The Coherence Length Dependence on Doping of Cuprates

Shir Dobenco Supervisor: Prof. Amit Keren Technion, Haifa, Israel

- \circ High Temperature SC HTSC
- \circ Nearly tetragonal unit cell with layers of CuO₂ planes
- $_{\odot}\,$ Hole doping affects $\rm T_{c}$
- $\,\circ\,$ Highest T_c is achieved at the optimal doping

Norman, M. R. (2010). Fermi-surface reconstruction and the origin of high-temperature superconductivity. *Physics*, *3*, 86.

Bi-2212

 $Bi_2Sr_2CaCu_2O_{8+x}$

 Hole doping by adding oxygen atoms to the material: electrons are drawn to the oxygen atoms and thus lowering the electron density in each unit cell

Sample Preparation

- The Bi-2212 crystal was grown using a DC sputtering system
- The same sample was oxidized in an oxygen atmosphere following each measurement
- \circ Over-doped regime

The sputtering system at Prof. Gad Koren's laboratory

The London Equation

• The superconducting stiffness definition: $\boldsymbol{J}_{s} = \rho_{s} \left(\frac{\hbar c}{e^{*}} \boldsymbol{\nabla} \varphi - \boldsymbol{A} \right)$

where φ is the phase of the complex order parameter: $\psi = |\psi|e^{i\varphi(x)}$

 \circ When $\nabla \varphi = 0$ we get the London Equation:

$$J_s = -\rho_s A$$

The Meissner Effect

 \circ The rotor of Maxwell's equation: $\nabla \times \nabla \times B = \mu_0 \nabla \times J$

• Apply the London equation to get the PDE for the magnetic field **B**: $\nabla^2 B = \mu_0 \rho_s B$ • The solution:

 Tc is linearly proportional to the superconducting stiffness

Božović, I., He, X., Wu, J., & Bollinger, A. T. (2016). Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature, 536(7616), 309-311.

The Coherence Length ξ

 $_{\circ}$ The GL complex order parameter: $\psi = |\psi| e^{i arphi(x)}$

 \circ The coherence length ξ is the shortest distance in which the phase φ can smoothly complete 2π turn

 \circ Also, ξ is the size of a vortex

Stiffnessometer: Principle of Operation

• A SC ring is centered around an infinitely long excitation coil • A current *I* is applied to the coil, generating A_{ec} with B = 0

 $\circ \boldsymbol{A}_{ec}$ creates \boldsymbol{j}_{sc} by London: $\boldsymbol{J}_{s} = -\rho_{s}\boldsymbol{A}$

 \circ The magnetic moment of the ring, M_{sc} , is measured

 \circ The proportionality between M_{sc} and I_{ec} yields ρ_s

 $_{\odot}$ The break of this linear connection defines j_{c} and ξ

The Experimental Setup

Bi-2212 crystal on a STO (SrTiO₃) substrate ring: $\emptyset_{in} = 1mm$; $\emptyset_{out} = 5mm$ Thickness = 200nm

Copper coil: 2 Layers ; N = 1940 $\emptyset_{in} = 0.54mm$; $\emptyset_{out} = 0.8mm$ Length = 60mm

Stiffnessometer Measurements: Ring and Coil Signals

Magnetization as Function of Temperature

- A fixed current is applied on the excitation coil
- $\ensuremath{\circ}$ Temperature is gradually increased
- \circ The critical temperature T_c is defined as the end of the phase transition
- \circ In other words:
 - T_c is the first temperature where the magnetization is zero

T_c as Function of O₂ Pressure

- \circ *T_c* is inconsistently dependent on the pressure applied during doping
- \circ Oxidations in exceeding pressures yield different T_c values from those achieved with receding pressures

Magnetization as Function of Applied Current

- \circ The system is cooled below T_c with zero current in the excitation coil
- Current in the coil is gradually increased
- At low currents, the linear relation of the magnetic moment of the ring and the current in the coil is visible (by London)
- \circ The linear trend changes at the critical current I_c

Extracting dM/dI and I_c

dM/dI and I_c Results

Extracting the Stiffness

Ampere: $\nabla \times \nabla \times A_{sc} = \mu_0 J_{sc}$ 2D London: $J_{sc} = -\frac{\psi^2}{\mu_0 \Lambda \psi_0^2} (A_{ec} + A_{sc})$

• Combine the two and switch to unitless variables:

$$A(r,z) \rightarrow \frac{A_{sc}(r,z)}{A_{ec}(r_{PL})}\hat{\theta} \quad ; \quad r,z,\Lambda \rightarrow \frac{r}{r_{PL}}, \frac{z}{r_{PL}}, \frac{\Lambda}{r_{PL}}$$

◦ Hence, the PDE:

$\partial^2 A$	$\partial^2 A$	$1 \partial A$	A	_ 1 ($1 + \frac{1}{r} \delta(z)$
∂z^2	$\frac{\partial r^2}{\partial r^2}$	r dr	$\overline{r^2}$	$\overline{\Lambda}$	$\left(\frac{r}{r}\right)^{O(2)}$

• With boundary conditions:

$$A(r = 0, z) = A(r \to \infty, z) = 0$$

Extracting the Stiffness

 \circ The normalized *A* is related to the *M*_{sc} of the ring:

$$A = G \ \frac{M_{sc}}{I_{ec}}$$

Where
$$G = \frac{g}{2\pi n R_{pl} r_{ec}}$$
 and $g \sim 1$ is a calibration factor.

A numerical solution to the PDE

Compliance to the Uemura Plot

- \circ g is found comparing the calculated stiffness to the Uemura plot at low T
- Three of the measurements comply with the linearity of the Uemura plot, as expected for the cuprates family
- The sample with oxidation level of 0.05torr does not comply

Božović, I., He, X., Wu, J., & Bollinger, A. T. (2016). Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature, 536(7616), 309-311.

The Penetration Depth

 \circ At T \rightarrow 0, λ is about $3\mu m$

Calculation of ξ

GL equation for
$$\psi$$
: $-\psi_{rr} - \frac{\psi_r}{r} + A_{tot}^2 \psi = \frac{1}{\xi^2} (\psi - \psi^3)$

 \circ Boundary conditions: $\psi_r(r_{in}, 0) = \psi_r(r_{out}, 0) = 0$

○ In the limit $I \to I_c$: $\psi \to 0$ in the entire SC $\Rightarrow \psi^3$ is negligible

 \circ Small ring $\Rightarrow A_{tot} \approx A_{coil}$

Assuming cylindrical symmetry is respected and no vortices enter the sample

 \circ Expecting ψ to grow from r_{in} to r_{out} , ψ_r goes from positive to zero $\Rightarrow \psi_{rr} < 0$

Hence, the GL equation for the outer radius of the ring:

$$-\psi_{rr} = \psi\left(\frac{1}{\xi^2} - A_{ec}^2\right)$$

$$\psi_{rr} < 0 \Rightarrow \left(\frac{1}{\xi^2} - A_{ec}^2\right) \ge 0 \Rightarrow \frac{1}{\xi} \ge A_{ec}$$

From here:
$$J_c = \frac{\Phi_c}{\Phi_0} \simeq \frac{r_{out}}{\xi}$$

Comparison to the GL Theory

Comparison with Previous Works

Wang, Y., Ono, S., Onose, Y., Gu, G., Ando, Y., Tokura, Y., ... & Ong, N. P. (2003). Dependence of upper critical field and pairing strength on doping in cuprates. Science, 299(5603), 86-89.
Ding, H., Engelbrecht, J. R., Wang, Z., Campuzano, J. C., Wang, S. C., Yang, H. B., ... & Hinks, D. G. (2001). Coherent quasiparticle weight and its connection to high-T c superconductivity from angle-resolved photoemission. Physical review letters, 87(22), 227001.

- Vortex-Nernst Method: Calculation Through H_{c2}
- \bigcirc ARPES Method: Calculation Through the gap amplitude Δ_0

Comparison to Other Methods

50

H_{c2} measurement (α, λ_)=(5.1, 1.5) $(\alpha, \lambda_{-1}) = (0, 0)$ 250 ~ 240 T ~ 600 T 200 ¹²⁰ H⁰H^{c2}(1) $(\alpha, \lambda_{a}) = (5.1, 0)$ 110 1 100 600 50 400 $(d H_{c2}/d T)_{T \sim Tc} = -10 T/K$ B(H) 200 $(\alpha, \lambda_{_{\rm SO}}) = (0, 0)$ 120 ~ 128 T 10 20 30 40 100 Time (µs) μ₀H_{c2} (T) 09 08 40 $\xi_{ab} = 1.7nm$ 20 (d H / d T) = -1.9 T/K0 0.8 0.2 0.4 0.6 0 t = T/T

STM Studies of Vortex Cores in Bi2212

 $\xi_{ab} = 2.2(3) nm$

T. Sekitani et al. Physica B 346–347 (2004) 319–324 S. H. Pan...J. C. Davis, PRL 85, 1536 (2000)

Conclusions

- We managed to measure the coherence length directly in low temperatures
- \circ The T_c dependence on doping level was found to be inconsistent for different directions of oxidations
- The coherence length is consistently dependent on the oxidation level, regardless of the order of oxidations
- It was observed, that the higher the doping level gets, the smaller the coherence length becomes at low temperatures when at the overdoped regime

Future directions

 It is preferable to oxidize in only one of the directions: lower oxidation level first and then higher, or from higher to lower only

 $_{\odot}$ Preparation of thinner samples (under 200nm) is desirable, for better agreement with the coherence length calculation assumptions such that we will get $h \ll \lambda$

 In order to collect more comprehensive results, it is recommended to oxidize under smaller pressures of oxygen to achieve an underdoped regime

Group Members

Other Groups

Amit Kanigel

Yuval