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We study, theoretically and experimentally, autoresonant dynamics of optical waves in a spatially
chirped nonlinear directional coupler. We show that adiabatic passage through a linear resonance in a
weakly coupled light-wave system yields a sharp threshold transition to nonlinear phase locking and
amplification to predetermined amplitudes. This constitutes the first observation of autoresonance

phenomena in optics.
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Autoresonance is a fascinating nonlinear phenomenon
in which a system is captured into continuous resonance,
remaining phase locked with driving oscillations (or
waves) despite variations in the system parameters. For
intuition, imagine a system where one wave amplifies
another. Naturally, for efficient amplification the waves
should propagate in a phase-matched fashion; otherwise
power can flow back to the pump. Modern nonlinear optics
goes a long way to ensure phase matching, employing
birefringence, periodic poling, etc. But what would happen
if the system parameters vary during propagation? One
could engineer phase-matched conditions in a predesigned
way, but this would work only if the system parameters
vary in a known fashion. Is there a way that a dynamic
system, where one wave amplifies another, could self-lock
in resonance even if the system parameters vary consid-
erably? The phenomenon called autoresonance does just
that: it uses the nonlinearity of the system to lock in
resonance, and maintain efficient amplification despite
considerable variations of system parameters. Here, we
introduce and experimentally demonstrate, autoresonance
in nonlinear optics.

Let us first briefly describe autoresonance. Generally,
when trying to excite a resonant system with large varia-
tions of parameters deeply into the nonlinear regime, one
has to use some feedback control or tailor the external
driving oscillations precisely to remain in resonance con-
tinuously. Otherwise the system detunes from resonance
since its resonant frequency varies considerably.
Autoresonance offers a different way to maintain phase
locking even when the system is excited deeply into the
nonlinear regime. When a nonlinear oscillator is driven
adiabatically through its linear resonance, it phase locks
with the driver and, above a sharp threshold, maintains the
phase locking despite considerable variations in the system
parameters. Such phase locking is a fully nonlinear pro-
cess, and occurs because the nonlinear oscillator slowly
self-adjusts (in amplitude, frequency, etc.) to maintain the
resonance. Autoresonant dynamics was studied in many
systems such as plasma [1], particle accelerators [2], fluid
dynamics [3], solitons [4], controlled excitation of atoms
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[5], BEC condensates [6], superconducting Josephson
junctions [7] and more. In addition, autoresonance was
studied theoretically in a general three wave mixing para-
digm [8]. However, autoresonance was never observed
experimentally in optics, nor was autoresonant amplifica-
tion of optical waves ever studied theoretically in any op-
tical context. This is in spite of the fact that phase locking is
highly important in many optical processes. For example,
phase locking plays a major role in nonlinear frequency
conversion, high harmonics generation, waveguide arrays,
Raman scattering, coupled oscillators and more.

Here, we present the first observation of autoresonance
in optics. We study the dynamics of coupled waves passing
adiabatically through a linear resonance of a nonlinear
directional coupler (double-well potential). We show that
in this system of driving and driven waves, above a sharp
threshold, the driven wave adjusts itself continuously, as-
sisted by the nonlinearity, to stay phase locked with the
driving wave despite variations in the potential.

Consider a coupler in which one of the waveguides is
chirped (its refractive index increases monotonically in the
propagation direction), and the medium exhibits Kerr non-
linearity. A pump wave is launched into the chirped wave-
guide, with zero input into the second waveguide. The
evolution of a monochromatic beam of envelope ¢ in (1 +
DD is described by the dimensionless nonlinear
Schrodinger equation (NLSE):

— 0y /az = 9> /ox> + [An, (x, 2) + |2y, (1)

Our system includes two coupled waveguides: the left
one is propagation invariant, while the right one is spatially
chirped. The linear resonance is obtained when the refrac-
tive index profiles (linear + nonlinear) of the two wave-
guides are identical. In resonance, the coupling between
the waveguides is most efficient, whereas when they are
detuned, the coupling efficiency decreases [9]. The linear
refractive index profile [Fig. 1(a)] is described by
An;(x,z) = Any(x) + Any(x)g(z), where An,(x) repre-
sents a z-invariant symmetric coupler profile, An,(x) de-
scribes the shape of the right waveguide only. For
concreteness, we take g(z) = az to be a sufficiently slow
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FIG. 1 (color online). (a) The linear refractive index profile
defining the chirped directional-coupler, An;(x, z). (b) Total
refractive index profile (linear + nonlinear) at various propaga-
tion planes, before resonance crossing (blue dotted line), at the
crossing (green dashed line), and beyond the crossing (red
dotted-dashed line). Black solid line depicts the initial wave
packet, ;. Horizontal black dashed line marks the linear reso-
nance. (¢) Evolution of |cg| (blue dotted-dashed line), |c; | (red
solid line), R (black dotted line), and the theoretically predicted
dependence R = 2Aqz/(xlcg;l*>) (green dashed line).
(d) Evolution of the phase mismatch, ®. As the system crosses
the linear resonance marked with vertical dotted black line, ®
locks near zero and R changes from —1 to nearly 1.

function of z, where « is the linear spatial chirp rate, and
—1/a < z for all lengths z in the structure. Under proper
conditions, one can use coupled-mode (perturbation) the-
ory to get solutions of the form: ¢ = exp(iByz) X
[er(@up(x) + ¢ (z)uy(x)], where up (u;) is the eigen-
mode of the single right (left) waveguide in the absence
of nonlinearity and without the chirp, normalized as:
% lug|?dx = 1. We denote cg; as the complex ampli-
tude of ug 7, while By = [*_, uj; Hyug ;dx is the highest
propagation constant of a single unperturbed linear wave-
guide, where H, = 9%>/dx* + An,(x) is the unperturbed
Hamiltonian. Substituting ¢ into Eq. (1), yields two
coupled equations describing the dynamics of ¢p and c;:

—id— = ke, +5 |CR|2CR + Agcrz (2a)
Z

.dc X
_ld—ZL:KCR—'—Echlch' (2b)

k= [® urHou;dx is the coupling coefficient, y =
2 [*, lugl*dx is the effective nonlinearity, and A, =
@ [* lugl* Any(x)dx is the effective chirp rate. We launch
the initial wave packet, i;, having the spatial shape of up
[black-solid line in Fig. 1(b)], into the right waveguide.

Equation (2) yields, for the fractional population difference

— lerlP=legl?
R = e ie?
where 0 ; is the phase of cg

and the phase mismatch, ® = 0 — 6;,

R

Ccli_ = —2kV1 — R?sin(P), (3a)
z

dd

1
— = Agz — )(RlcR,,»l2 + 2k

7 cos(d). (3b)

R
V1-R?

Here, |cg,l = Vlcr(2)]> + |c.(2)]?, the amplitude of the
wave launched into the right waveguide, is a constant of
motion. As long as the refractive index does not cross the
linear resonance, most of the power is located in the right
waveguide (|cg| > |c.]), which yields R = —1. The
linear resonance crossing occurs when the first two terms
on the right-hand side (RHS) of Eq. (3b) cancel each other
(i.e., the two waveguides are almost identical). This yields
resonance crossing at: z.., = — xlcg1>/(2A,). Figure 1(b)
shows the index profile before the resonance crossing [blue
dotted line], at the linear resonance [green dashed line],
and beyond resonance [red dotted-dashed line]. After pas-
sage through the linear resonance, power tunnels continu-
ously and unidirectionally from the right waveguide to the
left one, to keep their refractive indices nearly equal de-
spite the chirp. This is how the system self-adjusts, via the
nonlinearity, to maintain resonance. This makes the wave-
guides almost identical for large propagation distances,
until the power in the driving wave is exhausted. The
process requires sufficient adiabaticity of the structure.
The limiting values on a depend on |cg;| and on z. The
most stringent nontrivial condition on adiabaticity is found
in the initial resonant capture stage, where there exists a
sharp threshold on |cg;| for capture into resonance (see
[10] for description of this effect in dynamical problems).
We find a similar threshold in our system.

Until now, the results are based on the coupled-mode
theory. It is instructive, however, to test the theory by a
direct simulation. We therefore simulate Eq. (1), using a
standard beam propagation code, with the initial condi-
tion on ¢ equal to the waveform ; [black solid line in
Fig. 1(b).]. To facilitate quantitative comparison with the
analytics, we project the simulated # (x, z) onto ug ; to find
cgr- The result is presented in Fig. 1(c), showing the
evolution of |cg| [blue dotted-dashed line], |c | [red solid
line], and R [black dotted line]. As the system crosses the
linear resonance [marked by vertical dotted-black line], the
phase mismatch ® locks near zero (exhibiting only small
autoresonant oscillations) [Fig. 1(d)]. This phase locking
causes |cg| to decrease to almost zero, while |c, | increases
to nearly |cg;|, leading to the variation of R from —1 to
nearly 1, that is, almost full power exchange [better con-
version could be achieved if the chirp rate would decrease
with z]. The condition for autoresonant evolution is that the
first and second terms on the RHS of Eq. (3b) remain
nearly equal throughout propagation [equivalent to the
waveguides remaining nearly identical, despite the chirp].
This condition predetermines the evolution of R: R =
2A0z/(xlcgil?) [green dashed line in Fig. 1(c)]. We em-
phasize that this is the averaged evolution, while the actual
dependence of R on z also involves small superimposed os-
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cillations with amplitude and frequency scaling as «'/2

[10].

As noted above, autoresonance has a sharp threshold
depending on the characteristic rates in the system [10]. It
is convenient to define a dimensionless threshold parame-
ter T = 2.45k(x)"/?cg I(Ag)~¥*, where x(x)"/*|cg,l is
related to the rate of nonlinear index changes in the left
waveguide, and A describes the chirp rate in the right
waveguide. The transition to autoresonance occurs at 7 =
1. This threshold can be realized by controlling |cg,l.
Figures 2(a) and 2(b) show the evolution of ||*> below
and above threshold, respectively [white dashed line marks
the linear resonance crossing]. Clearly, below threshold
almost no power tunnels to the left waveguide, whereas
above threshold all the power is transmitted. This tunneling
process is unidirectional, as opposed to a linear directional
coupler, where the waveguides exchange power periodi-
cally. The unidirectional action here can be understood as
follows. At T <1, as the system crosses the linear reso-
nance [Fig. 2(c), vertical black-dashed line], the nonlinear
index variation rate in the left waveguide is too slow to
follow the changes in the right one; hence, the phases do
not lock and power transfer is inefficient [red dashed line in
Fig. 2(c)]. However, when T > 1 the variation rate of the
nonlinear index in the left waveguide is sufficient to follow
the changes in the right one, the phases lock and the power
tunnels completely from one waveguide to the other [blue
solid line in Fig. 2(c)]. As predicted by the theory, the

o JJZK= 0.001
# JZx = 0.0039
2+ Jzx=0.077
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FIG. 2 (color online). Evolution of |/|* (a) below (T' < 1) and
(b) above (T > 1) the threshold. White dashed line marks the
linear resonance. (¢) Dynamics of |c; | and @ below (red dashed
line) and above (blue solid line) the autoresonance threshold.
(d) Threshold amplitude for autoresonant evolution, ICR’I»THI,

versus 1/A, for different values of x'/?x. As predicted,
leg, | scales as (Ag)*/4.

threshold amplitude for autoresonant phase locking,
lcg 71, scales as (Ag)/* [Fig. 2(d)].

Experimentally, we study autoresonant dynamics of op-
tical waves in the framework of the photorefractive screen-
ing nonlinearity [11], where we employ the induction
technique to induce the directional coupler [12] in a
1.2 cm long SBN:75 crystal. Here, the nonlinear index
change, Ang= 1/2n(3)r33E ~ 0.0008, arises from the
electro-optic effect, where E = 1000 Vcm™! is the ap-
plied field, ng = 2.35 is the linear refractive index in the
medium, and r3; = 1200 pm V™! is the relevant electro-
optic coefficient. The directional coupler profile is in-
duced by the intensity-superposition of two mutually-
uncorrelated ordinarily-polarized Gaussian beams of
10 um FWHM each. The two beams are separated by
~16 um, which yields k = 2 cm™!, and we approximate
the nonlinearity strength to be y = 12 cm™' [for which
k x'/? yields 0.007 in normalized units]. One of the beams
passes through a gradient-intensity mask to create the
chirped waveguide. We place the mask such that the in-
tensity of the beam passing through it increases from 50%
to 100% over 1.2 cm, which gives A, = 30 cm 2. The two
beams illuminate the crystal in a direction perpendicular to
z. Figure 3(a) shows schematics of the experimental setup.
The side planes show the intensity profiles of the beams
inducing the chirped coupler, and the front (rear) plane
shows the intensity profile at the input (output) planes.
Figures 3(b) and 3(c) show a 3D intensity image, and the
intensity profile inducing the coupler at several propaga-
tion planes, respectively. With this index structure, we
study the autoresonance dynamics by launching a 1D
10 um FWHM extraordinarily-polarized Gaussian beam
into the right waveguide [black solid line in Fig. 3(c)]. In
an unchirped coupler (in the absence of the gradient-
intensity mask), we observe complete power transfer and
even partial power flow back to the initial waveguide (not
shown due to space limitations). Figure 4(a) shows the
output intensity profile from the chirped coupler at various
values of initial intensity, / (/ is in units of the background
illumination [11]). At low intensities, as the system crosses
the linear resonance, some power tunnels to the left wave-
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FIG. 3 (color online). Experimental scheme. (a) Experimental
setup. Side planes depict the intensity profiles of the induction
beams, and front (rear) plane shows the intensity profile at the
input (output) planes. (b) 3D image of the intensity inducing the
chirped coupler. (c) The intensity profile inducing the index
change at several propagation planes. Black solid line marks
the 1D 10 um FWHM beam launched into the right waveguide.
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FIG. 4 (color online). Experiments. (a) Output intensity profile
at several values of initial intensity, /. At low intensities some
power tunnels to the left waveguide, but most of the power
remains in the right one / < 0.73. Above a sharp threshold (I ~
0.73), power transfer becomes efficient and all the power ini-
tially launched into the right waveguide emerges from the left
one I >0.73. (b) Measured |cg| (red dashed line), |c;| (blue
solid line) normalized by |cg|> + |c.|? and R (black dotted-
dashed line), at the crystal output, for various initial inten-
sities. (c¢) Threshold amplitude for autoresonant phase locking,
le R, iTH | as a function of 1/A. Black circles are the experimental
data, the red dashed line is the theoretical threshold for « y!/? =
0.007, and the blue solid line is a numeric simulation of Eq. (1).

guide, but most of the power remains in the right one [/ <
0.73 in Fig. 4(a)]. Above the autoresonance threshold (/ ~
0.73), the power transfer process becomes efficient, and all
of the power initially launched into the right waveguide
emerges from the left one [/ > 0.73 in Fig. 4(a)].

It is now instructive to show that, as the system crosses
the threshold, R increases sharply, and then maintains its
high value for increasing intensities. To illustrate this, we
calculate |cg ;| (normalized by |cgl* + |c|*) and R at the
output, for several initial intensities [Fig. 4(b)]. As the
system crosses the threshold, |cg| (|, |) abruptly decreases
(increases) and maintains its value for increasing inten-
sities [red dashed and blue solid lines, respectively]. This
result is expressed in a sharp jump in R [black dotted-
dashed line], which rises to almost unity. We examine
|CRJ~TH|, the threshold amplitude for autoresonant phase
locking, by varying A, and measuring the input amplitude
necessary for crossing the threshold. The results are pre-
sented in Fig. 4(c) [black circles are the experimental data,
the red dashed line is the theoretical threshold, and the blue
solid line is the numerical simulation of Eq. (1)]. As
expected, for a decreasing chirp rate [increasing 1/A],
the input amplitude required for autoresonant phase lock-
ing decreases. The small deviations from the theoretical
curve, in both the experiment and the simulation, arise
mainly from effects neglected in the coupled-mode theory,
e.g., coupling to radiation or to higher modes of the wave-
guides, waveguide imperfections, etc.

In conclusion, we presented the first study of autoreso-
nance in optics. Autoresonant phase locking of optical
waves suggests many new directions. For example, it can
play an important role in optically-controlled unidirec-
tional devices for optical switching, in phase locking and
amplification in various frequency regimes [visible, soft x-
ray, Terahertz], in self-synchronization between optical
oscillators [lasers], in efficiency enhancement in various
light-matter interactions, and more. Furthermore, it would
be interesting to study how autoresonance affects dynamic
processes that were studied recently, such as coherent
destruction of tunneling in a modulated directional coupler
[13], dynamic localization in periodic curved waveguide
arrays [14], stimulated Raman adiabatic passage [15],
adiabatic sum frequency conversion [16], grating-assisted
phase matching in extreme nonlinear optics [17] and more.
In addition, it would be exciting if autoresonance could
enable efficient frequency conversion in an evolving envi-
ronment where the structure varies during propagation in a
nonprescribed fashion. It might be possible to use autor-
esonance to force self-phase locking for harmonic genera-
tion in a medium where dispersion is random or unknown,
as long as it varies adiabatically. We emphasize that au-
toresonant phase locking is insensitive to the actual form of
the chirp as long as it is sufficiently slow.
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