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Transport and Anderson localization in disordered
two-dimensional photonic lattices
Tal Schwartz1, Guy Bartal1, Shmuel Fishman1 & Mordechai Segev1

One of the most interesting phenomena in solid-state physics is
Anderson localization, which predicts that an electron may become
immobile when placed in a disordered lattice1. The origin of local-
ization is interference between multiple scatterings of the electron
by random defects in the potential, altering the eigenmodes from
being extended (Bloch waves) to exponentially localized2. As a
result, the material is transformed from a conductor to an insu-
lator. Anderson’s work dates back to 1958, yet strong localization
has never been observed in atomic crystals, because localization
occurs only if the potential (the periodic lattice and the fluctuations
superimposed on it) is time-independent. However, in atomic crys-
tals important deviations from the Anderson model always occur,
because of thermally excited phonons and electron–electron inter-
actions. Realizing that Anderson localization is a wave phenom-
enon relying on interference, these concepts were extended to
optics3,4. Indeed, both weak5–7,31 and strong8–11 localization effects
were experimentally demonstrated, traditionally by studying the
transmission properties of randomly distributed optical scatterers
(typically suspensions or powders of dielectric materials). How-
ever, in these studies the potential was fully random, rather than
being ‘frozen’ fluctuations on a periodic potential, as the Anderson
model assumes. Here we report the experimental observation of
Anderson localization in a perturbed periodic potential: the trans-
verse localization of light caused by random fluctuations on a
two-dimensional photonic lattice. We demonstrate how ballistic
transport becomes diffusive in the presence of disorder, and that
crossover to Anderson localization occurs at a higher level of dis-
order. Finally, we study how nonlinearities affect Anderson local-
ization. As Anderson localization is a universal phenomenon, the
ideas presented here could also be implemented in other systems
(for example, matter waves), thereby making it feasible to explore
experimentally long-sought fundamental concepts, and bringing
up a variety of intriguing questions related to the interplay between
disorder and nonlinearity.

During the past few decades, localization of light has drawn con-
siderable attention, beginning with the suggestion that the concept of
Anderson localization may be applied to electromagnetic waves3,4.
These propositions were followed by the prediction5 and obser-
vation6,7,31 of coherent backscattering (weak localization). More
recently, strong localization of light was observed in highly scattering
dielectric media8–11 (typically suspensions or powders of dielectric
materials). These experiments demonstrated deviations from clas-
sical diffusion, signifying localization of light due to disorder. The
past decade has also witnessed progress in random lasing12, which is
based on light localization in random gain media. In all of these
studies, the underlying potential was fully random (no lattice), rather
than ‘frozen’ (quenched) random fluctuations on a periodic poten-
tial, as Anderson’s original model implied (see discussion in Sup-
plementary Information).

Typical experiments studying localization of light examined trans-
mission properties of disordered media. However, a different
approach to localization of light was suggested in 1989 (ref. 13),
referred to as ‘transverse localization’. That concept proposed an
optical system that is uniform in one (‘longitudinal’) direction but
contains disorder in the two directions transverse to it. Such a system
is described (in the paraxial limit) by a Schrödinger-like equation:
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where A(r) is the slowly-varying envelope of the time-harmonic

optical field E(r,t)~Re½A(r)ei(kz{vt)� of frequency v and wavenum-
ber k~vn0=c, with c the vacuum light speed, n0 and Dn x,yð Þ being
the average refractive index and the random fluctuations upon it,
respectively. Equation (1) has no time dependence: the evolution
of the light is only in space, where the propagation coordinate z re-
places time in the Schrödinger equation of quantum mechanics. The
localization occurs in the x–y (transverse) plane, as the diffraction-
broadening of the beam is arrested by disorder13. Hence, the relevant
wavenumber is not k~vn0=c but rather the transverse wavenumber,
k\, which is inversely proportional to the width of the beam, and can
be much smaller (10–100 times). In our two-dimensional system, the
localization length is given by2 j~l�exp(pk\l�=2) with k\ = k,
where the mean free path l� is related to the refractive-index fluctua-
tions. We therefore recognize that even with l� much larger than the
optical wavelength l~2p=kn0, transverse localization may occur on
reasonably short (experimentally accessible) propagation distances,
and the fluctuations in the refractive index can be as small as 1024.
Additionally, in analogy to the requirement of a time-independent
potential in the corresponding quantum problem, the most strin-
gent requirement for transverse localization is that the ‘potential’
Dn x,yð Þ must not vary throughout propagation, otherwise
Anderson localization would not occur. Thus far, there have been
two pioneering attempts to observe transverse localization in arrays
of optical waveguides14,15. However, neither has demonstrated
Anderson localization, because the experiments lacked the necessary
statistical aspect, and control over the disorder. Here, we dem-
onstrate Anderson localization of light in a perturbed periodic poten-
tial: transverse localization caused by random fluctuations on a
photonic lattice.

Our system (illustrated in Fig. 1a) is a two-dimensional photonic
lattice with random fluctuations, represented by equation (1). The
index change Dn x,yð Þ contains a periodic term and fluctuations (of
the same average period) superimposed on it, such that both the
periodic potential and the fluctuations are z-independent. The lattice
depth and the relative disorder strength are controlled indepen-
dently. To make the disordered lattice, we use the optical induction
technique16, now commonly used for studying nonlinear phenomena
in photonic lattices17–23. This technique transforms an optical
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interference pattern into a refractive-index change in a dielectric
material (see Supplementary Information). Disorder is introduced
by adding a speckled beam—created by passing a laser beam through
a diffuser—to the interference pattern of the plane waves inducing
the lattice. The disorder level is set by controlling the intensity of the
speckled beam, and ranges continuously from a perfectly periodic
lattice (without the speckled beam) to a strongly disordered lattice.
We quantify the disorder strength by the ratio between the power of
the speckled beam inducing the disorder, and the total power of the
lattice-forming beams. As explained in Supplementary Information,
we make the fluctuations in the lattice z-independent (propagation-
invariant) by creating ‘non-diffracting speckles’ (a random super-
position of diffraction-free Bessel beams).

After forming the disordered lattice, we launch a probe beam into
it, and image the intensity distribution at the lattice output onto a
CCD camera. Two representative output intensity patterns are dis-
played in Fig. 1. When the lattice is perfectly periodic (Fig. 1b), the
probe beam undergoes ‘ballistic transport’, manifested by the sym-
metric hexagonal intensity pattern24. In the presence of 15% disorder
(Fig. 1c), light tunnels randomly among lattice sites, producing a
random intensity distribution at the lattice output after a distance
L, I x,y,Lð Þ. As we are dealing with a statistical problem in a finite
system, it is most important to measure ensemble averages over many
realizations of disorder—that is, to repeat the experiment many
(,100) times under the same conditions (strength and statistics of
disorder), each time with a different realization of the disorder. To do
this, we vary the diffuser position, generating a new speckle pattern,
which induces a new disordered lattice, with the same statistical
properties as before (see Supplementary Information). The probe
beam is launched into the new lattice (at the same location), and
its output intensity is recorded. We test the propagation of the probe
beam for 12 levels of disorder, and the statistical data for each dis-
order level is taken over 100 individual experiments.

Figure 2 presents the results of these statistical measurements. For
each realization of disorder, the confinement of the beam at the
output plane is quantified by the inverse participation ratio

P:
ð

I x,y,Lð Þ2dxdy

� �, ð
I x,y,Lð Þdxdy

� �2

, which has units of

inverse area, and an average effective width veff ~ Ph i{1=2
, where

� � �h i stands for averaging over multiple realizations of disorder (of
the same level). Figure 2a shows the average (over 100 realizations)
effective width at the lattice output as a function of disorder level,
revealing that the effective width of the output probe beam decreases
monotonically as the level of disorder is increased. That is, transport

in the lattice is reduced by the presence of random fluctuations, even
though these fluctuations are very weak ( Dnj j=n0 < 2|10{4).
Figure 2b shows the corresponding average value of the inverse par-
ticipation ratio, Ph i, as a function of the disorder level, along with its
statistical standard deviation (marked by error bars). Figure 2b
reveals that, when Anderson localization occurs, the relative fluctua-
tions of the inverse participation ratio,DP= Ph i, are very large—of the
order of unity. This result agrees with the prediction25,26 that the
relative fluctuations in P are inversely proportional to the dimension-
less diffusion coefficient (‘conductance’). In our experiments, this
coefficient is close to unity, so these large fluctuations are expected.

According to the scaling theory of localization, in two-dimensional
systems Anderson localization always occurs, for any amount of
disorder25 (unlike three-dimensional systems, where localization
occurs above some critical level of disorder). However, the local-
ization length is exponentially large, posing a great challenge for
the observation of two-dimensional localization. In the transverse
localization scheme13, a narrow beam propagating through the med-
ium first undergoes diffusive broadening, until its width becomes
comparable to the localization length. Then, localization takes place,
and the beam stays localized, acquiring exponentially decaying ‘tails’.
As the disorder level is increased, the initial distance of diffusive
propagation decreases, and the beam evolves faster into the localized
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Figure 1 | Transverse localization scheme. a, A probe beam entering a
disordered lattice, which is periodic in the two transverse dimensions (x and
y) but invariant in the propagation direction (z). In the experiment described
here, we use a triangular (hexagonal) photonic lattice with a periodicity of
11.2mm and a refractive-index contrast of ,5.3 3 1024. The lattice is induced
optically, by transforming the interference pattern among three plane waves
into a local change in the refractive index, inside a photorefractive SBN:60
(Sr0.6Ba0.4Nb2O6) crystal. The input probe beam is of 514 nm wavelength and
10.5mm full-width at half-maximum (FWHM), and it is always launched at
the same location, while the disorder is varied in each realization of the
multiple experiments. b, Experimentally observed diffraction pattern after
L 510 mm propagation in the fully periodic hexagonal lattice. c, Typical
experimentally observed intensity distribution after L 510 mm propagation
in one particular realization of the 15% disorder in the lattice.
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Figure 2 | Experimental results for propagation in disordered lattices.
a, Ensemble-averaged effective width measured experimentally at the lattice
output, as a function of disorder level. The ensemble average is taken over
100 realizations of disorder. b, Average inverse participation ratio as
function of disorder level. The ensemble average is taken over 100
realizations of disorder. The error bars are the statistical standard deviations
of P. c–e, Experimentally measured intensity distributions at the lattice
output, without disorder (c) and with 15% (d) and 45% (e) disorder. d and
e are averaged over 100 realization of disorder. The white curves show the
logarithm of the averaged intensity profile, taken along the horizontal line
passing through the beam’s peak. In d, fitting the curve to a gaussian profile
of the form I / exp(22r2/s2) yields the value s 5 92 mm. In e, the fitted
curve corresponds to an intensity profile of the form I!exp {2 rj j=jð Þ,
where rj j is the distance from the centre of the beam, and j 5 64 mm is the
localization length as determined by the exponential fit. In terms of FWHM,
the width of the fitted profile of e is 44mm, compared to 108mm FWHM for
the gaussian fit in the diffusive case of d, and it is also three times narrower
than the diffraction pattern observed in the absence of disorder: 120mm
(c). The transition from the gaussian curve of d to the exponentially decaying
curve of e displays the crossover from diffusive transport (d) to Anderson
localization (e).
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state. Consequently, when examining the beam after a given propaga-
tion distance, the output beam should display a crossover, from
diffusive transport to localization, as the disorder level is increased
(to be distinguished from the localization transition, occurring in
three-dimensional systems).

In order to reveal the transport properties of the disordered lattice,
we average over the intensity distributions acquired at the lattice
output, and examine the ensemble-average profile. Figure 2 shows
I x,y,Lð Þh i in the absence of disorder (Fig. 2c), with moderate dis-

order (15%, Fig. 2d) and with strong disorder (45%, Fig. 2e). Figure 2
reveals that the (ensemble-averaged) beam intensity structure nar-
rows as the disorder level is increased. Examining the logarithm of the
intensity cross-section in Fig. 2d, taken through the peak of the
ensemble-averaged intensity, reveals a gaussian shape (the parabolic
curve of the logarithm, white curve in Fig. 2d), indicating diffusive
broadening. This means that, for the particular level of disorder in
Fig. 2d, the localization length is rather large, hence the localization
effect is not observed yet. However, when the disorder is stronger
(Fig. 2e), the best fit of the logarithm of the ensemble-averaged
intensity profile is a linear curve, implying a structure decaying expo-
nentially from its centre. That is, the ensemble-average intensity
profile displayed in Fig. 2e exhibits Anderson localization. The trans-
ition from Fig. 2d to Fig. 2e manifests the crossover from diffusive
transport to localization as the disorder level is increased.

In order to corroborate our experimental results, we simulate the
propagation of the probe beam under typical experimental para-
meters, repeating the process with 100 different random realizations
of the disorder, at each disorder level. Figure 3a shows the averaged
effective width as a function of propagation distance (on a double-
logarithmic scale), where each curve represents a different level of
disorder, and the dashed lines designate a power-law (veff / zn)
relation, with n 5 1 and n 5 1/2. For a perfectly periodic lattice, the
curve approaches a constant slope with n 5 1, meaning that the beam
broadens linearly as it propagates in the lattice, signifying ballistic
transport. When weak disorder (2.5%) is introduced, the behaviour
is completely different: the curve approaches n 5 1/2, indicating that
the (mean) transport is now diffusive (over the range of the simulated
propagation). With stronger disorder the beam first expands diffu-
sively, but after a short propagation distance the exponent n decreases
to a value in the range 0 , n , 1/2 (depending on the disorder

strength), and the broadening of the beam becomes slower. At dis-
order levels higher than 20%, n approaches zero, and the only change
in the beam width is due to statistical fluctuations. At this stage the
light is localized, and the further broadening of the beam is arrested
by the disorder. This is again confirmed by calculating the logarithm
of the intensity profile. As in the experimental results, in the local-
ization regime (30% disorder, Fig. 3c), the average intensity pattern
decays exponentially from the centre. In contrast to that, in the
diffusive regime (2.5% disorder, Fig. 3b), the average beam has a
gaussian-like profile. Following our experimental findings, corrobo-
rated by our numerical simulations, we conclude that we have indeed
observed Anderson localization in disordered photonic lattices.

Finally, we study how nonlinearities affect Anderson localization.
In solid-state physics, the interaction between electrons is usually
considered to be an obstacle for observing Anderson localization.
However, the interplay between disorder and nonlinearity may yield
interesting new physical phenomena. This fundamental subject has
been the subject of ongoing theoretical research27–29, yet thus far it is
not fully understood, and experimental studies are scarce14,30. Our
system offers a convenient platform for such experiments, as non-
linearity can be added in a controlled fashion.

Figure 4a, b presents numerical results for a probe beam propagat-
ing in the disordered lattice, with focusing and defocusing Kerr-type
nonlinearity. The system is described by:
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Figure 3 | Results of numerical simulations of linear propagation in
disordered lattices. a, Averaged effective width, veff, versus propagation
distance, in a log–log plot, for different levels of disorder (0–50%). The
dashed lines correspond to ballistic (veff / z) and diffusive (veff / z1/2)
transport. b, c, Averaged intensity distributions at the lattice output (after
propagation of L 510 mm), showing diffusive transport with a gaussian
intensity profile with 2.5% disorder (b) and localization with an exponential
decay of intensity at 30% disorder (c). The white curve shows the logarithm
of the intensity profile, taken along the horizontal line passing through the
beam’s peak. The mean free path and the localization length evaluated from
these simulations are approximately l�< 5 mm and j < 29 mm, respectively
(see calculation details in Supplementary Information).
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Figure 4 | Numerical (top row) and experimental (bottom row) results,
showing the effects of nonlinearity on Anderson localization. a, Calculated
effective width at the lattice output versus disorder level for linear and
nonlinear propagation. b, Calculated intensity profiles (on a logarithmic
scale) at the lattice output after linear and nonlinear propagation with 15%
disorder. c, Experimentally measured effective width at the lattice output
versus disorder level for linear propagation (upper blue curve) and under self-
focusing conditions (lower black curve), for L 5 10 mm of propagation (the
lines are guides to the eye). d, Experimental results for the ensemble-average
intensity profile (on a logarithmic scale) with 15% disorder, and increasing
strengths of a focusing-type nonlinearity (a 5 1, 2 and 3, black curves),
compared to linear propagation (blue curve). The ensemble average is taken
over 100 different realizations of the disordered lattice, and all data are taken
after L 510 mm of propagation. The self-focusing nonlinearity enhances
localization: the localization length decreases as the nonlinearity increases.
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where n2 scales the strength of the nonlinearity, s 5 1 (s 5 21) stand-
ing for self-focusing (self-defocusing). In Fig. 4a, the maximal non-
linear contribution n2 Aj j2 is 15% of the lattice depth. Figure 4a shows
the output averaged effective width, for different values of disorder. In
the absence of disorder, the self-focusing strength is insufficient to
form a lattice soliton17,18, yet it does reduce the diffraction broadening.
The general trend of all three generic cases (linear, self-focusing and
defocusing) is similar: disorder suppresses transport. In the presence
of self-focusing, the initial (at low disorder levels) reduction in the
width of the average output beam is much steeper than in the linear
case. At high disorder levels, where localization takes place, the differ-
ence between linear and nonlinear propagation is reduced, and the
behaviour is dominated primarily by disorder. In contrast, the effect of
defocusing is minor at all disorder levels: the width of the average
output beam is slightly increased due to self-defocusing (which acts
to spread the beam faster than its linear diffraction). After a short
propagation distance, in which the beam has broadened and its intens-
ity has diminished, the remaining propagation is essentially as if the
medium were linear. A more interesting behaviour is revealed in
Fig. 4b, showing the logarithm of the intensity profile of the output
beam, under the combined action of 15% disorder and self-focusing
(lower graph), self-defocusing (top) and linear propagation (middle).
For this disorder level, the localization regime, during linear propaga-
tion, is not yet reached, as the average beam profile is non-exponential.
Again, the defocusing effect is minor: the average intensity profile is
only slightly broader. However, under self-focusing, the beam becomes
localized with exponentially decaying tails (bottom curve in Fig. 4b).
This clearly indicates that self-focusing enhances localization. That is,
in the presence of an ‘attractive nonlinearity’, localization is observed
at lower levels of disorder, for a given (finite) propagation distance. We
therefore study the combined effects of disorder and nonlinearity
experimentally, for the particular case studied numerically in Fig. 4a.

The results are shown in Fig. 4c, where we compare the averaged
effective width as a function of disorder level, for the linear case
(upper curve, circles), and under self-focusing nonlinearity (lower
curve, crosses), where the nonlinearity strength is set by making
the probe intensity equal to the interference maxima of the lattice-
writing beams (for a perfect lattice). These experiments show that
self-focusing enhances localization effects. Figure 4d emphasizes this
observation: shown are the ensemble-averaged intensity profiles
(logarithmic scale) for a lattice with 15% disorder at various
strengths of nonlinearity. We denote by a the ratio between the peak
intensity of the probe beam and the maximum intensity of the lattice-
forming beams, and perform statistical measurements for a 5 1, 2
and 3 (black curves in Fig. 4d). Comparing the logarithm of the
averaged intensity profile to that of linear propagation (blue curve
in Fig. 4d), we observe the effect predicted by the simulation: for
a 5 1, self-focusing enhances localization, altering the intensity pro-
file from diffusive-like to exponentially decaying. As the nonlinearity
is made stronger, the intensity profile narrows down further (a 5 2),
until, at a 5 3, the output beam profile resembles the input profile,
suggesting the formation of a soliton. This kind of ‘average soliton’,
forming in the highly nonlinear disordered lattice, is in fact an
ensemble-average over many realizations of disorder, which survives
the lattice imperfections. Such an ‘average soliton’ has not, to our
knowledge, been observed before.

Our methods for real-time induction of photonic lattices with
controlled disorder embedded in them, which have facilitated the
observation of Anderson localization and the effects of nonlinearity
on localization, offer an elegant means for its statistical exploration.
We anticipate that the methods presented here will become a stand-
ard tool in future experimental research on transverse localization.
They should also prove useful in future work on the influence of
nonlinearity on localization, where a variety of intriguing questions
arise. For example, can solitons form in the presence of random
fluctuations in a nonlinear periodic structure? Can modulation
instability and spontaneous pattern formation occur in perturbed

nonlinear lattices? These and related questions are now accessible
experimentally in our system.
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