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Abstract

The temperature dependence of the absolute resistivity of Y BasCu3zO7_s, Las_ST,CuOy,
BiySroCayn—1CupOopia—p and (CagyLay—y) (Bay 75—y Lag 25+, ) CuszO, thin films is reported,

with special attention to the resistivity slope near 7. and under 7™. The results are

compared with the Lindner-Auerbach (LA) theoretical version of Homes’s law 2 =

77.37875;12 A2(0) where j—:’;(TC) is the slope of the resistivity at T., A(0) is the super-
conducting penetration depth at 7" = 0, and n, is the carrier charge in units of e. Good
agreement between theory and experiment on all materials is achieved forn, = 1.72£0.15,
which is very close to the expected n, = 2 for Bosons. This finding indicates that the LA

formula is self-consistent and supports the growing belief that cuprate superconductivity

emerges from preformed cooper pairs.



HTS High 7T.Superconductor

GL Ginsburg-Landau

HCB Hard Core Bosons

BCS Bardeen Cooper Schrieffer

SIS  Superconductor Insulator Superconductor (Junctions)
HP Holstein Primakoff (Mapping)

RGP-FT Relativistic Gross Pitaevskii Field Theory
BKT Berezinskii Kosterlitz Thouless

SR Muon Spin Resonance

NMR Nuclear Magnetic Resonance

ESR Electron Spin Resonance

R-T Resistance Vs. Temperature

BEC Bose-Einstein Condensation



Introduction

Two major discoveries were made at a very early stage in the study of cuprate super-
conductivity. One is the Uemura relation for underdoped samples [26] : T, oc A2 where T..
is the superconducting transition temperature and X is the magnetic penetration depth.
This relation was derived using the Muon spin rotation (uSR) technique. The second dis-
covery was that for under and optimal doping, at temperatures 7" above T, the resistivity
p obeys p oc T'. Later on Homes extended the Uemura relation and showed that a broader
relation holds for both under and overdoped samples: p;(0) o< o(T..)T. where p,(0) is the
superfluid density at zero temperature, and o(T..) = 1/p(T.) is the conductance at T, [14].
This was achieved with optical conductivity. In many low doping models ps(0) oc A72(0)
where A(0) is the penetration depth at zero temperature. For both Homes and Uemura
laws to co-exist o(7,) must be universal for all underdoped materials (at least from the
optical viewpoint). Neither Uemura nor Homes predict the constant of proportionality in

their laws. Then came Lindner and Auerbach (LA) and with the hard core boson (HCB)

model managed to derive the relation p(T) = 77.378 (%‘3))2 I%QT where the Boson charge
ng = 2, to four significant digits [19]. This LA derivation clearly generates the Homes law
but is more general; it also captures the linear resistivity and provides the coefficient of
proportionality. The HCB model is expected to be valid for temperature lower than T'x
where pairs are suppose to start forming in the cuprates. Due to impurities, experimen-
tally p(T = 0) # 0 in some cuprates. Therefore, it is more practical to write the LA law in
a differential form n? = 77.378%)\2(0)/3—;. When comparing their model to Homes data,
LA achieved an agreement on a logarithmic scale, which is not very accurate [19]. In this
work we intend to check the LA law as accurately as possible. We use D.C. resistivity
measurements versus 7' in films to determine j—; in geometry and material independent

form. We extract A\(0) from the literature. Our strategy is to assume that the HCB have

charge nge (rather than 2e) and use Eq. 96 in Ref. [19] to extract the experimental n,.



Finding n, similar to 2 would means that the HCB model is self-consistent, and a very

good starting point for understanding the conductivity in the cuprates.



1 Theoretical Review

1.1 Homes’s Law

Homes’s law is an empirical relationship for high temperature superconductors between

T, ps(0) , and op ¢ (Tc). The law was written by Homes as

ps(0) = 1200 ¢ (Te)T. (1)

where a denotes the crystallographic direction in case of anisotropic superconductors
[13][14]. Homes’s law holds for copper-oxide HTS’s regardless of doping level or dopants

kind (electrons-holes) as presented in Fig. 1 [[13]].
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Figure 1: shown Homes’s law as presented in the famous publication of July 29" 2004 .[13]

The uniqueness of this relationship originates from the fact that it connects physical quan-



tities of the condensate well below T, and above, offering a notion of universal scaling law.
Regarding the a-b plane conductivity, Homes assumes [14] that all of the spectral weight
(the area obtained from the integral of the optical conductivity) of the free carriers in the
normal state (n,,) collapses to the condensate below T, (n,, = n) .Also, the low frequency

conductivity close to T, from above, may be described well by the Drude conductivity for

metal o (w) = 1125 according to Homes which in this work approximates the spectral

weight (area of the Lorenzian) to 22<-. From Transport and reflectance measurements on

T

copper-oxides Homes found the D.C conductivity by fitting to the Lorenzian. According

to J.Orenstein [20] the scattering rate 1/7 near the transition scales linearly with T, so the

in-plane (a-b) conductance and the condensate strength scales to p¢(0) x 6% - (T'¢)T,. In

the c-axis, it is conceded that transport is incoherent and hopping governs the physics, this

motivates the picture of a Josephson-coupling description for the inter layer conductivity.

Homes in his work extracted the c-axis penetration depth by measurement of the critical
he?

current J, and using the relations \? = sra_c7. Where a. is the layer separation in the c-axis
(& c

from which p; is extracted. Using the relations J. = (7A/2eR,) tanh (A/2KgT) where
A is the superconducting energy gap, and R,, = a./op ¢, he scaled the D.C. conductivity

with the superfluid density and T, in the c-axis as well.

1.2 The London Equation

Here we explain the concept of superfluid carrier density. One of the prominent features of
the superconducting state is the absolute screening of a static magnetic field; the Meisner
effect. The calculations done in the London framework provide a good approximation to
the microscopic picture avoiding the details of the Ginsburg-Landau (GL) or the more
basic BCS theory for the classic superconductors type I which reduces to the London
theory once fixing ps to a constant in real space (no fluctuations in charge density). The
London theory takes the penetration depth A (7)and the critical field H,.(7)as input

parameters, hence provides only a phenomenological explanation for the Meisner effect.



The main assumption in this theory is that the classical vector potential Ais proportional
to the current density .J [25] through a proportionality quantity p, which is defined as the

superfluid density

[

J=2x 2)
mc
hence,
VxJ=""B (3)
mc
according to Maxwell’s Eq.
T P
VxB=_" (4)
c
applying the curl on Maxwell’s Eq.
- - = 93 - o dmep, =
VxVxB=VE-V(V-B) =" (5)
mc
0
Thus,
o A4mwe? o

For a sample on the ZoY plane with applied field on the z direction, a solution in the x

direction would be

B. (z) = Bye ™/ (7)

1 _ 4me’ps
22T Tme

when an exponential decay of the field inside the superconductor.
There are many ways to measure the penetration depth A, including microwave reflection

|8, 11], NMR [18] magnetic susceptibility measurement [10] and many more. The most



accurate is the Low Energy Muon Spin Resonance LE-uSR [17]. A low energy ray of
muons at the required intensity is generated from two body pion decay. When high
energy protons (over 500 MeV) collides the target nuclei of light element such as carbon
or beryllium, it maximizes the production of 7, which life time is around 26 x 107%[sec|,

followed by a decay to Muon and Muon neutrino as shown in Fig. 2.

High
Energy Carbqn or
~_Proton Beryllium
—, Nuclei

Neutrino

A |
*Q
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4

Muon

Figure 2: Muon Ray Production process

In this method, a ray of sufficiently slow muons is aimed towards the target material
arriving nearly 100% spin polarized. When the Muon decays it emits a positron prefer-
entially at the direction of its spin. From the anisotropy of the positron distribution, the
spin polarization of the Muon ensemble’s statistical average can be deduced, hence, the

local field is estimated.

1.3 Hard Core Bosons, A model for cuprates superconductivity

Hard Core Bosons (HCB) model originates in recent studies that have shown very short
coherence length £ [15] for superconductors of the cuprate family (HTS’s) in comparison

to the unit cell size. The coherence length is usually deduced from the upper critical field

H.5. The coherence length is given by H. = 2;’:22 where ¢y = % is defined as the flux
0

quanta. In some cases, such as YBCO, (H., > 100[T] @4.2[K]) as shown in [30]|5], Fig.

3 is extrapolated from the MF formula & (T') = %. This gives a typical value of
T Tc
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Figure 3: Critical Field Hco in YBCO as a function of doping [5]

about ~20[;1] which is around 5 lattice sites (a — 3.82 A, b = 3.89 A, and ¢ = 11.68 A)
at zero temperature.

Those observations imply, that the spatial separation of paired electrons in HTS’s is within
a few lattice-constant scale.

One way of understanding/achieving superconductivity effective model, is considering a
strong attractive interaction between 2 charge carriers of the same kind. This attractive
interaction must overcome the coulomb repulsion interaction, and could be mediated by
lattice deformations (phonon) or spin fluctuations (magnons). Once the idea of a low
energy bound state of 2 electrons is accepted, the Bose-Einstein statistics may be applied,
and a condensate of such bound states would be a useful idea providing an intuitive

explanation for superconductivity at high temperatures.

1.3.1 The Boson Hubbard Model

We now introduce the Boson Hubbard model; an effective model originated from the
strong coupling regime of the fermionic Hubbard model presented in appendix A and B.

The Boson Hubbard model is an approximated model that describes the dynamics of a



bosonic particles on a lattice in terms of annihilation and creation operators. The kinetic
term is coupled with the letter J and describes the transfer of the bosons on a lattice
between nearest neighbors annihilating the boson in site j and creating a boson in site ¢

as shown in Eq. 8

H= =27 (b + hc.) = pY i+ DT, (8)
i (i.7)

(i.3)
The second term coupled to the chemical potential and descries the energy of a site by
adding /removing a particle summed all over the lattice, where 72 = b'b counts the number
of particles at each site, in the HCB model n; = {0, 1}supporting exclusion. The last
term introduces the Ising anisotropy coupling term and accounts for site-site interaction
for anisotropic material. In some cases this model may be mapped into a model of spins

on a lattice as elaborated below.

1.3.2 Holstein-Primakoff Mapping of the HCB model

The Holstein-Primakoff suggested the mapping from spin raising and lowering opera-
tors, {ST,57, 5%} to creation annihilation operators {b', b}.The transformation is pos-
sible under the assumption of low temperatures, thus low probability for high excited
states/occupancies to exist. It is done with respect to 1/s as a small parameter (even

though in our case s=1/2, it is still relevant). According to Holstein-Primakoff we get

) n 1/2
+ 2 (q_ T .
St =5 (2s) (1 23) b; (9)
) " 1/2
- 1/2 11 o ni
S — (25)2 0! (1 23) (10)
S7 s — iy (11)

10



Given this transformation, the multiplication rule remains with similar structure, [bi, b;] =

8ij > [Si7, 5] = 26357, as claimed.

i Mg

Now let us apply the HP transformation on a specific Hamiltonian which will serve the

HCB model

H=-> J;S;Sf (12)
i
1/2 Fo\ 1/2
bib; bib;
:_§ (28 )l [ 1 — 22 1 - 27 , 1
oy JU ( S) b’L < 25> ( 25 ) b] ( 3)

Now perform approximation with respect to large S to first order in 1/s

i#j

when Ey = —s?YJ;; and b*correction are neglected. In this case the HCB is mapped into
1#]
the spin Hamiltonian (20)

H=—2J3 St SF—pd Si+Y Jis:s: (15)
(i) i (4,9)

where S* = (s,, s,) and a quantum XY model is achieved.

1.3.3 Electromagnetic Coupling in the HCB

Discussing the paired fermions creating additive spin zero Bosons, the Zeeman term triv-
ially vanishes and the coupling to the classical field is carried via the kinetic term alone.

Consider the one particle Hamiltonian schriodinger’s kinetic term in magnetic field

,_ (7=od) 1o

- 2m

under the transformation

11



the eigen problem becomes

<ﬁ_ q/f)z Y ﬁa / /
Hk|¢o>=T|¢o>=E|¢o>—>Hk|1/f>:%|¢>:E|¢> (17)

instead of the minimal coupling, we let the wave function accumulate additive phase
between spatially separated locations and gain the ability to use the same Hamiltonian

as in the case of A = 0.

Proof
p(e 11 79y) = —ipe 1/ A40 (_%‘Wo + Wo) (18)
p (e T A 9my) = T2 (5 g X) vy (19)
Therefore,
(W HE=O) = (ol M7 |tbo) = B (20)

up to a global phase the states are equivalent and the observables are identical. Translating

this symmetry to the kinetic term of the Hubbard model we achieve

b;rb] — B%Aij BIE]

when,

12



Ay :/ZA?dF

J

a particle is destroyed at r; and created at r; according to the creation/annihilation
operators,while accumulating the phase dictated by the applied vector potential along
that path.

Coupling the HCB model to electromagnetic field, the kinetic term acquire phase while

propagating

HICB = —QJZe%]A”l;IBj + h.c = — QJZG%A”S;_S; + h.c. (21)
(i,5) HPT (1,3

hence, derivation for the kinetic term in the Hubbard model coupled to the vector poten-
tial. At this stage, we can verify the London hypothesis regarding Eq. 2. the quantum
mechanical current density term in real space may be written in the presence of the vector

field as

7 _ CIh * * q2 *
—%{@/} Vi — Vi }—EAM} (22)

Relying on the fact that there is no Zeeman term in our Hamiltonian we can also show
that the variational derivative of the kinetic term with respect to the vector field leads to

the same current density

. 2
E = / ¢*%¢d3x (23)
oE h 2 -
== VY Ve + Dagty = ] (24)

on the other hand
oF 7> E ¢
= A —— —
SA " Pt T s T P

(25)

13



According to Eq. 25, one may calculate the superfluid density which is also the condensate
density 1) = n, in the framework of the HCB model by variation of the energy w.r. to

the vector field.

1.3.4 The Current Density Operator in the HCB model

We now explain who conductivity is calculated in the HCB model. Our frame of work here
describes strongly interacting electrons with the coupling constant U, perturbed with the
kinetic term of energy ¢ which allows the HCB to hop between any two adjacent lattice

cells. First we will define the momentum span for the creation/annihilation operators
b= —— > etk
- 1
VN~

1 )
blt: = \/_sz;fefzkn

and the reverse transformation

1 ,
by = —=» bre "
gD

1 )
bl = —= bler
VN4

By writing the kinetic term we get the dispersion

_ -

Hy = e kTR Tp 4 he. (26)

kK (i,5)

in one dimension to get the current in the x coordinate for example we will get

Hy = —2J Zcos (ka) blby + h.c. (27)
k

14



the phase velocity is the derivative w.r. to k

. 10E, —2J _ 0b Oby,
Uphase = 7 or = k (—asin (ka)) + cos (ka) [(‘%kbk + bl 8k] (28)
0
by plugging in the reverse transformation we get
- —i2tJa
Uphase = i ijb] - b;[bl (29)
<7]>

remembering the number operator this is the number of particals moving in the positive
direction of the x coordinate subtracted the number of particals moving in the negative

direction. Therefore the current density operator is given by

Jr =2 ;bibj—bjbi (30)
)]

Applying again the the HP mapping we get the spin operator version of the Current

Density

- 1Jaq t t 1Jaq _ _ Jaq z x
Jr =2 Zbibj—bjbi:—zTZsfsj — S8, :4725; SY—SYST (31)
(4,3) (4,5) (4,3)

Finally summing on spatial dimensions, the lattice constant a may be inserted into the

summation index r

= 4—25153% SY5® (32)

r~r+x

and the Current operator of the HCB is obtained.

15



1.3.5 Conductivity and Current Correlations

The linear response expression for current density is defined by the spatial /time convolu-

tion integral

J(r,t):/ dt’/dr’E(r—r',t—t’)E(r’,t’)

while the interaction that governs the dynamics is given by

V:—E/J-Adr

C

while

10A
c Ot

For a vector potential of the form

A (r,1) = Agella—e

we get the relations

and we get

0

J(r,t):?w/ dt’/dr’ﬁ(r—r',t—t’)A(r',t’)

Now let us see the dynamics for our vector potential

1 .
V=—- /A (t)J (r) e Tdr = —KA t)J (—q)
c c
by the Fourier transformation defined as

16

(34)

(36)

(38)



1 )
=y [Iwe (10)
V
Applying perturbation theory the evolution operator to first order

t

Ha) U 0I@UW = P+ [ Bao v ola @
where
I (q,t) = ei?'J (q) e i (42)
and
V(1) = —C A (1) e (—qye i = LA ()37 (~q.1) (43)

allowing only [A (t),Ho| =0, i.e., a classical field. Taking the thermal average on these

quantities we achieve

t

(ot t) = Ohlat) + 5 [ (BL@0.3Catas)a ()

Since the first term exists for zero field, we deduce it represents persistent currents. we
will continue further analysis considering the main interest, excitation of current with
external field, (J! (q,t)) = 0. On the other hand, let us return to our initial definition of

the current density using the chosen field A

. t
wV

J(r,t)= %w / dt’ / dr'z (r — 't —t") e A () ' = ; At (q,t —t) A (t) "

— o0

(45)

from which we may extract J (q,t) as

17



3 (q.1) :@ N (46)

—o0

and by comparing to our thermally averaged formula we get
1
Oag (a1 = 1) = =([Jo (a,1) , 5 (=q, 1)) (47)

defining the Time domain Fourier transform on positive times only assuming the pertur-

bation begins at ¢ = 0 we get

T (@) = 7 [ (3L (@.0),35 (~a.0)])e (43)

Finally using the results of appendix C we get the fluctuation-dissipation relations

%tanh (%iw) /OO({JQ (@,1), 3% (—q,0) })eldt = 005 (q,w) + ol (q,w)  (49)

when {-}stands for the anticommutator.

1.3.6 The Auerbach-Lindner HCB conductivity

Considering Eq. 32,49, the conductivity may be calculated in the framework of the HCB
model.

Using the Relativistic Gross-Pitaevskii Field Theory (RGP-FT) and Variational Harmonic
Oscillator (VHO) up to 12"moment [19], LA have shown that at high temperatures the

two dimensional resistivity p*” is approximated by

p*P(T) = 0.23RQ§ 1-29 (%)2 + 0O (%)4 (50)
o= o oy



where n, is the Bosons charge. They also have shown that the two dimensional superfluid

stiffnessp?? (0) = 1.078J. Alternatively, to first order in 1/7, this can be written as

dpQD RQ
—— =0.245——+—. 52
a = "0 o
From this formula, and o?P = 1/p?", a natural HCB version of Homes’s law
p2P (0) = 0.2450°P(T.)T. (53)

arises, provided that p?”(0) = 0. To relate the two dimensional quantities to the multi-
layer 3D systems, we define the 2D critical conductance using the measured 3D resistivity
by
P —— (54)
p

where a, is the inter plane distance.

Similarly the zero temperature 2D Boson superfluid stiffness is given by

2
pQD — pSD _ (hc)” a
s e 16me? A2,

(55)

where )\, is the London penetration depth when the applied field is perpendicular to the
plane.
Eq. 52 leads to a relation between resistivity derivative, penetration depth, and the
Bosons charge given by

dp KB

— = T7.378

2
dT nghc2 A(0) (56)

Eq. 56 is the main equation which we use to analyze our data, where ni arose from the

definition of quanta of resistance written in 51 .

19



1.4 Four Point Probe sheet resistivity Measurement Method

Resistivity measurement is the cardinal technique in this thesis. Due to that understand-
ing, it was important for us to see first that we can measure absolute resistivity of thin
films with small variation as possible due to different geometries, heights and even system
of measurement. The main technique for that purpose is based on F.M. Smits’s|[22] arti-
cle, Measurement of Sheet Resistivity with the Four-Point Probe. First, we will establish
the underlying understanding of the method.

Imagine a current source (injector) in contact with 2d infinite conducting plane at a
point set as the origin of a polar coordinate system. The current density at a distance r
from the source is given by j = ﬁ . The electric field on the conducting surface is set

by f: oE. This necessitates a logarithmic potential

p—po=—5"ln(r) (57)

where p = 1/0 is the 2d sheet resistivity and ¢is the electric potential. In a dipole current

source (A + ) and a current drain (A -), the potential difference is

[p 1
—p;=—In|— 58
P2 — 1 o (7“2) (58)
In the case of a Four-Point Probe measurement, as shown in Fig. 4, the two external
probes are used as a dipole current source and the remaining (internal) two, function as

the voltage measurement probes. For an infinite sheet with equal spacing between all four

probes we get a total potential difference of

I
Ap = Lin2 (59)
T

In this case the infinite sheet resistivity will be

20



Figure 4: rectangular sample Four Point Probe setting

p==r5 (60)

The problem of a finite sheet was treated by F.Ollendorff and Smits [22/. Employing
similar techniques, we were able to compute an exact term of the electric potential for the
suggested geometry and therefore compute the exact correction factor as displayed in Eq.
63. Our exact calculation was then compared to the one offered in the Smits calculation
numerically. We introduce an infinite images to the original current source and drain, in
such manner that the perpendicular component of the current at the boundary of all the

images cancels completely due to the symmetry as shown in Fig. 5.

Figure 5: A system of infinite images of the explored geometry
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We then sum the potential difference between the two inner probes due to the images.

First step is finding a term for the spatial positions of voltage probes

e = (md,s+nl) (61)
Ffm = (md,nl —2s) (62)

Where the index (a,b) in the vector r (Eq. 61, 62) stands for positive source location (a)
and negative source location (b).
The potential difference between the two inner point is then achieved by a summation

over all point sources

Mg = 2% LS (1) i (irgl) — o (|7 )] (63)

n,m

Aprp = %Z(—l)nln < (md)” + (s 4+ nl) > (64)

(md)® + (nl — 2s)”

The summation have shown very fast convergence as presented in Fig. 6, where different
values of dimensions (I,d) have been chosen. Each line represents a different length,
the horizontal axis represents different width and the distance between the contacts was

chosen to be a constant of 2[mm].
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Figure 6: The normalized correction factor of different dimensions.
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2 Experimental Method

2.1 Thin Film Deposition

In this work, thin superconducting films were deposited using Pulsed Laser Deposition
(PLD). In the process, a high power pulsed Laser beam is focused onto a rotating target,
inside a vacuum chamber as demonstrated in Fig. 7. We have used the third harmonic of
Nd:YAG Laser with wavelength A\ &~ 355[nm/| ,pulse duration of 10nsec with repetition rate
of 10H z which translates to 1[J/cm?] average fluence on target. A rotating target absorbs
the high energy Laser pulses in a very thin surface, and as a result the target material de-
composes to a radiating (within the visible spectrum) jets of excited atoms and ions called
plume. The rotation of the target prevents melting or overheating. This technique is usu-
ally done at ambient vacuum of 107%Torr, for oxides growth, such as in this work. After a
vacuum is achieved, a constant stream of oxygen is injected into the chamber while being
pumped at the same time, maintaining constant 0.17orr pressure . The plume is oriented
towards the growth substrate which is preheated for Y BayCuzO7_s(YBCO) for example
to 980°C. The substrate is chosen to match to the lattice constant of the target mate-
rial. We grow YBCO, (Ca,Lay_y) (Bay 75—3Lag 25+4) CusO, (CLBLCO), Las_,ST,CuOy
(LSCO) and BiySroCay,_1CupOoniyr (BSCCO) on 10 x 10[mm?] SrTiO3(STO) with

caxis normal to the wafer.
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Figure 7: PLD - Laser ablation system. In the right bottom corner a plume image presented.

With these settings, the average growth rate can be estimated as 1.1;10f single crystal
layer per 10 Laser pulses. After the deposition the film is cooled down from 980°C' to
400°C' at rate ofl000222> When the film reaches 870°C, the chamber is filled with
Oxygen at 300[Torr| until a temperature of 400°C' is achieved. At this stage the doping
is determined and the film is left for anneal at 400°C, 300[Torr|for two hours, then the

temperature drops at 600% to room temperature.

2.2 Photo lithography - “Wet” & “Dry”

Every geometrical shape of deposited film in this work was made in a multistep process
of photo lithography. After the target material is deposited on the STO wafer, we applied
two layers of water-less positive photo-resist (PMMA) 0.5[um] and 1.5[um] thick coated
with a spinner at 3000 and 5000 rpm respectively, then the PMMA is left for 20 minutes
bake at 170°C. Next, the sample is transferred into a deep UV mask aligner and exposed

through the contact mask for 110 minutes. After the exposure, the photoresist is developed
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in a MIBK solution then baked again for 20 minutes at 100°C.

e Wet etching - Wet etching is obtained using acid reaction on the exposed areas
(uncovered) that were previously patterned on the sample. Using HC!l or H N Osacid
at concentration of 1% for 3 seconds followed by water wash to stop the reaction. The
PMMA is then washed off with acetone, stream of nitrogen and finally isopropylene

cleaning terminates the process.

e Dry etching - In this method we accelerate Ar Ions onto the sample that is glued
with silver paste to a 45° tilted copper block holder. During the milling the sample
is cooled to 190°C' using liquid nitrogen flow through the chamber to avoid over
heating and rapid doping changes in the sample (oxygen loss). The argon ions are
accelerated through 200[V] electric potential for a short “cleaning phase” and then
under 500[V] throughout the process, in which the argon ions remove exposed film
areas in a constant milling rate. Then a similar washing procedure is carried out.
We present R Vs. T results obtained on bridges that were made in Gad Koren’s

laboratory in Fig. 10.

A common approach for absolute resistivity measurements includes bridge production, in
order to eliminate the complex geometrical aspect of the relationship between resistivity
and resistance. A bridge is a very narrow stripe of material connecting two infinite areas
of material relatively to its width. In our first attempt to measure the absolute resistivity,
we prepared several bridges like the one presented in Fig. 8 using wet etching. An AFM

image of one bridge is shown in Fig. 9.
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Figure 8: A bridge contact mask design

Figure 9: A bridge AFM image top view

A large deviation in the temperature dependent resistance measurement was found for
these bridges as shown in Fig. 10. This result from spatial non uniformity in comparison
to the bridge dimensions, and acid damages. We therefore abandoned the wet etching for
thin films structures. We also found as discussed in details in sec.3.1, that dry etching
has limitations. This lead us to use the Four Point Probe Sheet Resistivity Measurement

discussed in the theoretical review.
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Figure 10: A Bridge resistance measurement - antinode direction wet etching production.

2.3 Measurement System

The Resistivity Vs. Temperature measurement was made in the Four Point Probe tech-
nique, in this way contact resistance are eliminated and small resistive samples can be
examined. Two outer probes flow constant current while the two inner probes measure
the voltage as shown in the section 1.4, in this way, very little current passes through the
voltage probe and the contact resistance which is varied in our contact structure as 50[(2]
and is therefore negligible. The examined film was inserted into Oxford cryostat that is
protected from the earth’s magnetic field and other background fields using mu metal
shield, the cryostat is then pumped to maintain low relative pressure and connected to a
Helium Dewar in higher pressure relatively shown in the schematic diagram in Fig. 11,
initiating Helium flow through a special layered tube into the cryostat. The temperature

is probed and verified using two temperature detectors, one is a thermocouple based and
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placed at the bottom of the cryostat and another one (diode) in proximity to the sample

on the main sample probe.

Probe With sample

Cryostat

Helium

7

Dmge Temperature Helium Recovery
reacer system

Pump

Current source

PC

voltage meter

Figure 11: A Schematic diagram of the R-T measurement system

Our measurements are carried using constant current in toggle polarity mode, after
verification of linear I-V plot in the current regime examined (~ 10 — 150[pA]). The
Resistance was then calculated by R = % numerically, for each temperature interval

then averaged typically 10 times for each point in the Resistance Vs. Temperature (R-T)
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curve. Finally, the resistivity was extracted by multiplying the resistance by the film

height and geometric factor calculated for each film separately in the case of rectangular

HeightxWidth

Length in the case of a bridge. The film

film measurement, or simply p (T') = R (T)
height and bridge width were measured using step measurement on the AFM as Shown in
Fig. 12. Fig. 12 shows two different AFM step measurements done on the same sample

taken from opposite sides revealing the same average height of 100 [nm)].

Figure 12: A 8D AFM imaging of a step measurement
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3 Experimental Results

In this chapter we will present our main experimental results regarding absolute resistivity
measurements on HTS’s using thin films. The experimental data is composed of optimal
doped YBCO, LSCO, BSCCO and CLBLCO, and divided into two main sections. The
first section contains all YBCO measurements. We present results on different films with
various heights, lengths, widths and distance between contacts. The raw data are factored
with numerically calculated geometrical constant. and the validity of this procedure is

checked. The second section contains LSCO, BSCCO and CLBLCO measurements.

3.1 Temperature Dependent Resistance-Resistivity Measurements

on YBCO films
We present in Fig. 13 a simple -V measurement of YBCO film of typical geometrical
dimensions. The data is taken at several temperatures above T.. A clear linear relation

is demonstrated up to currents of 140 uA. All our subsequent measurements are done in

a current of 100 A, which is in the linear regime.
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I-V Measurement on YBCO film
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Figure 13: I-V Measurement at various temperatures on YBCO film

To check the validity of Eq. 63, we produced YBCO films of various geometries and
measured their resistance as presented in Fig.14. Fig. 14 shows seven different films
with height 2z, width d, length [ and distance between contacts s, in units of millimeters.
Layer (a) demonstrate the resistance before the geometrical scaling. Layer (b) is the
resistivity extracted from the resistance employing the geometrical scaling. The linear,
geometry independent, resistivity immediately above Tc is the most important part of

our measurements.
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Figure 14: YBCO thin films resistance measurements, raw data of the resistance (a) and resistivity

after eliminating the geometrical dependency using the geometrical factor (b).

Fig. 15 demonstrates the resistance for dry etched bridges. The resistance is measured
on a series of bridges produced from the same wafer, and patterned in the same direction
(anti-node/node). There is no justification of any correction factor in this case. Two
elements are clear. For bridges, the transition is more rounded above 7, and the scatter
between one bridge to the next is not particularly good.

To quantify this aspect we took the derivative with respect to temperature for both films
and bridges and generated a histogram. The normalized histogram is depicted in Fig.

16. A significant variance in the slope is shown for the bridges compared to films, which
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demonstrates the ambiguity in defining the resistivity slope under T*using bridges.
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Figure 16: A normalized histogram of the Temperature dependent resistivity slope , comparing between

bridges and films.

Since our main interest concerns the derivative of the resistivity with respect to temper-
ature under 7™ and above T, in order to extract the HCB charge using the resistivity
slope. Since films prove to give a more reliable result, all other measurements were made

on thin films. These will be presented in the following section.
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Figure 17: Magnetization-Resistivity measurement of two different films, the magnetization is taken
from a fraction of a film for homogeneity verification.

In Fig. 17 we show temperature dependence of the resistance and magnetization of a
typical YBCO film. T, = 88K defined by zero resistivity or zero magnetization agrees
between the two methods and transition width of 4K is observed. Most important in this
figure is the fact that the resistivity extrapolates to zero at zero temperature as expected
in optimally doped YBCO. In addition, linear temperature dependence starts only ~10K

above Tc. This is a unique property of YBCO films.

3.2 Absolute Resistivity Measurements on various HTSs

After achieving a measurement method for the absolute resistivity with lower variance
of the slope with respect to the temperature, we have measured LSCO, BSCCO, and
CLBLCO (x=0.1) as well, at optimal doping, as presented in Fig. 18. A pure linear
behavior is observed only in YBCO. In LSCO the substrate reduces T, from the bulk
value considerably due to lattice parameters mismatch. To simplify our analysis we focus

on the temperature range of 100 to 200 K which is higher than 7, higher than the region
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Figure 18: LSCO,BSCCO,YBCO and CLBLCO absolute resistivity measurements

of fluctuating superconductivity, and lower than 7™ | for all materials.

Fig. 19 shows the first derivative of the resistivity as a function of temperature. As
expected, the derivative is a constant only for YBCO. For other materials it varies with
temperature but not by too much. We treat the derivative as a statistical variable and

assign to each material an averaged resistivity slope and standard deviation.
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Figure 19: First derivative of to raw data.

Fig. 20 shows the average resistivity slope Vs. A2, The standard deviation is used
to generate the error bars of j—;. The penetration depth is taken from previous puSR
measurements. T'able 1 provides the A values and the sources from which it was obtained.
For YBCO ) was obtained in a theory free method using slow muons and the measurement
error bar is known in this case. For the other materials the conversion from standard Muon
spin relaxation to A involves theoretical arguments and the error bar is not known.

Two straight lines are also give in Fig. 20. The LA line is based on Eq. 56 of section 1.3.6
with n,=2. In the LA line there are no fit parameters. The “best-fit” line is the best linear

fit to the data which passes through the origin. To convert the best fit to comprehensible

LA slope __
Fit slope ~—

unites we convert its slope to an effective boson charge ngf f ngf f=2.
1.72 4 0.15. Notice that the best-fit line passes through the YBCO data point where the

resistivity slope was independent of temperature.

| | Alnm] | Source |
YBCO | 146 |[15, 17]
LSCO | 210 | [9][§]
BSCCO | 270 [21]
CLBLCO | 250 | |16]

Table 1: List of A values Vs. sources in literature
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Figure 20: The scatter of the resistivity slope Vs. X2, near T, and far from it for various HTSs.
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4 Conclusions

The linear relations between the resistivity near the transition temperature, 7., and under
T* for optimally doped YBCO; which is the cleanest cuprate was verified. The LA version
of the Homes’s law A\?(0) o %(TC) is also verified using different materials and on a linear
scale. The acquired data was then analyzed and compared to the LA analysis of the HCB
model (HCB) . The free parameter in this model is n,, the mean effective charge of the
hard core Bosons in the normal phase. If the model would have describe the materials
perfectly, we should have found n, = 2. We found n, = 1.72. n, is close to the model
initial assumption of HCB with charge 2e. The model is therefore almost self consistent.
This conclusion supports the growing belief and other experimental data in the existence
of preformed pairs (cooper pairs) at temperatures above T, [29, 24] .

However, the HCB model requires an additional theoretical work to describe better the
cupratic HT'S’s dynamics. It is a disorder free model and does not take into account pos-
sible fermionic excitations above T, and higher temperatures. It also overlooks anisotropy

that is common among the examined cuprates |28, 27, 9, 2| and could possibly benefit by

handling also doping variations.
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5 Appendices

5.1 Appendix A - The definition of a fermionic state

Let us note the occupied state on the vacuum by f;fgi|0> = i, (r)when i, cand r are
lattice site numbering, spin polarization and position coordinate accordingly. Using these

notations, an N fermion excited state is compactly written by Slater determinants

¢1701 (Tl) U ¢1,01 (TN>
Fhonds o fi 51 10) = : z 10) (65)

ONoy (T1) =+ ONoy (TN)
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5.2 Appendix B - The Hubbard model and the strong interaction
regime
5.2.1 The Hubbard Model

Maintaining the canonical fermion anti-commutation relations required { fios f}a,} =0,
and of course the annihilation operator on the vacuum ground state f;,|0) = 0 and
defining the number operator, n, = fiai fi.o;which counts the number of excitations per
site. Now let us introduce our Hamiltonian, counting only states that account for particles

exchange /hopping between nearest neighboring sites with no spin-spin interactions

H=- Ztijfggfj,a (66)
2%
H="H,+ MZfIafi,a = Z tijfl o fio + MZfiT,gfi,a (67)
i i i

Let t;;be non zero for nearest neighbors only and add an attractive interaction between
two charge carriers with opposite spin polarization in the z direction, as well as counting
only for ¢ # j in the kinetic term while for ¢« = j, the number, operator will be summing
the occupation energy, hence, the chemical potential pas written in (3).

Now let us take interest only on the kinetic term with the addition of an attractive in-
teraction term between two electrons and equal hopping energy between nearest neighbors

lijy =1, 0.W. zero

H = —tz (fj,afjn + h.c.) — Uannu (68)

(4,5
The negative sign of the interaction constant U forces the formation of charge carrier
pairs of opposite spin polarizations and the hermitian conjugate in the kinetic term repre-

sents the invariance of motion in all directions which is written due to the summation of
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each interaction once in these notations in comparison to (2). This Hamiltonian is called
"Negative U Hubbard Model". several polarization mechanisms have been proposed to
explain this interaction amongst spin fluctuations (paramagnons) and lattice deformations

(phonon) as mediators.

5.2.2 Strong Interaction Regime at Half Filling

We will consider the strong interaction regime, at low frequencies/temperatures, where
the time scale for the polarization mechanism (the negative U interaction source) is con-
sidered to be immediate relatively to the hopping time. The negative U term favors local
paring of spin up and down while the hoping term (t) competes with it and delocalizes
electrons and as a result unbind pairs[3]. In this case we will consider the kinetic term
as small perturbation to the pairing term up to second order (U > t) and apply the
Bouillon-Wigner perturbation theory|7|. For simplicity, we will deduce the bounded elec-
trons coupling term considering two neighboring potential wells a,b. The Hilbert space is

spanned by 6 possible configurations with the eigen states

\l> = foL!@

Ir) = £l £:10)

) = £l £510)

|d) = £ £,10)

le) = f1, fi10)
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1f) = flfhlo)

The unperturbed Hamiltonian Hy = —U) niyni = —Ungng — Unpyng, with the
i

eigenvalue —U for states |l), [r)and zero energy for the states |c), |d), |e) and|f). Assume

H =Ho+V, then (Ho + V) [¢)) = E|ih), and [¢)) = 3 ¢;]i°) when |i) = [1),[r), |c), |d), |e), | f), ci =

ScVand E =S E@. Then
J J

(Ho+ V) [¥) = ZczE %) +ZcZV|z =D _aBli) (69)

D a(E-E)|i® =Y aVI]i°) (70)

7 7

Multiply by [(k°| obtains

v (B — Ey) Zcz (K°| V|30 (71)

Define Vj; = (k°| V' |i°) and rewrite the equation

k(B — Ey) = chv,m (72)

For the ground states defined as |g) — |l), |r)we get at zero order the equations

] (E - El(0)> = Cl%l + Cr‘/lr + Zcmv;m (73)
m#g

Cr (E - Eﬁo)) = Cl‘/;"l + Cr‘/rr + Zcm‘/rm (74)
m#g

The perturbation can relocate one fermion at a time, therefore

Vim = (i| ], fj.olm) = 0¥i,m € I,r
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All corrections in first order cancel this way.For £ = E, + E® in second order we get

0) — ZVrmC%) (75)

mgg

O = 3 Vel ()

mgg

Or counting on ground state with the index n

EPc = Vincl) (77)

még

(1)

To get ¢’ we notice that for m ¢ ¢ in first order we get the equation

(By, — E9Y D) = V1l 4 V,,.¢© (78)

And since ¢l = 0 (no mixing between states at zero perturbation), we get

v RO
(1) o mn’'tn
E —E,(n) (79)

n'€g

E® (0) ZZ (80)

megn’'eg
Therefore the effective potential is
Vel = 30 Tt (81)
mgng Er

This potential depends on the excited states yet works only on the ground states

subspace. Defining projectors

P =Y |n)(n| 1= P =) |m)ml (82)

neg még
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And the effective potential

V(l-P)V

—_— 83
B, — Hq (83)

Vers =

In the second order, the perturbation can switch between ground states, as calculated

4t
Vil =vil = —— 84
lr rl U ( )
thus we get the effective Hamiltonian
e fh ot
Hers = 77 (bl by + h.c.) U (brbr 4 b bl> (85)

When

bi[0) = f1.f1,10)

bi10) = fLf110)

With this definition it is easy to see that the 2"%term is solely composed of the number
operators, which corresponds to Ho, and the 2" term to the pertubative hopping term in
the original Hamiltonian. It is also easy to see that the fermionic pair obeys the bosonic

canonical commutation relations

bibj10) = fLf LA 10) = —fLfL AL 100 = LA £L AT (o) = bjbijo)y  (86)

[»%r

— [bT b*|] =0

Now considering low temperatures/frequencies we employ the reverse HP transforma-

tion upon the hopping term and achieve
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4t?
Hhopping = - (S, + h.c.) (87)

= —2t(S7S) + S¥SY) (88)

When t = % and the reverse HP transformation is

S = (29)"%0]
S = (25)% b,

1
Sz: T TN
Ty

The XY model is obtained. Considering interaction limited to nearest neighbors, we
may expend this model to N body model consisting the kinetic term of the quantum XY

model

Hicinetic = —2J Y _SFST+ SVSY =27 St -8} (89)
(i.9) (i.9)

a?

5 and S+ = (5%, 8Y)the two dimensional spin vector on the XY plane.

when J = —
We may add a chemical potential to corresponding to the occupation parameter n;and

perform the reverse HPT

1
H=-2]) St-Sf—p) Si- SN (90)

(i.3) i
moreover, to include interaction between neighbors (mostly repulsive), we may intro-

duce the Ising anisotropy coupling term
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=-2J) St Sf - MZSZ - —u/\/+ > Jints:s:

(i,9) (,9)
5.3 Appendix C - Fluctuation dissipation relations

Let us define the anti commutator

{A,B} = AB + BA

(91)

(92)

and the interaction picture operator Of, as the operator O propagating in time with

the unperturbed Hamiltonian evolution operator U (t) = e~ #Hot.

o'}

flqw) =1 / ([A"(t), B"(0)])e™"dt

oo}

e’}

glaw)= [ ({410 B 0)pear
examine the operator averaged multiplication we get

o<}

7- / (B (0) AT (1)) dt

e}

— / %TT {efﬁﬂoBeiHOt/hAefi?{ot/h} eiwtdt

1 - : . .
— —BEn tEmt/h —iEnt/h iwt
= E / e B,.e Apme e“rdt

B(En—Em)—BEm i(w+(Em—En) /)t
ZZ / BumAnme dt

using the ddistribution twice we obtain
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(97)

(98)



(oo}

T =e P / (AL (1) B (0))e™'dt (99)

oo

plugging the result back to the predefined functions we get the relations

9(qw) = %coth (@) f(q,w) (100)
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5.4 Appendix D - The BKT Transition

The Berezinskii-Kosterlitz- Thouless transition describes a low temperature quasi-ordered
phase in which the correlations decrease as a power law with temperature. The 2D XY
model exhibits U(1) continuous symmetry, when broken, Goldstone modes associated with
this continuous symmetry logarithmically diverge with the system size hence destroying
the expected phase transition with transverse fluctuations, as predicted by the Mermin-
Wagner theorem for 2"%rder phase transition. However, there exist a transition from
exponential spatial correlations at high temperature to a power law correlations below a
typical temperature Tgxpr. This transition to a quasi-ordered phase with no long range
order is of infinite order.

The BKT transition was seen in superfluid Helium films|23], superconducting arrays|1,
4][1, 4], superconducting films|6, 12| and more.

To get a further intuition on this transition, let us estimate the free energy of one
vortex|6] employing the XY model Hamiltonian for very slow changes of order parameter
in adjacent cells, H = —J > cos (6; — 0;) — cos (0; — 0;) =~ 1 — 1 (; — 0;)* =~ 1 — 2|V’

(i,9)
where a is the lattice constant. The energy can be estimated by

Er~ %/d% IVo)? (101)

Now, the condition for the existence of a topological defect is that if we circle the
vortex at any distance, we will get an integer count (k) of the times 6 rotates around

itself, therefore

2rk = %VG -dl = 2mr |V (102)

assuming constant change of 6 as a function of r. Now we can estimate the energy by

E~ g/d% \VO|* = nJKIn (é) (103)

0
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where L is the lattice size and &pis the radius of the vortex core. Estimating the

entropy associated with one vortex is done by the logarithm of the number of positions

LZ
&

available for one vortex location given by areas ratio S = Kgln ( ), so the free energy

for k=1 of one vortex is given by
L J

F=E-TS=2In (5—0) {WE - KBT] (104)

here we can see that above a certain temperature the free energy favors the existence

of vortices and below it no (stable) vortices are allowed to obtain minimal value of F.

o1
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