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Observation of Second-Band Vortex Solitons in 2D Photonic Lattices

Guy Bartal,1 Ofer Manela,1 Oren Cohen,1 Jason W. Fleischer,2 and Mordechai Segev1

1Physics Department, Technion – Israel Institute of Technology, Haifa 32000, Israel
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey, 08544, USA

(Received 20 February 2005; published 29 July 2005)
0031-9007=
We demonstrate second-band bright vortex-array solitons in photonic lattices. This constitutes the first
experimental observation of higher-band solitons in any 2D periodic system. These solitons possess
complex intensity and phase structures, yet they can be excited by a simple highly localized vortex-ring
beam. Finally, we show that the linear diffraction of such beams exhibits preferential transport along the
lattice axes.
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FIG. 1 (color online). (a) The first two bands of the band
structure in a 2D square lattice with D � 10. The four thick
dots mark the X-symmetry points. (b) High symmetry points of
the reciprocal lattice. (c) Phase structure of a counterrotating
vortex array, with the arrow in each vortex showing the direction
of increasing phase.
Wave propagation in nonlinear periodic structures ex-
hibits many interesting phenomena [1]. In these settings,
the dynamics is dominated by the interplay between the
lattice properties and nonlinearity. A balance between the
two may lead to the creation of self-localized waves: lattice
(‘‘discrete’’) solitons [1–23]. In particular, waves carrying
angular momentum propagating in lattices of dimension-
ality two (or higher) exhibit a variety of intriguing effects
related to the way coupling between lattice sites carries the
angular momentum [11–13,16]. Experiments on such is-
sues became feasible following the proposition [5] and the
first demonstration [6] of optically induced nonlinear pho-
tonic lattices. The first observation of 2D lattice solitons
followed soon thereafter [15]. This has led to further ex-
citing experiments in 2D nonlinear photonic lattices, such
as the first observation of first-band vortex lattice solitons
[16], 2D vector lattice solitons [17], 2D dipole-type lattice
solitons [18], etc. Notwithstanding this important progress,
until recently all experimental research on 2D lattice sol-
itons was limited to those originating from the first band
[15–19]. Last year, however, our group predicted the ex-
istence of 2D lattice solitons arising from the X symmetry
points in the second band [20]. These solitons possess a
ring-shaped intensity profile, with a unique phase structure
resembling a counterrotating vortex array. Here, we
present the first experimental observation of these
second-band lattice solitons, which reside in the gap be-
tween the first and the second bands of the square lattice.
This constitutes the first observation of any second-band
2D lattice soliton and the first experimental observation of
any gap solitons carrying angular momentum (vorticity).
Interestingly, our experiments reveal that, under proper
nonlinear conditions, a simple vortex-ring excitation natu-
rally evolves into the second-band vortex-ring lattice soli-
ton, acquiring its unique counterrotating vortex-array
phase structure during propagation. At low intensities,
such second-band excitations display intriguing features
of preferential linear diffraction along the lattice axes,
standing in sharp contrast to the diffractive behavior of
first-band vortex excitations which takes on the (square)
symmetry of the lattice. We demonstrate these second-
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band vortex-ring lattice solitons, and study their evolution
dynamics experimentally and numerically. Such solitons
can be observed in a variety of other systems, such as
nonlinear fiber bundles, photonic crystal fibers, and Bose-
Einstein condensates.

We start by revisiting our recent paper [20] predicting
second-band vortex lattice solitons. Such solitons can be
viewed as a coherent superposition of two degenerate
modes (same propagation constant �) of the defect they
jointly induce (Fig. 1). One of these modes is associated
with the second band X point (kx � �=D, ky � 0), and
it is jointly trapped with a �=2 phase-delayed mode asso-
ciated with the X0 point (kx � 0, ky � �=D) of the same
band [D being the lattice period; see Fig. 1(b)]. The
combined mode displays a phase structure of a 2D array
of vortices with alternating rotation between neighboring
sites [Fig. 1(c)] [24].

Our experiments are performed in a photorefractive
crystal that possesses the (saturable) photorefractive
screening nonlinearity [25]. The paraxial dynamics of a
linearly polarized beam may be modeled by the nondimen-
sional equation [14,15]
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where V � V0�cos�2��x� y�=D�� cos�2��x� y�=D�	2

is the square lattice, V0 the peak intensity of the lattice in
units of background irradiance, D the lattice spacing, and
� is the slowly varying amplitude of the electric field. The
lattice potential is written in this fashion because in the
experiment, the lattice is optically induced in the photore-
fractive crystal by interfering four waves of ordinary po-
larization, while the probe (soliton-forming) beam is
extraordinarily polarized along the crystalline c axis
[15,16,23]. Typical calculated results are shown in the
upper row of Fig. 2. We propagate numerically a beam
with the intensity and the phase of a vortex-ring soliton
[Figs. 2(a) and 2(b), respectively] as calculated through the
self-consistency method [21]. Under linear conditions, the
input beam experiences diffraction in the square lattice,
exiting after 5 mm of propagation with the intensity struc-
ture shown in Fig. 2(c). Notice the preferential transport
along the lattice axes, typical to wave packets whose Bloch
modes are in the vicinity of the second-band X point. On
the other hand, as we showed in [20], when we increase the
probe intensity j�j2 to a value roughly V0=2, the beam
exhibits stable stationary propagation, exiting the lattice
with intensity [Fig. 2(d)] and phase [Fig. 2(e)] structure
similar to that of the input.

Solitons, however, are not only stable, but are also
robust. That is, an input wave packet with parameters close
enough to those of a soliton reshapes and naturally evolves
into a soliton while shedding some of its power. Such
robustness was demonstrated experimentally with spatial
solitons in homogenous media [26], as well as with lattice
solitons [6,15,16,23]. In fact, many lattice soliton experi-
ments have used an input beam different than the soliton
wave function, yet this input evolved into a soliton after
some propagation distance in the lattice. More recently, it
FIG. 2 (color online). Simulated propagation of a second-band vort
and compared with a simulated evolution of a vortex ring with a s
lattice soliton (lower row). Upper row: (a), (b) intensity and phas
procedure, and used as the initial condition at the input plane of th
propagation. (d), (e) Intensity and phase of the second-band vortex
beam is indeed a second-band lattice soliton. Lower row: (f), (g) in
input ring beam bearing a single vortex. (h) Linear diffraction (nonlin
of the emerging output beam under appropriate nonlinear conditions.
( j) that is almost identical to the ideal structure of a the second-ban
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has been shown that the power spectrum of a spatially
incoherent input beam evolves into the characteristic
power spectrum of a random-phase lattice soliton [23].
Here, we show (for the first time), that also the phase of
a coherent input beam evolves and attains the soliton phase
structure. Naturally, during this process some of the power
radiates, while most transfers to the soliton mode. Yet once
the wave function has evolved into a soliton, it maintains
its shape throughout propagation. The lower row in Fig. 2
shows the evolution of a simple singly charged vortex ring
identical to the central ring of the soliton found in [20]
[Figs. 2(f) and 2(g)]. Under linear conditions, the ring
broadens after 5 mm propagation [Fig. 2(h)]. However,
as we increase the probe intensity j�j2 to V0=2, the simple
input ring evolves into a second-band vortex lattice soliton,
acquiring intensity and phase structures [Figs. 2(i) and
2(j)] that bear a strong resemblance to those of the soliton
[Figs. 2(d) and 2(e)].

Our experiments are performed using a 488 nm wave-
length laser beam and a 5 mm long SBN:75 photorefractive
crystal displaying the screening nonlinearity, which is
controlled by applying voltage along the crystalline c
axis [25]. Two pairs of plane waves interfere to optically
induce a square lattice inside the crystal, with each wave
having a peak intensity of 
15 mW=cm2. In this case, the
lattice spacing is 13 �m, with each waveguide having a
diameter of 
6 �m. These plane waves are ordinarily
polarized hence they propagate linearly in the crystal,
inducing a z-invariant photonic lattice [5,6]. The applied
external field is chosen so as to construct a lattice with a
maximum index modulation of 0.001 [14,15]. The probe
beam is polarized extraordinarily so that it experiences
both the periodic refractive index and the photorefractive
screening nonlinearity, being able to form a soliton under
ex lattice soliton as calculated from self-consistency (upper row),
imple (single-vortex) phase structure into a second-band vortex
e structure of the soliton as calculated via the self-consistency
e lattice. (c) Linear diffraction (nonlinearity off) after 5 mm of
lattice soliton. (d), (e) are similar to (a), (b), thus confirming the
tensity (superimposed on the lattice) and phase structures of the
earity off) after 5 mm of propagation. (i), ( j) Intensity and phase
The simple ring excitation of (f), (g) evolves into a structure (i),
d vortex lattice soliton.
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FIG. 4 (color online). Experimental observation of the phase
structure of a second-band vortex lattice soliton. The phase
information is obtained by interference with a weakly diverging
Gaussian beam. (a) Phase distribution of the input vortex-ring
beam. (b) Output phase distribution of a high intensity ring beam
that has evolved into a second-band vortex soliton [interference
pattern between the soliton whose intensity is presented in
Fig. 3(c) and a weakly diverging Gaussian beam]. (c) Numeri-
cal validation of the phase information in (b).

a b c

FIG. 3 (color online). Experimental observation of a second-
band vortex lattice soliton. (a) Intensity distribution of the input
vortex-ring beam photographed (for size comparison) on the
background of the optically induced lattice. (b) Output intensity
distribution of a low-intensity ring beam experiencing linear
diffraction in the lattice. (c) Output intensity distribution of a
high intensity ring beam, which has evolved into a second-band
vortex soliton in the same lattice as in (b).
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proper parameters. We generate the input beam by reflect-
ing the probe beam off a vortex mask of unity topological
charge [27] and then imaging the ring beam onto the
crystal input face. The width of the input ring beam is
comparable to the size of a single waveguide, and is
launched around a single waveguide. Having a ring smaller
than the lattice spacing corresponds to having its k spec-
trum extending beyond the first Brillouin zone, and launch-
ing the ring around a single waveguide maximizes the
preferential excitation of modes from the second band.

Our experimental results are shown in Figs. 3–5. In
Fig. 3 we demonstrate the evolution of the simple vortex
ring into a second-band vortex soliton. Figure 3(a) shows
the intensity pattern of the initial ring entering the lattice.
Figure 3(b) shows the output (linear) diffraction pattern of
a low-intensity beam after 5 mm propagation in the lattice,
exhibiting preferential diffraction along the lattice axes but
retaining the size of the central ring. This feature of linear
lattice diffraction stands in sharp contrast to that of a first-
band vortex soliton, which diffracts in a square formation
[16], with both the central ‘‘hole’’ and the width of the ring
expanding by the same amount. As we increase the probe
beam intensity to one-half of the lattice peak intensity, the
input beam reshapes and forms a second-band vortex lat-
tice soliton [Fig. 3(c)].

We visualize the phase structure of our beam by photo-
graphing the interference pattern it forms with a weakly
diverging Gaussian beam. Figure 4(a) depicts the phase of
the simple vortex-ring beam entering the lattice, while
Fig. 3(b) shows the phase of the beam exiting the lattice,
which has propagated under the proper nonlinear condi-
tions and has evolved into a second-band vortex lattice
soliton. Clearly, the simple singly charged vortex structure
of the input beam [Fig. 4(a)] has evolved into a more
complex phase structure [Fig. 4(b)]. We compare our ex-
perimental result of Fig. 3(b) to the phase structure of the
calculated second-band vortex lattice soliton by numeri-
cally ‘‘interfering’’ the calculated wave function with a
weakly diverging Gaussian beam. This interference pattern
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is shown in Fig. 4(c), and is in excellent agreement with the
experimental interference pattern of Fig. 4(b). This obser-
vation is also in a good agreement with our prediction
shown in Fig. 2, where the simulations show that the
simple vortex-ring acquires the soliton phase structure
during propagation.

The unique diffraction behavior of the X-point second-
band excitations [Figs. 2(c), 2(h), and 3(b)], along with the
formation of the second-band vortex lattice soliton evolv-
ing from a simple vortex ring, are intimately related to the
phase evolution demonstrated in Fig. 4. In fact, these
phenomena can be jointly clarified by examining the
k-space distribution of the excitation wave packet, and of
the soliton arising from it. Figure 5(a) depicts the power
spectrum of the excitation wave packet (the simple vor-
tex ring), with respect to the first Brillouin zone (BZ)
[23,28]. The corners of the first BZ are the four bright
dots which are the four beams constructing the lattice in
momentum space [28]. It is apparent that the input vortex
ring excites Bloch modes primarily from higher bands,
mostly from the vicinity of the X symmetry points of the
second band. This excitation is responsible for the linear
diffraction of the vortex ring in the lattice. The anisotropy
of the band curvature at the vicinity of the four X symmetry
points, together with the phase relation between these four
points (determined by the vortex phase structure), result in
the diffractive behavior presented in Fig. 3, exhibiting
preferential diffraction along the lattice axes. As stated
above, this stands in a sharp contrast to the diffractive
behavior of a first-band vortex soliton, whose diffraction
pattern takes on the (square) symmetry of the lattice [16],
exemplifying the more isotropic band curvature at � point
in k space.

As we increase the intensity of the probe beam, thereby
increasing self-focusing effects, the modes from the
anomalous diffraction regions transfer their power to the
modes in the normally diffracting regions, which in turn,
become localized. The outcome is the reshaping of the
power spectrum of the beam. This is clearly shown in
4-3
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FIG. 5 (color online). Power spectrum of the input (a) and output (b) beams. The formation of the second-band vortex soliton
reshapes the power spectrum. (c) Calculated power spectrum of the second-band vortex soliton. For comparison, (d), (e) show the
measured and calculated power spectrum of the first-band vortex lattice solitons of [16], respectively. In all pictures, the ‘‘corners’’ of
the first BZ are the four lattice-forming beams, represented in the Fourier picture as four dots, marked with white circles.
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Figs. 5(b) and 5(c), displaying the power spectrum of the
beam exiting the lattice, which lies mostly at the outer
sides of the lines connecting the corners of the first BZ. The
evolution of the phase of the input beam, from a simple
vortex to the phase structure of the soliton, is a direct
consequence of the reshaping the power spectrum under-
goes. The experimental results of Fig. 5 clearly show this
reshaping. Hence, the spatial components of the self-
trapped vortex beam exiting the 2D lattice, after reshaping
and forming a soliton, are those that belong to the normal
diffraction regions of the second band, i.e., the X points of
the second band. Taken together, Figs. 3(b), 3(c), 4(b), and
5(b) show conclusively that we have experimentally dem-
onstrated a second-band vortex-ring lattice soliton.

Finally, it is interesting to compare the power spectrum
of the second-band vortex soliton to the power spectrum of
its first-band counterpart. Figures 5(d) and 5(e) display
the power spectrum of the first-band vortex soliton [16].
Clearly, the power spectrum of the first-band vortex soli-
ton lies within the first Brilluoin zone. This power spec-
trum of a first-band vortex excitation results in a diffractive
behavior in a square formation, with no preference along
the axes, which is in a sharp contrast to the diffractive
behavior of our second-band vortex-ring excitation, and to
the phase structure of the second-band vortex ring evolving
from it.

In conclusion, we have presented the first experimental
observation of a 2D higher-band soliton in a nonlinear
periodic system by demonstrating a second-band vortex
soliton in a 2D photonic lattice. Such solitons have a
complex phase structure resembling a counterrotating vor-
tex array, but they can be excited even with a simple single-
vortex input beam. This nonlinear evolution has been
demonstrated here both numerically and experimentally.
As such higher-band vortex phenomena are universal to all
2D nonlinear periodic structures, we expect similar lattice
solitons to be observed in a variety of other systems in
optics and beyond. For example, nonlinear matter waves in
optical lattices are a system for which 1D gap solitons have
already been demonstrated [29], and 2D lattices have al-
ready been employed (in their linear regime, i.e., with a
low atomic density) in numerous experiments (e.g., [30]).
It is therefore expected that 2D matter-wave lattice soli-
tons, arising from different bands, will be observed in the
near future.
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