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For decades, general relativity (GR) phenomena have pro-
vided exciting inspiration in the field of electromagnetism, 
as reflected in the famous statement by Landau and Lifshitz: 

‘We may say that, with respect to its effect on the electromag-
netic field, a static gravitational field plays the role of a medium 
with electric and magnetic permeabilities ε, μ’1. However, for a 
long time no technology could implement GR concepts in optics. 
Starting in 2000, the rapid development of the field of metama-
terials suggested emulation of GR phenomena for optical appli-
cations as one of its main routes2,3. These applications include, in 
particular, superlenses4 and cloaking schemes5–8, the realization of 
which often requires negative-refractive-index metamaterials9 and 
epsilon near-zero media10–12. However, the fabrication of materi-
als with specific inhomogeneous optical properties is still a major 
challenge, especially for operation in the visible-light regime. This 
challenge has been addressed by using various methods ranging 
from tailoring combinations of different materials at nanoscale 
resolution7 to the development of alternative plasmonic materials13. 
Because these settings use traditional 2D fabrication techniques, 
they generally do not exploit the ability to create true curved 
space in 3D systems14. In the past few years, curved-space pho-
tonic settings have been studied in experiments with curved sur-
face waveguides coating 3D bodies15–17. However, these pioneering 
experiments were only carried out in macroscopic systems, always 
in the paraxial regime, and for 3D bodies whose curvature varies 
slowly with respect to the wavelength. Now, with new abilities to 
construct 3D curved structures with nanometric resolution, it is 
intriguing to study what happens when the 3D photonic structures 
have features comparable to the wavelength of the light propagat-
ing within them.

We demonstrate our methodology by designing a hollow parab-
oloid structure inspired by the most famous solution of Einstein’s 
equations of GR—the Schwarzschild metric—which describes 

the space surrounding a massive black hole. Several theoretical 
studies have explored the evolution of light near emulated black 
holes using transformation optics18–21, and several optical systems 
have succeeded in emulating other GR phenomena22–29. However, 
implementing these ideas typically requires complicated fabrica-
tion of subwavelength-structured inhomogeneous materials18–21,26, 
which heavily relies on 2D fabrication techniques imported  
from microelectronics. Here, we use a new fabrication technique— 
relying on multiphoton polymerization—that enables the con-
struction of arbitrary 3D structures with subwavelength fea-
tures30. With this technique we fabricated a 3D waveguide inspired  
by the static Schwarzschild metric. The ability to explore the 
propagation of waves in this 3D structure in experiments raises 
extremely intriguing questions, such as what would happen 
when the typical size of a curved waveguide (or the emulated 
Schwarzschild radius) is comparable to the wavelength scale and 
how would the phase and group velocities of the light be affected 
by the curvature of space?

To address such questions, and to actually exploit the unique 
features of light propagating in 3D curved space, we demonstrate 
a new platform for nano-optics in curved space. We control the 
curvature and the geometry of a curved waveguide within which 
light is confined, rather than controlling the optical properties of 
the medium, as is commonly done for metamaterials. In our set-
ting, the light is restricted to propagating in a predesigned thin 
manifold embedded in a 3D volume. We study the evolution of 
light in curved planar waveguides that can be mapped to specific 
curved space metrics. We explore the properties of light propagat-
ing in our curved-space nanophotonic structure, specifically the 
diffraction and trajectories of optical wavepackets. We find that 
our system facilitates control over the phase and group veloci-
ties of the electromagnetic (EM) waves, exclusively by design-
ing the curvature of space. Finally, we show that our structure  
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exhibits tunnelling through an EM bottleneck by transforming 
guided modes into radiation modes and back. The general method 
of controlling the features of EM waves through a fabricated nano-
photonic curved space structure, as demonstrated here, can be 
the basis for a new type of nanophotonic device. Specifically, the 
fabrication technique presented here, which relies on Nanoscribe 
technology30, allows the construction of any arbitrarily designed 
curvature and geometry. Thus, we envision that the concepts out-
lined here can be used in the arena of integrated photonic circuits, 
as the vehicle for delivering and extracting light to and from very 
small spaces and as a general technique for creating intricate 3D 
nanophotonic circuitry.

Interestingly, the spatial Schwarzschild metric can be mapped 
onto a surface of revolution—Flamm’s paraboloid. This is done 
by considering the known Schwarzschild metric in static time 
and limiting the space to two dimensions. Specifically, only the 
space outside the Schwarzschild radius is mapped to the sur-
face of a paraboloid defined by a specific metric (for details 
see  Supplementary Section 1). Consider a thin surface wave-
guide, in the shape of Flamm’s paraboloid, by confining the light 
to propagate only inside the waveguide we restrict the light to 
the curved-space background  (Fig. 1a). As explained below, we 
fabricate this waveguide while leaving its interior hollow. As 
sketched in Fig. 1a, the waveguide looks like two opposing fun-
nels connected at their narrowest point, realizing the geometry 
of two opposing Flamm paraboloids. The narrowest point—the 
bottleneck—is mapped to the Schwarzschild radius (r =  rS in 
Schwarzschild space is mapped to z =  0 in the paraboloid).

Nonparaxial evolution of EM waves in Flamm’s paraboloid
First, we study theoretically the propagation of light in this  
curved space setting. The dynamics of EM waves in static curved 

space is described exactly by the Maxwell equations in general 
coordinates (3D +  1)1:
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Here, g is the time-independent spatial metric determinant, where 
ds2 =  gαβdxαdxβ (α, β and γ are spatial indices, from 1 to 3), εαβγ is the 
antisymmetric Levi–Civita tensor, and Eα, Hα, Dα and Bα are three 
vectors representing the electric and magnetic fields and their dis-
placements, respectively, as appears in Maxwell’s equations.

First, we introduce the metric of surfaces of revolution  
(surfaces with axial symmetry). Surfaces of revolution can be 
parameterized by α α β=u v u v u v us( , ) ( ( ) cos( ), ( ) sin( ), ( )), where 
v =  [− π , π ] is the azimuthal angle and − ∞  <  u <  ∞  is a general 
parameterization of the surface along its axis of revolution. 
Every point in 3D space r( ) can be described by the two coor-
dinates on the curved surface (u, v) and a third coordinate (h) 
normal to the surface at every point: = +u v h u v hn u vr s( , , ) ( , ) ( , ),  
where n u v( , ) is the unit vector normal to the surface. To sim-
plify the metric terms, we transform to a new set of coordinates: 

∫ α β= ′ + ′z u u u( ) ( ) d
z

0
2 2  and x =  R0v, where R0 is defined by the 

radius of the surface at z =  0, namely, x is proportional to the azi-
muthal coordinate having length units at z =  0. In this coordinate 
system, z is the propagation direction, which is also the axis that 
defines the axial symmetry, and x is the transverse coordinate  
(see schematic in Fig. 1a).

The line element takes the form 

α γ= + = +l z u z R x z z xd d [ ( ( )) / ]d d ( )d2 2 2
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Specifically for the Flamm paraboloid we find
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2  is the dimensionless 2D determinant and 
rS is the Schwarzschild radius of the black hole (see Supplementary 
Section 1), which relates to the mass of the black hole and is the 
only parameter distinguishing between different black holes. In 
our spatial system, rS relates to the geometrical parameters of the 
paraboloid. In the analytical approach, we assume26 that the curva-
ture of space varies slowly with respect to the wavelength and derive 
a nonparaxial wave equation for continuous waves propagating in 
the surface. For the transverse electric (TE)-polarized modes, the 
electric field has no z component, so they are strictly x-polarized, in 
the form ϕ ξ=z x h z x hE( , , ) (0, ( , ) ( ), 0), which yields, by separation 
of variables15
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Equation (3a) describes the 2D dynamics in the curved space 
generated by the thin waveguiding layer, whereas equation (3b) 
defines the modes of the waveguide. q is a constant with dimensions 
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Fig. 1 | Evolution of the modes in the Flamm paraboloid. a, Schematic of the 
paraboloid waveguide mapped to the Schwarzschild metric. The plane of 
the emulated Schwarzschild radius (z =  0) is marked in red. b, Normalized 
effective frequency squared as a function of the spatial frequency and 
z. When light is launched into this structure from the left, after some 
propagation distance some modes become unbound as their frequency 
becomes imaginary. These modes are transformed into radiative modes 
(Fig. 4). c, The electric field envelope ψ(z) of the mode with kx =  0.9q. This 
mode accumulates phase increasingly more slowly as it propagates (in z) 
toward the emulated Schwarzschild radius (black line), while its spatial 
frequency in the transverse direction x is growing. d, Cross-section of the 
electric field distribution for a specific z (extracted from FDTD simulations) 
of a particular mode propagating inside the paraboloid waveguide.
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of 1/length that originates from the separation of variables and plays 
the role of the propagation constant. k0 and n0 are the wavenumber 
and refractive index, respectively. The symmetry enables separation 
of variables of the form ∫ϕ ψ=

γ ∕x z z f k e k( , ) ( ) ( ) d
z x

ik x
x

1
( )

x
1 4  where 

we use the k-space representation for the azimuthal part (see com-
ment on the boundary conditions in   Supplementary Section 7), 
yielding an equation for ψ(z) that contains the dependence of the 
field on z:

ψ
γ

γ γ γ γ ψ= − + − +q k1
16

(16 3 4 (4 )) (4)zz z x zz2
2 2 2 2

This equation describes a harmonic oscillator, where the effective 
frequency depends on the metric and its derivatives. Importantly, 
the eigenmodes of this equation belong to two different regimes of 
the spatial frequencies and can be either propagating or decaying 
solutions, depending on γ(z). We display these regimes for waves 
evolving in Flamm’s paraboloid in Fig.  1b. As shown, the high 
bound modes (defined by high spatial frequencies) cannot propa-
gate in the waveguide and are unbound in the vicinity of the emu-
lated Schwarzschild radius.

The effective frequency (in equation (4)) becomes imagi-
nary for these modes in the vicinity of z =  0 (the effective fre-
quency squared becomes negative), as displayed in Fig.  1b. 
This means that these modes have an imaginary propagation 
constant. We solve this equation numerically and find the 
bound solutions. Notably, ψ has an envelope that depends on 
the propagation coordinate z, and the rate of phase accumula-
tion also varies with z (see example in Fig. 1c). Near the emu-
lated Schwarzschild radius, the phase accumulation rate of the 
wavepacket (the envelope ψ) is slower, suggesting that the group 
velocity is lower.

To obtain a quantitative expression for the phase accu-
mulation as a function of the propagation distance z, we apply the  

Wentzel–Kramers–Brillouin (WKB) approximation to equation (4)  
and obtain the shape of the guided modes:
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This expression is general for any metric describing any surface 
of revolution. It can be regarded as a transfer function for nonpar-
axial beams propagating within these surfaces. From the expression 
for the phase, it is straightforward to calculate the phase and group 
velocities (see Supplementary Sections 5–7 for the calculation and 
the validity of the approximation). We calculate these velocities for 
EM waves that are propagating within the surface of the parabo-
loid described by the metric γ =  (z2/48.56 ×  10−6 +  0.935 ×  10−6)2  
(Fig. 2a–d) and find that—as a mode (of a specific kx) propagates 
toward the (emulated) Schwarzschild radius—the phase veloc-
ity grows and the group velocity decreases. We verify these results 
through finite-difference time-domain (FDTD) simulations and 
study the exact variation of the phase and group velocities of the 
eigenmodes propagating in the waveguide (Fig. 2e–h). The simu-
lated waveguide is varying adiabatically on the wavelength scale, so 
the modes evolve adiabatically to the eigenmodes of the following 
radii, almost without any reflection. To obtain the phase velocity we 
simulate continuous-wave (c.w.) modes and extract their kz (longitu-
dinal wavenumber) as a function of z, whereas to calculate the group 
velocity we simulate the propagation of a light pulse. By monitoring 
the time evolution of the pulse centre, we extract the group velocity.  
As expected from the approximate analytic results described above, 
as the pulse approaches the emulated Schwarzschild radius the 
phase velocity increases and the group velocity decreases. As shown 
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in Fig. 2, there is good qualitative agreement between the analytic 
prediction and the FDTD simulations in the functional dependence 
of the group velocity on the propagation distance z. It is important 
to note that, in the vicinity of the emulated Schwarzschild radius, 
the dispersion causes some deformation of the pulse, which is the 
reason for the small peak around z =  0 (exactly at the emulated 
Schwarzschild radius) in Fig. 2h. The fact that the group velocity 
decreases—that is, a pulse of light is slowed down—suggests a new 
scheme for slow light controlled by the curvature of the surface 
waveguide only (without any dispersion engineering, as is done in 
photonic crystals). This result is general and can be used in other 
curved nanophotonic structures, suggesting a new way to enhance 
the interaction between light and moving particles.

Experimental realization of curved-space nanophotonics
In what follows, we implement the concepts described above in the 
laboratory by studying the propagation of EM waves in a 3D hol-
low waveguide that mimics approximately the structure of Flamm’s 
paraboloid. The surface waveguide has the structure of a parabo-
loid shaped as two funnels connected back to back. The preliminary 
results of this work have been presented in conferences31,32.

Our general fabrication technique for constructing complex 
structures with 3D features at the nanometric scale is based on the 
combination of direct laser writing33 and two-photon fabrication34, 
specifically designed for negative-tone photoresists. The method 
employs two-photon absorption to modify the chemical properties 
of the photosensitive material in three dimensions, relying on the 
fact that the two-photon absorption process depends on the inten-
sity of the beam squared, so the laser power can be tuned such that 
the process creates polymerization of the photoresists only where the 
laser beam is tightly focused. Namely, in that region, the absorption 

causes a chemical modification that leads to local polymerization.  
By scanning the photoresist relative to the fixed focal position, one 
can write arbitrary 3D structures into the photosensitive material. 
After a development process, only the predesigned polymerized 
structure is left. Further details about the fabrication process are 
provided in Supplementary Section 2. This technique was used to 
accurately fabricate our predesigned paraboloid surface waveguide 
with subwavelength resolution, as depicted in Fig. 3d.

This was done using the Nanoscribe commercial 3D laser-
writing lithography system equipped with a femtosecond laser at 
λ =  780 nm wavelength30. The fabricated structure is essentially a 
thin (0.8 μ m) hollow tube, 70 μ m long, which begins with a radius 
of 7.4 μ m then narrows down (following paraboloidal narrowing) 
to 4.4 μ m, and then broadens again to 7.4 μ m radius. The core of 
the surface waveguide is a 0.8-μ m-thick polymerized photoresist 
(IP-Dip, Nanoscribe) with refractive index of n ~ 1.5 in the visible 
wavelength regime, mixed with the fluorescent dye fluorescein. As 
clearly shown in Fig. 3b,e, the dye is used to visualize the propaga-
tion of light within the 3D waveguide layer. The development pro-
cess consists of soaking for 25 min in propylene glycol monomethyl 
ether acetate (Sigma-Aldrich) and a further 5 min in isopropyl alco-
hol to remove all the residual unpolymerized material.

Analysing the modes of this surface waveguide for light at 
λ =  488 nm wavelength, we find that at its entrance facet, the struc-
ture has hundreds of guided modes. As the structure narrows, a large 
fraction of these guided modes become unbound, transforming 
into radiation modes. Consequently, light escapes from within the 
waveguide to its surroundings until, at the bottleneck (which emu-
lates the Schwarzschild radius), only a fraction of the initial power 
remains within the waveguide. However, as we show in the follow-
ing, subsequent propagation beyond the bottleneck very  efficiently  
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recaptures the light into the surface waveguide, to the extent that 
the power emerging from the exit facet is almost the same as the 
power coupled into the waveguide at the entrance facet. Physically, 
this happens because high guided modes of the ring-shaped sur-
face waveguide evolve adiabatically by transforming into radiation 
modes (which are unbound) while propagating towards the bottle-
neck, shedding the light out of the guiding layer. After these radia-
tion modes have passed the bottleneck, they transform back into 
guided modes while sucking the light back into the surface wave-
guide. This phenomenon is demonstrated in our simulations and 
experiments, as explained in detail in the following and as displayed 
in Fig. 4d. The propagation of guided modes within the waveguide 
can be tracked by observing the fluorescent light emitted by the flu-
orescein molecules embedded in the waveguide. This is the purpose 
of mixing the fluorescein molecules into the polymer from which 
the surface waveguide is fabricated: the λ =  488 nm light contained 
in the waveguide is slightly absorbed by these molecules, which sub-
sequently fluoresce at longer wavelengths. The power of the fluo-
rescent light is proportional to the power of the light guided in the 
surface waveguide.

Control of light via curved-space nanophotonic structures
To demonstrate these concepts in experiments, we excite many 
high-order modes at the entrance facet of the paraboloid sur-
face waveguide and monitor the fluorescent light emitted 
from it (Fig.  3b). This process is initiated by tightly focusing a 
λ =  488 nm Gaussian beam to a 7 μ m spot at the entrance facet 
and then imaging the fluorescent light with a × 40 objective with 
NA =  0.45 onto a charge-coupled device. To isolate only the fluo-
rescent light, we placed a ‘notch’ (band-stop) wavelength filter 
in front of the camera, centred at λ =  488 nm. This enabled us 
to observe only the fluorescent light, which is generated by the 

 optical beam as it propagates inside the waveguide, while avoid-
ing the observation of 488 nm light scattered by random imper-
fections in the material.

Images of the fluorescent light generated by the light guided 
within the waveguide are presented in Fig. 3b,c. As can be seen, the 
beam confined within the waveguiding layer evolves to a narrower 
beam as it propagates towards the bottleneck, instead of broadening 
due to diffraction in the curved waveguide. Clearly, this non-paraxial  
propagation is controlled solely by the curvature. This effect is in 
accord with the theoretical prediction on the evolution of the eigen-
modes propagating towards the emulated Schwarzschild radius: the 
curvature of space increases the spatial frequencies of the guided 
modes and as kx increases, kz decreases. The beam in the experiment 
is a superposition of such eigenmodes; the curvature of space maps 
the input modal constituents to higher spatial frequencies, while the 
rate of phase accumulation (determined by kz) slows down. Further 
details about the experimental set-up and techniques are provided 
in Supplementary Section 3.

Next, we probe the geodesic trajectories of the light—the short-
est trajectories the light is expected to take in a curved space, which 
naturally depend on the specific curved-space metric. For that 
 purpose, we fabricated a somewhat longer paraboloid waveguide 
(100 μ m long, 10.4 μ m maximal radius, 6.4 μ m minimal radius). 
We then focused the input beam at a slanted angle and monitored 
the geodesics of the light propagating within the surface wave-
guide. A typical geodesic trajectory of the beam on the paraboloid, 
as observed in the experiments, is displayed in Fig.  3e. From the 
experimental image, which gives the projection of the beam trajec-
tory on the imaged plane, we can extract the beam trajectory for the 
entire propagation distance z within the range of our experiments.

At this point it is instructive to study the correspondence between 
the evolution of the light in the paraboloid surface waveguide that 
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we fabricated and the dynamics of the light in the Flamm parabo-
loid, which we set out to emulate. We do that via FDTD simula-
tions. In the exact simulations, we launch a tightly focused beam 
at different directions (angle relative to the z axis) and calculate the 
dependence of the trajectories of the evolving beams on the initial 
(launch) angle. We compare these to the geodesics arising from the 
geodesic equation, whose solutions give the shortest paths:

λ
γ
γ λ λ

+ =x x zd
d

d
d

d
d

0 (6)z
2

2

where λ is the affine parameter, which can be the line ele-
ment. Considering only the forward trajectories, and neglect-
ing back reflections, close to the emulated Schwarzschild radius, 
we derive the geodesic equation under the paraxial approxima-
tion |dx/dz| <<  1, which yields the approximate line element 
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2 2 2 2 2 . Substitution of its first 
order into equation (6) yields the paraxial geodesic equation17:
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Here, zi is the initial propagation distance at which the beam is 
launched, and xz is the initial launch angle relative to the z axis. These 
calculated geodesics are compared to the trajectories extracted from 
the FDTD simulations in Fig. 3f.

Our next goal is to extract the velocity from the measurements. 
Figure  2c displays the evolution of the Gaussian beam launched 
into the hollow waveguide structure. From this experimental data, 
we calculate the velocity evolution in the z direction. This proce-
dure is done by fitting a Gaussian profile to the observed beam at 
each propagation distance. Figure 3c displays the width of the fitted 
Gaussian beam. Assuming that the shape of the observed beam is 
approximately Gaussian at each propagation distance, we calculate 
the effective Rayleigh length as a function of z from the measured 
beam width. This gives us the phase of the Gaussian beam as a func-
tion of propagation distance, enabling a straightforward calculation 
of the phase and group velocities (for calculation see Supplementary 
Section 5). (In reality, this assumption means that the beam propa-
gating within the surface waveguide is a Gaussian superposition of 
hundreds of azimuthal modes that are guided in this waveguide.) 
As displayed in Fig. 4a, as the Gaussian beam is narrowing while 
propagating towards the bottleneck, the group velocity decreases, 
just as expected from the theoretical calculations (Fig. 2). Figure 4a 
displays the velocity for the left branch (z <  0) before the beam 
passes the bottleneck, where the experimental results are cleaner. 
This experimental result demonstrates the manipulation of the 
group velocity of the light in this medium exclusively by control-
ling the curvature. To study this evolution of the group velocity, 
we also simulated the propagation of a 70 fs pulse with a Gaussian 
spatial profile, as in the experiment. As is evident from Fig. 4b,c, 
the group velocity of the pulse decreases as it propagates towards 
the bottleneck. The reason for the change in the group velocity is 
the spatial structure, which exhibits evolution due to the curvature, 
even in homogeneous media. As the pulse propagates towards the 
bottleneck it also suffers from dispersion effects that change its 
shape; however, we make sure in our simulations that the position 
of the pulse can be defined at each propagation distance. From the 
extracted data, we calculate the group velocity, which is displayed as 

a function of propagation distance z in Fig. 4c, enabling comparison 
to the experimental results and to the approximate analytic predic-
tion for a single spatial mode, as displayed in Fig. 2.

Tunnelling through an EM bottleneck
Importantly, as is evident from Fig.  3b, the light guided in the 
paraboloid surface is almost totally lost around the central region 
of the paraboloid. There is no fluorescence in the bottleneck, which 
means that only a small fraction of the power of the light remains 
guided in that region. However, after the beam passes this bottle-
neck region, waveguiding is recovered, as manifested by the strong 
fluorescence in either side of the bottleneck (see also the FDTD 
simulations of this phenomenon in Supplementary Section 4). This 
is nicely demonstrated in Fig. 4d, which shows the power carried by 
the fluorescent light as a function of propagation distance z for sev-
eral paraboloid-shaped waveguides with different curvatures. The 
maximal radius of all the waveguides is 10.4 μ m, but each wave-
guide has a different minimal radius (2.4 μ m, 3.4 μ m, 4.4 μ m). The 
theoretical solid lines in Fig. 4d are obtained by simulations (using 
the beam propagation method) based on the nonparaxial transfer 
function we found in equation (5). A dip in the power inside the 
waveguide is observed in all experimental and theoretical curves 
for some propagation distance after the bottleneck, caused by this 
transformation of modes. This happens because, as the diameter 
of the surface waveguide narrows, high azimuthal modes trans-
form into radiation modes (which are unbound) while propagat-
ing towards the bottleneck, shedding light out of the guiding layer. 
After these radiation modes pass the bottleneck, they transform 
back into guided modes while sucking the light back into the sur-
face waveguide. (The theoretical simulation method takes into 
account only forward propagating modes inside the waveguide. For 
this reason, the theoretical lines predict the power of the beam only 
until it reaches the bottleneck.) Moreover, as the minimal radius of 
the paraboloid used in the experiment is smaller, meaning a larger 
curvature of space, a higher fraction of the power is radiating out-
side the waveguide. It is important to emphasize that this effect 
depends on the first and second derivatives of the waveguide radius 
and it is in its nature very nonparaxial (in the paraxial limit, only 
the radius affects light evolution17).

Controlling the light coupling from the guided modes into the 
radiative modes, which extends outside the waveguiding layer (as 
appears in Fig. 4d), together with the low group velocity in the vicin-
ity of the bottleneck, can be useful for many experiments involving 
light and matter in tightly confined environment, such as nanowires 
or microcavities coupled to atoms positioned just outside their exte-
rior, as in the experiments by Kimble’s group35,36 and in the recent 
experiments by Dayan’s group37. It is important to note that we have 
an analytical expression for the transfer function of wavepackets 
propagating within curved surfaces (equation (5)) that depends on 
the metric determinant and its derivatives. As such, an optimization 
process can be applied to any specific application. Moreover, any 
material that has specific properties that are important for a specific 
quantum interaction scheme can be structured to a specific geom-
etry without altering its properties (changing its resonances and so 
on). It is important to note that the materials used in this Article are 
only one example of many possibilities, and our structures can be 
transformed into structures of different materials using post-pro-
cessing methods. Moreover, a structure with asymmetric curvature 
in the z direction can be designed to provide another mechanism 
to control how much of the incoming energy can be coupled to the 
output, by controlling the percentage of the radiated energy that 
will be captured after the bottleneck. This property can be useful in 
waveguide devices.

To conclude, we have demonstrated a new platform for engi-
neering curved-space settings where the curvature of the structure 
controls the evolution of light, determining the phase and group 
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velocities, transforming guided modes into radiative (unbound) 
states and back, and more. On the fundamental side, this platform 
makes it possible to emulate various effects related to curved space, 
and to study them experimentally in the regime where the curva-
ture is comparable to the wavelength of the light. On the applica-
tions side, this method paves the way for the design, fabrication  
and optimization of a new class of 3D nanophotonic devices.  
Our methodology facilitates the precise design and fabrication of 
subwavelength-scale 3D arbitrary constructions, including sub-
wavelength features at nanometric precision. The ability to dictate 
the exact curved geometry in which the light will propagate makes 
it a powerful tool for studying unique effects that were never before 
accessible for experimental research. The realization of Flamm’s 
paraboloid is only one example out of many more possible direc-
tions. We believe that the robustness of the fabrication process 
will enable the generalization of this type of photonic structure to  
various applications and systems.

Data availability. The data that support the plots within this paper 
and other findings of this study are available from the correspond-
ing author upon reasonable request.
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