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We present the experimental observation of scalar multipole solitons in highly nonlocal nonlinear media,
including dipole, tripole, quadrupole, and necklace-type solitons, organized as arrays of out-of-phase bright
spots. These complex solitons are metastable, but with a large parameters range where the instability is
weak, permitting their experimental observation. © 2006 Optical Society of America
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The formation of solitons in a nonlinear medium is
one of the most interesting phenomena encountered
in nonlinear optics. Solitons can take on complex
forms, such as dipole solitons,l’2 multihump solitons,
solitons organized as necklaces,*® and even complex
beams carrylng angular momentum like rotatmg
propellers.® Typlcally, bright solitons possessing com-
plicated forms in conservative systems necessitate
the presence of multiple fields; i.e., they are vector

. . 1-4.6-8 ;-
(composite) solitons %8 (in contrast to nonconser-
vative systems, where stable soliton complexes are

possible!®™). In fact, in local nondissipative nonlin-
ear media the only examples of multihump scalar
solitons are necklace solitons,*® rings of out-of-phase
bright spots holding each other together and arrest-
ing the instabilities. The diffraction broadening of
such a beam is indeed eliminated by the nonlinearity;
yet these scalar self-trapped necklace beams still in-
evitably (slowly) expand, because there is a net out-
ward force exerted on each spot by all other spots
composing the ring.*® Adding angular momentum to
the necklace introduces rotation that slows down the
expansion but never stops it completely.’” Thus the
general conclusion is that scalar solitons in homoge-
neous, local, nonlinear media with no gain (or loss)
cannot form complex states. The picture changes
drastically when the nonlinear material response is
nonlocal. Nonlocality has profound effects on the
complexity of solitons, since it makes it possible to
overcome repulsion between out-of-phase brlghtm_
or in-phase dark solitons®® that can form bound
states observed in 1D settings. 2122 In two transverse
dimensions, however, the only complex structures
thus far observed with scalar solitons have been
bright vortex rings.?® Even though the simplest
bound states of 2D solitons in nonlocal media were
predicted in the 1980s," they still were not observed
experimentally.

Here we present the experimental observation of
various types of multipole scalar solitons in a ther-
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mal nonlocal nonlinear medium. We find that multi-
pole solitons in such a medium are oscillatory un-
stable, yet their instability decay rates can be very
small under appropriate conditions, giving rise to ex-
perimentally accessible metastable complex soliton
states.

Our system is described by the evolution equation
for the slowly varying light field amplitude A coupled
to the steady-state heat transfer equation describing
the temperature distribution in the lead glass
sample.23 The light beam is slightly absorbed and
acts as a heat source. Heat diffuses, creating a non-
uniform temperature distribution, which gives rise to
a refractive index change proportional to the tem-
perature change. The resulting system of equations

. . . 23
in dimensionless form reads as

dq 1/dq &q
Yo~ "2\ o o) T
~lqf*. (1)

#n Pn
(9772 &{2

Here q=(kowiaB/kng)?A is the dimensionless light
field amplitude; n=k%w%5n/ ng is proportional to non-
linear change én in the refractive index ng, £y being
the optical wavenumber; «, B, and « are the optical
absorption coefficient, the thermal dependence of the
refractive index (8=dn/dT), and the thermal conduc-
tivity coefficient, respectively; the transverse coordi-
nates 7, { are scaled to the beam width w,, while the
longitudinal coordinate ¢ is scaled to diffraction
length kowg. In our lead glass sample, ny=1.8, the
thermal coefficient is 8=14 X 1078 K~1, the absorption
coefficient is a~0.01 cm™!, and the thermal conduc-
tivity is «=0.7 W/(mK). Such glass parameters are
sufficient to support solitons with widths of ~50 um,
which give rise to an index change én~5x 107 for a
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total optical power of 1 W. Notice that system (1) con-
serves the energy flow U= [[”_|q|2d7d(.

We search for soliton solutions of Egs. (1) of the
form q(7,{,8)=w(n,exp(ibé), where w(7,{) is a real
function and b is the propagation constant. The soli-
ton intensity vanishes at the boundaries of the inte-
gration window, while the refractive index n—n,,
where the limiting value n, is related to the tempera-
ture of the sample boundaries, which are kept at
fixed and equal temperature. Mathematically, adding
the constant background n, in the refractive index is
equivalent to a shift of propagation constant b by the
same amount; henceforth we set n,=0. In this case,
the soliton properties are determined solely by & and
the width of integration window. We then set the win-
dow size 7,{ €[-20,20], closely resembling the actual
transverse size of our sample. Using the numerical
methods described in Refs. 17 and 23, we find a vari-
ety of well-localized multipole solitons and test their
stability by propagating them numerically in the
presence of complex (amplitude and phase) noise.
Figure 1 shows illustrative examples of multipole
solitons, including dipole (Fig. 1b), tripole (Fig. 1d),
and quadrupole (Fig. 1f) solitons, as well as necklace
solitons (Fig. 1h) comprising several bright spots
with phase changing by 7 between adjacent spots. In
a highly nonlocal nonlinear medium, the refractive
index is determined by the intensity distribution over
the entire transverse plane, and under proper condi-
tions the nonlocality can lead to an increase of refrac-
tive index in the overlap region between out-of-phase
solitons even when intensity there is zero, thus giv-
ing rise to formation of multipole solitons. Note that
the width of the refractive index distribution (the
light-induced potential) greatly exceeds the width of
an individual light spot. This is a direct indication of
the very large range of nonlocality in thermal media.
We find that for all types of soliton the energy flow
monotonically increases with b, which is accompa-
nied by a decrease in the integral soliton width. Simi-
larly, the separation S6W between the intensity
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maxima of the multipole solitons is also found to de-
crease with b.

Our experiments are carried out in lead glass
samples with a square 2 mm X2 mm cross section,
which are 84 mm long in the propagation direction.
All four transverse boundaries of the sample are
thermally connected to a heat sink and maintained
at room temperature. In these experiments we use an
1.8 W laser beam at a 488 nm wavelength. We
launch the dipole soliton by introducing a 7 phase
jump across the Gaussian laser beam by inserting a
piece of flat glass (of a proper thickness) through one
half of the beam cross section and imaging it (demag-
nified) onto the input face of the sample at normal in-
cidence. We launch the tripole soliton in a similar
fashion, with two parallel pieces of glass, each intro-
ducing a 7 phase delay, passing through either one
third or two thirds of the beam cross section. For the
quadrupole soliton, we use two 7 phase-delays, orga-
nized perpendicular to one another in the transverse
plane, and each passing through one half of the laser
beam. Finally, to create the 16-lobe necklace soliton,
we reflect the laser beam off a properly designed
phase mask and subsequently image the beam onto
the input face of the sample. We monitor the inten-
sity distribution at the input and output faces by im-
aging the input and output beams onto a CCD cam-
era. Typical experimental results, with comparisons
with the theoretical simulations, are summarized in
Fig. 1. The left-hand column of each row shows the
input beam in each case. At low power (10 mW) the
beams linearly diffract for 84 mm, after which they
broaden significantly (middle columns). At high
power (1.8 W) each beam forms a soliton, which
maintains its intensity profile while propagating for
84 mm (right-hand columns).

Extensive simulations of the propagation dynamics
of perturbed solitons reveal that, in fact, all multipole
solitons in thermal media are oscillatory unstable.
Small perturbations in the input field distribution
cause progressively increasing oscillations in the in-
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Fig. 1. (Color online) Experimental and theoretical observations of complex scalar solitons in the form of, a, b, dipole
solitons; ¢, d, tri-pole solitons; e, f, quadrupole solitons; g, h, necklace solitons. Left-hand columns, input beams; central
columns, output beams after linear diffraction broadening for 84 mm of propagation; right-hand columns, high-power self-
trapped output beams after the same distance.
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Fig. 2. (Color online) Propagation dynamics of slightly
perturbed dipole-mode solitons with (a) b=3 and (b) b=12.

tensities of bright spots composing the soliton, lead-
ing eventually to the destruction of the multipole
soliton structure. For example, Fig. 2 shows the long-
range dynamics of a perturbed (5% complex ampli-
tude noise) dipole soliton and its transformation into
a ground-state soliton for two values of 6. The
strength of the instability dramatically decreases
with decreasing energy flow U, so that already at
moderate energy levels the solitons survive over
large distances (hundreds of diffraction lengths),
greatly exceeding the present experimentally feasible
sample lengths. We emphasize that we find the neck-
lace solitons also to be metastable in our nonlocal
thermal media. To our knowledge, these necklaces
are the only known case where nonlocality acts to de-
stabilize a self-trapped structure (that in this case is
not stationary, but is otherwise robust in local non-

linear media®), in contrast to the natural tendency of
nonlocality to stabilize self-trapped states. 2426

In conclusion, we have demonstrated experimen-
tally 2D metastable multipole solitons in highly non-
local nonlinear media. The long range of nonlocality
enables the formation of a variety of scalar solitons
possessing complex structures, varying from dipole
solitons, to tripoles, to quadrupoles, to necklaces.
Such high nonlocality should be able to support even
complex soliton structures carrying angular
momentum.?’ This is indeed our next experimental
challenge.
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