K, ~ —0.0017(5), K, ~ 0.035(9) and n = 0.4, and **vg = 3.75 MHz and
3Tvg = 2.55 MHz. The ratio of v is as expected from the ratio of the quadrupole
moments. Due to the assumptions, the value of K, should only be considered as an
order of magnitude. Nevertheless, it is interesting to compare it to the muon shift.
Assuming that K,,; can be extrapolated to 6 T, we expect the muon shift at this
field to be Kju ~ 107° which is much smaller than the Cl shift. This means that
Cl experiences a much stronger field generated by the Cu spins, which for muons is
usually a dipolar field.

Temperature dependence field sweeps of the 3°Cl central line are shown in Fig. 3.8.
The intensities are in arbitrary units for clarity. The £1/2 «— F1/2 transitions are
easily observed at 7" = 300 and 100 K (indicated by the arrows in the figure) but are
smeared out at lower T'. In fact, the lines become so broad that the NMR shift cannot
be followed to low temperature; hence the importance of the uSR results. In fact, the
lack of Cl and H shift on one hand, and the observation of oxygen [52] and muon shift
on the other hand are very intriguing and not at all clear. Nevertheless, the ability to
detect the Cl signal even at 5 K is a strong indication for the absence of spin freezing
at this temperature. For comparison, in the kagomé system SrCrgGasO19, where spin
freezing is taking place at 4 K, the NMR signal nearly completely disappears at 10 K
[53]. Therefore, the increasing line width with decreasing temperature is a result of

a distribution of hyperfine fields and an increasing susceptibility, but without a full
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Figure 3.7: A field sweep of *>Cl and 37CL.

phase transition. Finally, we cannot detect a shift of the Cl line upon cooling in
contrast to Ref.[2].

Finally, we measured the 3"Cl spin-lattice relaxation rate 7, ' to determine spin
gap and excitation spectrum. The data were taken at a field of 8.15 T which corre-
sponds to the low field peak of the central line. We use a saturation recovery pulse
sequence. In Fig. 3.9 we depict T, ' normalized by v? where 37y = 3.476 MHz/T
on a semi-log scale. 7' increases upon cooling down to 50 K and then sharply
decreases. We also present *°Cl (T17*)~! where 3y = 4.172 MHz/T below 50 K
in order to determine the origin of the dynamic fluctuations. These measurements
were done under the same conditions as 3"Cl. When considering all temperatures we

find that 77° /T3 = 0.75(10). From a magnetic relaxation mechanism we expect this
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Figure 3.8: 35Cl field sweep (v = 28.28 M H z) at different temperatures. The arrows
indicate the central line singularities observed at high-7" but smeared out at low 7.

ratio to equal (37 /3°y)? = 0.69. From a quadrupole based mechanism we anticipate
(*"Q/**Q)? = 0.62 where Q is the nuclear quadrupole moment. Our finding is in fa-
vor of relaxation mediated by a magnetic mechanism as indicated by the overlapping
(T17?)~! data points in Fig. 3.9.

The most noticeable feature in this figure is that 1/77 decreases with decreasing
temperature much more slowly than Arrhenius law (kK = Aexp(—F/(kT))) expected
when a gap opens. A remanent relaxation at zero temperature 1/77" could be due
to magnetic fluctuations from other nuclear moments such as the protons or copper,
since they continue to fluctuate even when the electronic moments stop. A standard

approach to T} interpretation is in terms of magnon Raman scattering where

Ti1<T) = %1” + 2 A? /AOO p*(E)-n(E)-[n(E)+1]dE (3.1)
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Figure 3.9: A semi-log plot of the CI inverse spin-lattice relaxation, (y?Ty)~!, versus
temperature.

with p being the density of states, A the gap, A is a constant derived from the hy-
perfine coupling, and n(F) the Bose-Einstein occupation factor [54]. This expression
is constructed from the population of magnons before and after the scattering, with
the associated density of states and the assumption that they exchanged negligible
amount of energy with the nuclei since its Zeeman splitting is much less than a typical
magnon energy. However, in frustrated magnets the magnon might not be the proper
description of the excitations [51, 53]. Nevertheless, with no other available theory
we use Eq. 3.1. We assume p(E) ~ E with a and A as fit parameters. The fit of
Eq. 3.1 to the data is presented as the solid line in Fig. 3.10. We find o = 0.23(1) and
A = 0.5(2) K. We also present a linear fit, which is the case for a fermionic excitation

spectrum, where T} oc T~!. In Fig. 3.11 we show similar data presented recently by
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Imai et al. [2] using oriented powder and stronger magnetic field, and the same fit. In
this case we find o = 0.59(3) and A = 0.002(3) K. A linear function can be ruled out
easily with this data set, thus excluding the fermonic excitation picture. Comparing
to J ~ 200 K [37], the gap is negligibly small and indicates that, in fact, there is no
gap in the spin energy spectra, in agreement with Ref. [37]. Both data sets further

suggest that the density of states at low energy diminishes.
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Figure 3.10: The inverse spin-lattice relaxation 7} *. The solid line is a fit to
Eq. 3.1, the dashed is a linear fit.

To conclude, susceptibility measurements down to 60 mK suggest that there is
no freezing and only a saturation of susceptibility, namely, no singlet formation. The
data also do not support the presence of lattice deformation. Finally, in our C1 NMR
T; measurements no sign of a spin gap was detected. Thus, ZnCuz(OH)Cl, is an
exotic magnet with no broken continuous symmetry but gapless excitations. It might

be an example of algebraic spin liquid [55].
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12

Figure 3.11: The inverse spin-lattice relaxation 7, ! taken from Ref. [2]. The solid
line is a fit to Eq. 3.1.

3.1.2 Oriented Herbertsmithite

Unfortunately, Hertbertsmithite is only available as a powder, thus the symmetries
of its spin Hamiltonian are not clear despite various experimental studies[1, 30, 33,
35, 36, 49]. To clarify these symmetries we present magnetization measurements on
oriented powder of ZnCuz(OH)sCly along (2) and perpendicular to (L) the orienting
field. The symmetry of the interactions are probed at high temperatures where im-
purities are not expected to contribute to the susceptibility and all probes roughly
agree.

In Fig. 3.12 we plot the x-ray diffraction from the powder and oriented samples.
The x-ray momentum transfer is parallel to the orientation field. The Bragg peak

intensities are shown in the figure. In the oriented case the (002) and (006) peaks
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increased dramatically, while many of the other peaks did not. This x-ray picture
shows a high degree of orientation such that the ¢ direction is parallel to the field.

The level of orientation will be discussed further below.
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Figure 3.12: X-ray diffraction of powder (black) and oriented powder (red) with the
transferred momentum parallel to the orientation field.

DC magnetization measurements, M, were performed as described in §2.3.1. In
Fig. 3.13 we present xT (y = M/H) of the two samples, powder and oriented balls.
These measurements were taken at H = 400 G. They are conducted as follows: we first
measured the powder sample and then the oriented sample in both configurations.
Finally, we repeated the powder measurements for a second time, but rotated the
powder ball as if it was oriented. All powder measurements collapse into a single curve,

as expected, demonstrating the reproducibility of the measurement. The Stycast
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sample showed a very small diamagnetic signal also depicted in Fig. 3.13. The core
diamagnetic susceptibility of ZnCus(OH)eCly is —16.7 x 107° ¢cm?®/mole [56]. The
Van-Vleck contribution is expected to be of the same order of magnitude, but with a
positive sign [57]. Both are much smaller than the measured susceptibility at room

temperature of 1 x 107* cm?®/mole.

6  |Oriented OOOO 4
LI
o Z ©

Powder o

4 r Z OO ..I. -1
Stycast o°

Figure 3.13: Susceptibility times the temperature versus temperature at external
field of 400 G for oriented sample in two directions, powder sample in two directions
as if it was oriented, and Stycast sample.

In Fig. 3.13 no special energy scale is found in either one of the measurements.
In fact, this measurement is similar to the previously observed powder high field
measurements (see §3.1.1)[38]. Again, the only indication of an interaction between
spins is the fact that x7T for both direction and the powder decreases with decreasing

T. However, xT of the powder is smaller than .7 and larger than y 7" of the oriented
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sample. A comparison of the absolute value of the susceptibility of the powder and
the oriented sample is not accurate. We did try to have an equal amount of sample in
both balls but there is no telling how successful we were. A more relevant comparison
is between the susceptibilities in the different directions of the oriented sample; x, T’
increases faster than x, 7', and at room temperature y, = 1.6x,. Thus the ratio

between the z and L directions increases as the temperature increases.

H=1000G

v [au]

Figure 3.14: Inverse susceptibility versus temperature at H = 1 kG (a) and at
H =100 G (b). The solid lines are linear fits to the high temperature (> 150 K)
data. (a) In inset of (b) we plot the low-temperature behavior of x~! at 100 G.

In Fig. 3.14 we plot the inverse susceptibility versus temperature for two fields,
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1000 and 100 G and for the two orientations. In the inset of Fig. 3.14(b) we plot
the inverse susceptibility at low temperatures (7" < 50 K); clearly, x, linearizes at
T ~ 30 K whereas y, linearizes at a much higher temperature (T" ~ 100 K). 6
, and C' in arbitrary units are extracted from a linear fit of the high-temperature
(150 < T' < 280 K) data to XJ__,lz =(T"+6,.)/C, .. The fits are shown by the solid
line.

In Fig. 3.15 we plot 0, ., and \/@ which is proportional to the g, , factor (if the
sample was fully oriented) versus the applied field. 6, increases slowly with decreasing
applied field and saturates below 400 G. On the other hand, 6, increases rapidly below
2 kG. The Curie constant has a similar behavior. The powder average of 8, . at low
fields does not reconcile with # ~ 300 K measured in a powder and there must be
some extrinsic contribution to the susceptibility in the partially aligned samples at
low fields. In contrast, at high fields, H > 2 kG, 6 of the two directions is hardly
distinguishable and on the order of the powder value. In addition, useful information
can be extracted from the CW temperature only if it is obtained by measurements
at T' 2 6. Therefore, we concentrate on the results obtained by H > 2 kG, as shown
in the inset of Fig. 3.15.

In order to convert, the measured susceptibility y presented above to the intrinsic
susceptibility x* in different directions, it is important to estimate the level of orien-
tation. This can be done using the x-ray data. The ratio (R) of the x-ray intensity

(1) from two different planes is,

I1(00R)

R = Teko) -

(3.2)

We now assume that there are IV grains composed of two sets and « is the probability

that a grain orients. Thus a/N are grains that orient perfectly with the field, and
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Figure 3.15: The Curie-Wiess temperatures and square root of the Curie constant of
the oriented sample perpendicular to and in the kagomé plane. The inset show a
zoom on the high field data.

(1 — a)N that are not effected by the field at all since they are made of a few
crystalline, for example. We further define 3 as the probability that a particular
plane will contribute to the scattering intensity in a powder. Therefore Eq. 3.2 can

be written as,
_ Npa(h) _ a(h)
~ NBb(k)  b(k)

where a(h) and b(k) are the intensities from (00h) and (kkO) plane. After orientation

R (3.3)

we have N« grains that are fully polarized with the field, and are perpendicular to
q. We also have N(1 — «) grains that did not change their orientation, out of these

N(1—a)f planes are perpendicular to q. The x-ray intensity ratio between the same
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planes would be,

, I'(00R)  Naa(h) + Np(1 — a)a(h)

R= I'(kk0) NB(1 — a)b(k) (3:4)
(a4 p(l—-a)\ a(h) a
()i = (s ® 39

Looking at the extremes, if all grains orient and « = 1 R' — oo. If there are no grains

that orient and o = 0 then R’ = R. From Eq. 3.5 we find,

ﬂ(%—1):1f‘a (3.6)

We now can estimate ( from the width of the peaks which is 0.2° out of 180°, thus

B ~ 0.001 (see Fig. 3.16). For the intensity calculation we need to subtract the
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Figure 3.16: A gaussian fit to (006) bragg peak reveals the width of the peak to be
B =0.225(1)°
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background,
(006) - 1 _ 385 — 314(2) _ 71(2) (3.7)
I 9190 — 484(20) 8706(20)
(220) I _ 502 — 294(2) _ 208(2) (3.8)
I 414 — 325(3) 89(3)
thus,
_ 1@
R = 208(2) 0.34(1) (3.9)
,  8706(2)
R 003 97(3) (3.10)
R/
7= 285(8) (3.11)

thus, using Eq. 3.6 we find o = 0.26(2). This level of orientation is in agreement with
Imai et al.[2].
In an oriented sample we expect

1, 2, i
Xel = (1—a) (gxz + g)@) +axk . (3.12)

This relation could be inverted to produce Xi,r In Fig. 3.17 we present both 1/x, |
and 1/x%, for the susceptibility data taken at H = 1000 G. New intrinsic CW
temperatures 6% | could be obtained from 1/x%, | as demonstrated by the dashed lines.
0; | represent the CW temperature as if the sample was fully oriented. Although «
is just an estimate of the level of orientation, the important point is that 62 > 6, and
0 <6,.

We now turn to discuss the possible origin of the susceptibility anisotropy in terms
of superexchange anisotropy and DMI (see §1.2). Since the sum of D;; around each

spin cancels[22]§1.3.1, DM does not contribute to the CW law. If the sample was
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Figure 3.17: inset displays the inverse measured susceptibility 1/x, and 1/x,, and
the inverse intrinsic susceptibility 1/x% and 1/x obtained from Eq. 3.12. The
dashed lines demonstrate that 0 < 0% and 6, > 6'.

perfectly oriented we would have 6 | = J. | /kp . Since our sample is not perfectly
oriented, our high-temperature high field linear fits of Xl,lz measures a lower bound
on J, and an upper bound on J,.

The lower bound on J, is larger than the upper bound on J,. Despite the fact
that measurement of x, and y, are contaminated with x% and x! respectively, as
indicated by Eq. 3.12, the conclusion J, > J, is unavoidable. It is robust even
against possible core and Van-Vleck corrections. Thus herbertsmithite has an Ising-
like exchange anisotropy. This, however, is not the end of the story. If J, > J,, we
would expect x, < x., in contrast to observation. Therefore, to explain the high

susceptibility in the z direction we must invoke an anisotropic g factor as well.
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The classical ground state of an antiferromagnet kaogme with exchange anisotropy
has a net ferromagnetic order with finite total magnetization (§1.3.1). We believe that
this ferromagnetic order contributes to the observed y at 7" — 0 by transverse field
(TF) muon spin rotation (uSR) experiment [38] (see §3.1.1). In uSR impurities are
expected to contribute to the muon line width while most of the sample contributes to
the line shift. In what follows we examine what part of the uSR data can be explained
by exchange anisotropy only. A complete understanding will of course require taking
DMI interaction into account as well.

The uSR data are reproduced in Fig. 3.18. y increases sharply with decreasing
temperatures between ~ 10 K and ~ 1 K and saturates below T" ~ 200 mK at a value
of x = 15.7(5) x 1073 ecm?®/mol Cu. This susceptibility mounts to an average moment
of 0.006up per Cu, in the direction of the applied 2 kG field. Eq.1.15 indicates a
small ferromagnetic moment in an anisotropic kagome. A small field will stabilize
this moment and a powder average of its projection on the field direction will be
given by,

<M : H> - “73(1 + cos) (3.13)

Solving Eq. 3.13 for the anisotropies gives J./J; = 1.06. In Fig. 3.3 we show
simulations described in Ref. [58], for J,/J, = 1.04 and J,/J, = 1.08 showing sim-
ilar behavior as the experiment. For this type of exchange anisotropy the expected
T./J, = 0.03 as shown in the inset of Fig. 3.3 also taken from Ref. [58]. For
J, ~ 200 K we expect T, = 6 K. This temperature is at the center of the sharp
rise of y. Thus we see that both the very low T" and the very high T susceptibility
detected by puSR can qualitatively be explained by exchange anisotropy. However,
the intermediate T are smoother in the real data, and the sudden increase in the

magnetization, predicted in the simulated case, is missing.
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Figure 3.18: A plot of the magnetization detected by muon spin rotation versus
temperature, and simulation data for antiferromagnetic kagomé lattice with Ising
like exchange anisotropy as in Ref. [4]. In the inset the normalized critical
temperature versus the exchange anisotropy is shown.
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To summarize, our measurements in ZnCus(OH)Cly reveal an anisotropic intrin-
sic spin susceptibility with x? > x’ possibly due to anisotropic g factor. At fields
above 2 kG a CW temperature can be consistently determined in two different direc-
tions. By mean-field approximations we were able to show that this phenomenon can
be explained only by an anisotropic super-exchange constants where J, > J,. This

anisotropy can explain the main features of the susceptibility determined by uSR.

3.1.3 Conclusions

Experimental data has been reviewed on powder and oriented powder samples of
Herbertsmithite. uSR, NMR and susceptibility all show different behaviors which
could not be fully explained.

Using oriented powder samples reveal an appearance of an Ising-like exchange
anisotropy which in turn explains the uSR data. However, it is still an open question
regarding the various shifts measured by NMR. Additionally, SR does not detected

any lattice distortions. C1 NMR T; measurements indicate zero gap to excitations.

3.2 Pyrochlores

While J anisotropy is found in herbertsmithite, distortion is not observed in this case
(§3.1.1). As mentioned earlier (§1.4.2), a magneto-elastic coupling and distortion

possibly affects the pyrochlore YoMosO5.
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3.2.1 Y2M0207

However, The smoking gun proof that the distortion in Y;Moy0O7 is driven by the
magnetic interaction is still lacking. Such evidence could be provided by the experi-
mental observation of lattice distortions upon the application of an externally applied
magnetic field. Here we extend previous #Y NMR measurements[19], which were lim-
ited to nitrogen temperature, to the helium range. We also performed field-dependent
high-resolution x-ray powder diffraction.

In Fig. 3.19 we plot the cubic (222) (main panel) and (440) (inset) peaks without
at zero-field (ZF) at three temperatures (above T, at 55 K, near T}, at 28 K, and
below T, at 16 K). The peak intensities are temperature-independent both in shape
and intensity, they are progressively shifted up by 10 counts/min for clarity. Addi-
tionally, all reflections measured are consistent with the face centered cubic structure;
however, they are significantly broader than the instrumental resolution even at room
temperature.

In Fig. 3.20 we plot the (440) Bragg peak at three temperatures (above T, at 220 K,
near and below T}) taken with the application of the field. The only experimental
finding, is a narrowing of the (440) peak at T' = 28 K upon the application of the
field. This narrowing occurs only just above T}, and is absent at higher or lower T's.
The effect of a magnetic field on the lattice properties clearly indicates the presence
of magneto-elastic coupling. The fact that T} is close to the temperature when the
distortion is optimized indicates that magnetic interactions drive the distortion and
not vice versa. This is not a strong enough proof of the frustration-driven-distortion
for which we were looking.

Another interesting experimental finding is that at 7" < T}, with no field applied,

there is a clear indication of multiple discrete peaks with a width comparable to the
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Figure 3.19: ZF x-ray scattering from
Y2Mo,07. The (222) Bragg scattering at
T=5K, T=28KandT =16 K. In
the inset, the (440) Bragg reflection.

Figure 3.20: X-ray scattering from

YsMoyO7 with H = 1.5 T applied. The

(440) Bragg scattering at T' = 220 K,
T=28Kand T =16 K.

instrumental resolution. A closer look at the ZF (222) peak at 16 K is plotted in
Fig. 3.21. We index the vector, ¢maqz, at which the local maxima are found by n.
We found that ¢,4.(n) is a linear function of n as demonstrated in the right inset of
Fig. 3.12b. Interesting similar phenomena were found in real space at much higher
temperatures by NMR, [19]. At present we do not offer any interpretation for this
effect, but we ruled out instrument-related effects.

Similar experiments were performed using neutrons. These experiments were per-
formed on the BT1 powder diffractometer at NIST, Gaithersburg, USA with a field
up to 6 T applied perpendicular to the scattering plane. Data were collected at 3
temperatures, 60, 25, and 4.2 K, and at an energy of F = 34.5 meV. In Fig. 3.22 we
plot the significant part of the diffraction pattern taken. At first glance, no apparent
difference is revealed between the measurements with and without the field, and no

magnetic order was detected. However, a closer look at the (222), and (440) peaks

3.500
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Figure 3.21: The center of the (222) Bragg peak taken at 7" = 16 K. Multiple peaks
are observed and are indexed. In the inset, ¢q.. versus the index n (see text).

does reveal a field dependence similar to that seen by x-rays. These field-dependent
changes are qualitatively the same as seen in the x-ray experiment, but the poorer
resolution of the neutron experiment are unable to demonstrate the peak changes.
The strongest effect is on the (440), which has the larger structure factor in neutron
diffraction. The (222) and (440) Bragg peaks are plotted in Fig. 3.24 and Fig. 3.23
respectively. At T'= 25 K the (440) Bragg reflection grows slightly when the field is
applied. We also plot in Fig .3.23 the (440) peak taken at T' = 60 K with a baseline
shift to demonstrate that the effect is strongest close to T, and is absent at 1" > T,.
The (222) peak is plotted in Fig. 3.24. This peak only slightly broadens as a result
of the field (Aw = 1(2) x 10~*A~1). This neutron experiment also proves that the

effects seen are not instrumental and are related to Tj,.
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Figure 3.22: Neutron scattering from Y,Mo,0O; with and without applied field.

Finally, the nature of the field induced distortion is further explored by NMR.
We performed Y measurements at temperatures from 300 K to 25 K. We were
able to extend the temperature range of previous measurements by constructing a
high pressure cell, where the sample and the NMR tank circuit are placed in an He
environment pressurized to 2 Atmospheres. In such a configuration higher RF power
can be delivered to the sample and the signal is stronger and can be followed to lower
temperatures. At each temperature, we obtained the complete NMR spectrum by
sweeping the external field, H.,;, at a constant applied RF frequency f = 16.44 MHz.
In each field we used the spin-echo sequence (7/2 — 7 pulses) and recorded the echo
signal. In Fig. 3.25 and Fig.3.26 we present the NMR spectrum taken at 85 K and

25 K respectively. The width of the 85 K spectrum extends over 0.4 T whereas
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Figure 3.23: The (440) Bragg scattering Figure 3.24: The (222) Bragg scattering

with and without applied field at with and without applied field at
T=25Kand T =60 K. The T"=60 K is T = 25 K. The lines are fits to gaussian
shifted for clarification. function.

the width of the 25 K spectrum extends over 1 T. This broadening results in low
intensities at each applied field upon cooling. Due to this broad line at low T" we gave
up on high resolution NMR, as in Ref. [19], and concentrated on the gross features
of the spectrum. The most noticeable feature in the 7" = 25 K spectrum is the clear
appearance of two peaks, with a hint of a third one.

In order to study the temperature dependence of the shift, we use the powder
spectrum (see §2.1.1) convoluted with Lorentzians to fit the NMR spectra. At high
temperatures (7" > 250 K) there is hardly any shift. At intermediate temperatures,
50 < T <200 K, two different sites were needed to fit the data (see Fig. 3.25). Finally,
at low enough temperatures, T' < 50 K, three sites were assumed (see Fig. 3.26). In
Fig. 3.27 we demonstrate the contribution of each of the powder-average site to the
NMR spectra. In Fig. 3.28 we plot the shift Ké, 1 for each site, versus the magne-

tization, which was extrapolated to H = 7.8 T from SQUID measurements of up to
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Figure 3.25: NMR spectrum at 85 K. Figure 3.26: NMR spectrum at 25 K.
The line is a fit to a spin 1/2 powder The line is a fit to a spin 1/2 powder
average convoluted with lorentzian. average convoluted with lorentzian.

6 T. The temperature in this figure is an implicit parameter. As the susceptibility
increases the shift for each site also increases. However, the dependence between shift
and susceptibility is not linear, indicating that the lattice contributes to the shift as
discussed in Ref. [5].

Further information could be educed by comparing the shift ratios. If the three
domains or phase maintain the cubic Fd3m symmetry of the pyrochlore and only the
unit cell size changes, we expect the ratio K, /K, to be identical to all domains. In
Fig. 3.29 we plot the shift K, versus the shift K, for the three sites extracted from
our fits. The K’s from two sites seem to be on a straight line, thus having the same
K, versus K, ratio. The original domain or cubic phase has a different ratio. This
suggests that Fd3m is not maintained in the field-enhanced domains or phases.

To conclude, we found field-dependent lattice properties in YoMyO;. The effect is
strongest close to T,. Had the distortion in Y,M>0O7 been a consequence of electro-

static (chemical) interactions, the magnetic field should not have had an effect on it.
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Figure 3.27: The contribution of the 2 sites to the NMR spectra

The x-ray data leave two possible scenarios for the effect of the field; (I) it is strongest
when it points in the (111) direction and in this direction enhances the probability
of three special domains, or, it generates a phase transition in part of the sample, of
yet unknown nature, regardless of the field direction. The new domains or phases do
not conserve the Fd3m symmetry. Regardless of the field induced structure, it seems

that magnetoelastic coupling controls the freezing properties of the system.

3.2.2 TbyTiOr

The ThyTisO; compound has received the term cooperative paramagnet due to its
lack of a phase transition at all measured temperatures (7" > 50 mK). Here we probe

the possible existence of a magneto-elastic coupling (§1.3.1) in this compound using
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Figure 3.28: The NMR shift, K, versus the bulk magnetization m with
temperature as an implicit parameter.

uSR (§2.1.1).

Transverse [TF] and longitudinal field [LF| uSR measurements were performed
with powder samples. In Fig. 3.30 we show the LF [top] and the TF [bottom]| data
at two temperatures and applied field of 2kG. The TF data are shown in a reference
frame rotating at a field of 1.5kG. Several aspects can be seen in the raw data: From
the time scale it is clear that the transverse relaxation is by far greater than the
longitudinal one. The longitudinal relaxation increases as the temperature decreases,
as was observed previously [59]. Finally, the transverse relaxation increases and the

muon rotation frequency decreases upon cooling.
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Figure 3.29: The shift K, versus the shift K, for the three different Y sites.

The puSR LF polarization is best described by the root exponential
PLF<t) :ALFeXp(—(t/Tl)%)—i-BLF (314)

where the parameter App is set by taking into account the tilt of the muon spin
relative to the longitudinal magnetic field, 77 is the longitudinal relaxation time, By g
is the background, and ¢ is time. Similarly, the TF polarization is best fitted by a

root exponential superimposed on a cosine oscillation
PTF(t) = ATF exp(—(t/TQ)%) COS(UJt + Qb) + BTF- (315)

Here T5 is the transverse relaxation time. The other parameters have the same mean-
ing as in Eq. 3.14. The quality of the fits is presented by the solid lines in Fig. 3.30.
Data were collected in the temperature range 60 mK to 100 K and three fields of

2, 4, and 6 kG. The frequency w as a function of temperature for the three different
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Figure 3.30: The time dependence of the muon polarization at an applied field of
2 kG and at two temperatures. In the top figure the longitudinal polarization and in
the bottom, the transverse. The time scale is different between the two directions.
The solid lines are fits to Eqgs. 3.14 and 3.15.

fields is depicted in the inset of Fig. 3.31. The frequency shift,
K = (wy — w)/wo (3.16)

is shown in the main panel for the same temperatures and fields. We define wq as the
frequency of the free muon in the rotating reference frame. Similarly, we present T},
in Fig. 3.32, and in the inset T, '. The most important aspect of the data is that all
quantities saturate as the temperature decreases below ~2K.

Since T} ', the LF relaxation, is an order of magnitude lower than 7}, !, the TF re-
laxation, the contribution to the TF relaxation from dynamic fluctuations is negligible

(§2.1.1). Thus, 75 ' could be analyzed in terms of field inhomogeneities only.
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Figure 3.31: Inset: the muon rotation frequency as a function of temperature for
different applied fields. Main figure: the shift in the rotation frequency defined in
Eq. 3.16.

In Fig. 3.33 we show (Tyy,H) ' versus K with the temperature as an implicit
parameter. The two quantities are linearly dependent at all fields. Allowing for a base
line shift, which does not originate in localized spins will lead to a proportionality
relation between these quantities. This stands in strong contrast to YosMo,O; where
the muon transverse relaxation grows as a function of y faster than exponentially.
This is demonstrated in the inset of Fig. 3.33 using data from Ref. [5] on a semi
log scale. We conclude that in ThyTisO7 the muon transverse relaxation has the
same temperature dependence as the shift. In fact, by calculating the width of the
distributions, § A for each data point using Eq. 2.7 we find that A(64)/5A is 15% for
TbyTi507 and 115% for YoMosO- where A and A(0A) are the average and standard
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Figure 3.32: The muon spin transverse relaxation rate T, ' as a function of
temperature for three different fields. Inset, the muon spin longitudinal relaxation
rates 7, ! at the same temperatures and fields.

deviation of 0A respectively. A(5A)/0A is a measure of the relative change in the
distances variations due to temperature changes.

To summarize, we compare the transverse relaxation rate resulting from inter-
nal field distribution to susceptibility measured by the shift in the muon rotation
frequency and DC susceptibility. We find that the relaxation rate has the same
temperature dependence as the susceptibility. This indicates that the only reason
for increasing relaxation upon cooling is an increase in the electronic moment size.
Therefore, there is no evidence for lattice deformation in ThyTi,O that is static on

the time scale of 0.1 usec.
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Figure 3.33: Demonstrating the linear relation between the muon spin relaxation
rate normalized by the field (T, H) ™! versus the shift in muon spin rotation
frequency K, which is proportional to the susceptibility y. The inset shows the
same type of measurement on a semi log scale in the pyrochlore compound
Y;Mo,O7 taken from Ref. [5].

3.2.3 Conclusions

Experimental evidence has been reviewed on two pyrochlore samples, YoMo,O; and
Tb,TisO7. #¥Y NMR performed on the Y nuclei, hints to a distortion of the lattice.
This finding did not receive confirmation from x-rays or neutron scattering techniques.
This discrepancy is not clear to us at present.

SR on ThyTisO7 did not detect any lattice distortion. It might be that since

ThoTisO7 does not undergo any phase transition, it doesn’t deforms, and vice versa.
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3.3 Discussion

To summarize, we seen that geometrically frustrated magnets are ideal to explore
perturbations beyond the Heisenberg model.

We demonstrated that exchange anisotropies is a relevant perturbation in the
kagome herbertsmithite and contributes to its ground-state properties. Others have
argued that DMI is also important especially at low 7. Most likely for full under-
standing of the herbertsmithite low-7T" behavior both perturbation should be taken
into account. In the pyrochlore Y,Mo,0O7 the lattice distortion observed by resonance
techniques can be attributed to a magneto-elastic coupling. ThyTi,O7, seems to be

a pure Heisenberg antiferromagnet without magnetoelastic coupling.



Appendix A

Powder Average

In this appendix we derive the powder average NMR spectrum. We start with the

Hamiltonian of a spin-1/2 system, with a Knight-Shift tensor K,
H=—lnHI-1+K)-H, (A.1)

Our aim is to find the energy (or the resonance frequency), e = hrv. This frequency
should be a function of the external field, H = H (0, ¢) and K, thus v = v(H, 6, ¢, K).
For a polycrystalline samples the sites are oriented randomly with respect to the field
therefore we would like to integrate over all possible orientations.

We use Eq. A.1 and write explicitly,

1+ K, 0 0 sin 6 cos
H= {]x I, I, ] : 0 1+ K, 0 - H; | sinfsing
0 0 1+ K, cos 6

= —hyH, [I,(1+ K;)sinfcosp + L,(1 + K,)sinfsinp + (1 + K,) cos 0] (A.2)

101
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by using the pauli matrices for I,

H = —h’yHl
(1+ K,)cos® (14 K,)sinfcosp —i(1+ K,)sinfsinp
(1+ K,)sinfcosy +i(1+ K,)sinfsingp —(1+ K,)cosf
(A.3)

The eigenvalues for Eq. A.3,

h’j}[l = (1 + 2K, sin® psin® 0 + Ky2 sin? ¢ sin? 0
— KZsin® psin® § — 2K, sin? psin® 0 + 2K, sin* 0 (A.4)
+ K?2sin’0 + K? — 2K, sin’ 0 + 2K, — K2sin?6)"/?
€y = —€1 (A5)

Small Knighshift

We assume small K; (K2, — 0), and use /1 +a ~ 1+ %, thus Eq .A 4,

x?yVZ

€1
h")/Hl

=1+ K,sin?6 cos® p + K, sin* §sin® ¢ + K, cos® 0 . (A.6)

The energy difference between the two states is therefore, hv = 2e;. Using trigono-

metric identities

h 1 1
hyVHl = K, cos* 0 + §Kx sin? @ (1 — cos 2p) + §Ky sin @ (cos 2 + 1)
1 1
=3 (K, + K, +K,)+ 5 (2K, — K, — K,) (3cos®0 — 1) + (A7)
1
+3 (K, — K;) (1 — cos® ) cos 2¢

or,

Vper(K7 Hla M, 90) = [Kiso + I(aux(?’,u2 - 1) + l(aniso(1 - ,U/2) COSs 290}
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where v, = Hy;y/(2m), and

Ko = (K, + K, + K.)/3 (A.8)
K= (2K, - K, — K,)/6

Kaniso = (Ky - Kx)/2 .

Axially symmetry

We begin with the eigenvalues for the Hamiltonian A.1, found earlier as Eq. A.4. We
assume axially symmetry only, K, = K,,, and gain,

€1
h’)/Hl

= (1+2K,sin’0 + K sin’ 0 + K? — 2K, sin> 0 4+ 2K, — K2sin®0)'/?  (A.9)

with p = cosf, now the energy difference,

h
by H, = - (A.10)
\/1 + K2 (1= pi2) 4+ 2K, (1 — pi2) + 2K 422 + K22
such that the resonance field obeys,
1
= (A.11)
s \/1 + 2K, + K3 — 12K? + 22K — 202K + 12K}
I 1 _hv (A12)
- G '
g1 — w? (ﬁ - gﬁ)
where we define,
= —hy (A.13)
K =K, =K, (A.14)
K. = K, (A.15)
g=1+K (A.16)

g= \/gi = (g1 — gp)r* . (A.17)
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The powder pattern, S (H),

(%) - (A.18)

Using H = H; (1) of Eq.A.12,

dH, v 2 (ﬁ - gﬁ)

_w (A.19)
di 26 [gi — (93 - gﬁ)} e

thus,

S(H) =~ (A.20)

2
recalling, ;12 <gi — gﬁ) = g% — <f1—%> , we get,

:lﬁ[m—/ﬂ (gi—gmw (A.21)
2hv [ (e (gi —gﬁ) '

2 2
gJ_ng

15 [gi — (gi - gmw (A.22)

2hv 2 2 1 hv 2
ginJ9L =9\ 1 — @ <m>

we’ve seen that, g = g—l”{ (Eq. A.12), hence,

S_lﬁ(hu)?’ 1
- 2hv \BH 2
gl,/gi—gﬁ\/l—% (gﬁ—”ﬁ)

1 (hv)” (A.23)

2 2
B2g1\/97 — giH?*\|H? - (;j—’;)

for

and S (H) = 0 elsewhere. In Fig. A.1 we plot the expected NMR spectra for a sample

with axial symmetry.
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Figure A.1: The theoretical axial symmetric NMR spectrum.

Complete Anisotropy

Here we develop the NMR spectra for a completely anisotropic sample, K, # K, #

K,. We once again use the eigenvalue we found in the general case, Eq. A.4,

2
€ .
(ﬂ_;f) :1—|—51n2g0(1—,uz) (2Ky+K§—K§—2Kx)+

+ (1—p?) (2K, + K2 — 2K, — K2) + K2 + 2K, (A.24)

=g5—cos’ o (1—p?) (g5 —91) — 1i* (97 — 93) - (A.25)

This leads the resonance field to be,
hv 1

H=— 3 P 3 3 3
B /g3 —cos?o(1—p2) (93— g) — 12 (63 — 93)

(A.26)

thus,

dH _ hv 1((g7 — g3) — cos® p (g5 — g7)]
di B (g3 —cos? o (1 — pi2) (63 — g7) — 2 (g3 — g3)]**
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from the resonance field equation, Eq.A.25 we find p = p (H),

h 2
(g_;]) = g5 —cos’p (g5 — g7) + 4* (cos® (93 — g7) — 91 + 43)
Y

2
o () —greosted-a) (a2
po= :
cos? ¢ (93 — g3) — g} + 93

therefore,

2
JH \/95 —cos?p (g5 — g7) — (}}—) Vi — g3 — cos® o (g5 — g7)

dp

H? — H? H? — H? |H? — H? H? — H2
= H3\/—2—cos2g0 1 2\/ 3 1—COSQQOW<A.28)
1413

where we define,

The powder pattern should be (S(H) = p(H) mentioned above),
S(H) = //5(Vapp — v (H,p, ) dudyp
— [ e [ S v v (o) (A.29)

where, v (H, p, ) is derived from A.26. Since v = v (H, u,p) we can change inte-

grands, to simplify our equation,
dv = —dp (A.30)

and get,

/
i [ av (d—“) 5 (Vagp — v (H, 11,0)) (A31)
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because of the J-function this reduces to,

S(H) = / dy (j—’;‘) (A.32)

hence, the powder pattern in this case (after some work) evaluates to,

1 /dH\ "
sun =3 ()
1 H,HyHy 1

2H? \/(H2 - H%)\/(Hg o H22) \/1 _ (H%—le)H2 SiIl2 90\/1 _ (H%—le)Hg 102
3

H22(H2—H12)

using the definition for elliptic integrals of the first kind,

2 do
K(k) = / : (A.34)
0 1 — k2sin?

with 0 < k < 1, being the elliptic modulus, a.k.a. m = k? the parameter. The
integral is symmetric, [ = 2 fog, hence we get a multiplicity of 2.

By defining, ¢ = sin 0, thus, dt = cos 0df = /1 — t2df we get,

dt
k) = / V1 =121 — k%2 (4.35)

After tedious work, it is possible to show that Eq.A.33 has indeed a Legendre elliptic

integral form[60]. A theoretical powder averaged NMR line, for a single site, is de-
picted in Fig. A.2. Each divergence in the spectrum is related to a different K. The
field with the lowest divergence is related to K, the middle is related to K, and the
highest field is related to K,. This theoretical spectrum demonstrates that a single
site, with a single set of K, K, K, could give rise to only one NMR line peak even

under powder averaging.
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Echo Intensity [a.u]

75 7.6 7.7 7.8 7.9
Field [T]

Figure A.2: A theoretical powder-averaged NMR for a spin-1/2, v = 2.11MHz/T,
v = 16.44MHz.



Appendix B

DMI

Taking into account a weak spin-orbit coupling (AL - S) and expanding in powers of
A, Moriya showed that the effective magnetic hamiltonian between neighboring spins
can represented in the Hamiltonian as,
Hpm = Z D;; - (Si x S;) (B.1)
<iyj>
where D;; < J;; is the DM vector which defines the interaction (J o A0 whereas
D o A). The interaction changes sign if we permute spins j and i (the interaction
is antisymmetric), that is, D;; = —Dj;. The interaction described in Eq. B.1 is such
that D is perpendicular to the plane created by S; and S;. In Fig. B.1 and Fig. B.2 we
demonstrate the type of order induced by DMI alone (Fig. B.1) and in a more realistic
case with a perturbation to the Heisenberg Antiferromagnetic coupling (Fig. B.2).
D was shown, by Moriya, to be proportional to At;;/(AU), where A is the crystal
field splitting and A is the spin-orbit coupling. [The exchange J;; = 4t;;/U where U
is the coulomb repulsion, ¢;; the intersite hopping]. DMI stems from the spin-orbit
couplings. The DM term in the Hamiltonian causes the susceptibility to change by

inducing a moment by canting the spins slightly out of the plane, and may give each

109
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D

©

Figure B.2: The type of disorder from

D12
S, S,
DMI in Heisenberg AF coupling, J # 0.

Figure B.1: A typical DMI, The DMI causes a canting of the spins
Dis - (S x Sy). from an ideal anti-parallel state.

kagomé plane a net ferromagnetic moment. As a consequence of the Hamiltonian
being invariant under the symmetry operations which leave the lattice invariant, the
direction of D;; is geometrically constrained and follows rules set by Moriya. The
rules are for any general crystal, we observe two ions in the system, 1 and 2, which

are located at A and B, respectively. The point bisecting the line AB is defined as C.
1. When a center of inversion is located at C, D = 0.

2. When a mirror plane perpendicular to AB passes through C, D || mirror plane

or D L AB.
3. When there is a mirror plane including A and B, D Lmirror plane.

4. When a two-fold rotation axis perpendicular to AB passes through C, D 1 two-

fold axis.

5. When there is an n-fold axis (n > 2) along AB, D ||AB.



APPENDIX B. DMI 111

Figure B.3: Examples of DMI rules. Numbers indicate rule number as explained in
the text. Sites are shown in circles connected by red lines, mirror planes are
indicated in hollow boxes connected by black line.

In Fig. B.3 we demonstrate the rules graphically, the numbers indicate the rule number
which the figure is relevant to (in Fig. B.3.5 a four-fold rotation, n = 4, is shown).
For the kagomé plane, two of the Moriya’s rules give useful information about
D;;. Since the middle point between two sites in the triangle of the kagomé is not a
center of inversion, D # 0 is possible. In a perfect kagomé lattice, D;; can only be
perpendicular to the kagomé plane since this plane is a mirror plane. Most materials
however are not perfect kagomé lattices or the surrounding ions affects the crystal
field and are involved in the superexchange mechanism between the magnetic sites.
Since the pyrochlore lattice does not have an inversion center at the middle point

between sites, D # 0, and a DMI can occur on the pyrochlore. Considering a single
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tetrahedron, the plane which connects two sites and the middle point of the opposite
bond in the tetrahedron is a mirror plane. Thus D can only be perpendicular to this
plane. There are thus two possible DMI’s between two sites which correspond to the
directions for the D vector.

By taking a mean field approach, we write the heisenberg hamiltonian with DMI

as,

i
we've used the vector relation, A - (B x C) = B - (C x A). this hamiltonian can be

written as H = —gup >, S; - HY/| where the effective field,

1
HW:aTExﬁﬁImxw+H (B.3)
B X
J

we apply S; — M/gup thus gain,

Z
HT = i (JM+D x M)+ H (B.4)

thus the magnetization,

c( z
M= ((gu3)2 (JM+D x M) + H) . (B.5)

where C' = (gup)*S(S +1)/(3kp) is the currie constant. Eq. B.5 can be written as,

T 1 Cgpp)?
M= (Ligumz—ca) Gl y (B.6)
A Z
where A = A(J, D) is given by,
J —-D. D,
p— D, J -D (B.7)
(9up)? : I .
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The inverse susceptibility, x;! = H,/Mjzs and x|' = H, /M, 1,

1 (T + Ocw)® + (HCJW) (T + Oow) |DI?
i C ((T+bow)* + (%92)” D?)
L (T 0ew)* + (%59) (T + bew) | DP?

o C((T+bew) + (52)°D1) o

The asymptotic expansion of Eq. B.8 in D (with x = T + 6w ) reveals,
2
_1 l‘ ecw 2 2 1 1 HC’W 2 2 2 1
— | = DI*—D)— — | — D D, + D,

+5 (907W) D} (D% + D?) i+O (;7) (B.10)

i.e., in a mean-field macroscopic approximation the DMI does not change the Currie-

Wiess constant, oy .
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