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We study wave dynamics in honeycomb photonic lattices, and demonstrate the unique phenomenon of
conical diffraction around the singular diabolical (zero-effective-mass) points connecting the first and
second bands. This constitutes the prediction and first experimental observation of conical diffraction
arising solely from a periodic potential. It is also the first study on k space singularities in photonic lattices.
In addition, we demonstrate ‘‘honeycomb gap solitons’’ residing in the gap between the second and the
third bands, reflecting the special properties of these lattices.
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Most often, the dynamics of a linear physical system can
be described by its dispersion relation. In some systems,
two equal-energy surfaces intersect at a single, special
point: the diabolic point [1]. The diabolic point is a singu-
lar point, for which the direction of the group velocity is
not uniquely defined. Such a dispersion surface appears in
a two-dimensional honeycomb lattices [2] (see Fig. 1), as
recently demonstrated in graphene [3]. Graphene, a mono-
layer of graphite for which the atoms are packed in a
honeycomb structure, displays intriguing features, such
as extremely high electron mobility [3]. The electrons
around the diabolical points of the band structure in gra-
phene behave as ‘‘massless fermions’’ as a result of the
linear slope around the diabolical points. The concept of
diabolical points arising from the intersection of two dis-
persion curves have been expanded to other realities, e.g.,
level-crossing in quantum mechanics [4], magnetic mole-
cules [5], quantum chemistry [6], etc.

In optics, diabolical points were first discovered by
Hamilton [7], who predicted that a collimated randomly
polarized ray of light entering a biaxial crystal in the
direction of the diabolical point, will undergo refraction
into a cone of light. This phenomenon was named conical
diffraction [7]. It was observed by Lloyd [8] and was
intensively studied since then [1,9]. The physical origin
of Hamilton’s conical diffraction, and in all experiments on
conical diffraction ever since, was a singularity in k space
due to polarization. That is, all published work on conical
diffraction deals with k space singularities due to polariza-
tion. However, as noted above, diabolical points also exist
in the band structure of the honeycomb lattice, where their
origin is the special symmetry of the lattice. Hence, it is
natural to ask, can diabolic points in a honeycomb lattice
give rise to conical diffraction effects? If so, then conical
diffraction in honeycomb lattices would arise from com-
pletely different physical origins than ‘‘traditional’’ conical
diffraction effects do: conical diffraction in a honeycomb
lattice will arise solely from the symmetry of the structure.

Here we study the dynamics of optical waves in honey-
comb photonic lattices. We show that the band-crossing
points are diabolic points, about which conical diffraction

occurs [10]. We demonstrate that an incident narrow light
beam, with momentum at the vicinity of a diabolic point,
diffracts in the lattice [11] in a characteristic conical form,
attaining the shape of a ring whose thickness does not
broaden, whereas its radius grows linearly with distance.
This constitutes the first prediction and experimental ob-
servation of conical diffraction arising solely from the
periodicity of a potential, with no birefringence effects
involved. This study is also the first to explore k space
singularities in photonic lattices. To illustrate the special
features of the honeycomb lattice, we also demonstrate
spatial gap solitons in honeycomb lattices.

The ideas presented here are universal for any honey-
comb lattice. However, for concreteness, we consider the
specific case of our experiments, which are carried out in a
photonic lattice constructed by optical induction [12–14].
The honeycomb lattice [Fig. 1(a)] can be represented as a
two atom basis with a hexagonal Bravais lattice [2]. The
honeycomb structure in our experiment is induced by the
intensity pattern I�x; y� of three interfering plane waves,
which is translated into a change in the refractive index �n
through the nonlinearity in a photorefractive crystal [15].
The paraxial evolution of  , the complex amplitude of a
probe beam propagating in the lattice, is governed by the
normalized Schrödinger-type equation [13,15]
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The potential depth and the nonlinearity are controlled by
the parameter V0. In our experiments on conical diffrac-

 

FIG. 1 (color online). The honeycomb lattice (a), and its band
structure (b). Shown are bands 1,2, and the diabolical points
where the bands intersect. Zooming in on one of these points
reveals that dispersion is linear, in both bands, at the vicinity of a
diabolic point (c).
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tion, we use a low intensity probe beam [j j2 � �1� I�]
whose propagation is linear, whereas for solitons we use a
high intensity probe propagating nonlinearly.

The band structure of this honeycomb lattice is calcu-
lated by solving the linear version of Eq. (1), yielding
lattice modes  � exp�i�z�u�x; y�. Equation (1) reduces
to�u�r2

?u�V�x;y�u, yielding Bloch modes uk�x; y� �
Uk�x; y� exp�i ~k? � ~r�, where �k? � kxx̂� kyŷ, and Uk�x; y�
has the lattice periodicity. The first two bands are shown in
Fig. 1(b), resembling the band structure of graphene (with
opposite sign), displaying six diabolic points [Figs. 1(b)
and 1(c)]. These points arise from the honeycomb symme-
try, irrespective of the details of each potential point or its
depth, in a sharp contrast to other structures, where the
existence of a gap between bands 1 and 2 depends on the
potential depth (e.g., the square backbone lattice described
in [15]). The diabolical points reside at the corners of the
first Brillouin zone [Fig. 1(c)]. The dispersion relation at
the vicinity of these points is conical: � in that region
varies linearly with distance from the diabolic point. This
is a characteristic feature of the intersection between two
cones, which is what gives rise to diabolic points [1].

We first study wave propagation in the honeycomb
lattice numerically (Fig. 2), by launching a beam with
the structure of a Bloch mode associated with the diaboli-
cal point, multiplied by a Gaussian envelope. The Bloch
modes at the tip can be constructed from pairs of plane
waves with k vectors of opposite pairs of diabolical points.
Thus, interfering two (or 4, or 6) plane-waves at angles
associated with opposite diabolical points yields the phase
structure of the modes from these points. Multiplying these
waves by an envelope yields a superposition of Bloch
modes in a region around these points.

Figure 2 shows an example of the propagation of a beam
constructed to excite a Gaussian superposition of Bloch
modes around a diabolic point. The input beam has a bell-
shape structure, which, after some distance, transforms into
the ring characteristic of conical diffraction. From there on,
that ring is propagating with a constant thickness, while its
radius is increasing linearly with distance. The invariance
of the ring thickness manifests the linear dispersion rela-
tion above and below the diabolic points [Fig. 1(c)]; hence,
the diffraction coefficient for wave packets constructed
from Bloch modes in that region is zero (infinite effective

mass). This is especially interesting because the ring itself
is a manifestation of the dispersion properties at the dia-
bolic point itself, where the diffraction coefficient is infi-
nite (zero-effective mass). As a result, the ring forms a light
cone in the lattice. In Fig. 2, the half-angle of the light cone
is 20� in dimensionless units, matching the linear slope of
the diffraction surface around the diabolical points.
Translating Fig. 2 to dimensional units, for 500 nm wave-
length, 10 �m lattice spacing, and 10�3 maximum index
contrast, the light cone has half-angle of 0.34�.

The example of Fig. 2 was chosen because it is experi-
mentally accessible. However, that input field excites not
only Bloch modes near the diabolic points, but also of
higher bands which do not display band crossing at the
excitation momentum. As such, the light coupled to higher
bands exhibits ‘‘conventional’’ diffraction broadening, giv-
ing rise to the central spot shown in Figs. 2(c) and 2(d).
Zooming in on the central spot reveals that the intensity
maxima reside between lattice sites, thus confirming that
the spot originates from bands 3 and higher, in contrast to
the ring, whose intensity maxima are on lattice sites, as
expected from Bloch modes from the 1st and 2nd bands.
The honeycomb lattice can therefore differentiate between
light associated with bands 1 and 2, which diffracts coni-
cally into the outer ring, and light associated with bands 3
and higher, which remains in a central spot. It is also
instructive to compare the conical diffraction in the honey-
comb lattice to that occurring in a triangular lattice with the
same spacing and potential depth. The unit cell of the
triangular lattice is identical to that of the honeycomb,
but with a central site; hence, the Brillouin zone edges
are the same for both. We therefore launch the beam of
Fig. 2(a) into the triangular lattice of the same parameters
and simulate its propagation. Initially, a weak ring forms
around a central spot, but this ring broadens and vanishes
rapidly, with most of the power always in the central spot.
The direct comparison between the two lattices under the
same conditions confirms that conical diffraction is a char-
acteristic feature associated with band crossing.

It is possible to gain insight into the quantitative features
of conical diffraction in periodic structures by considering
the following simplified model. Knowing the diffraction
relation of the Bloch modes, we can formulate the propa-
gation as a superposition of modes accumulating phases

 ’�x; y; z� �
ZZ

dkxdky�0�kx; ky�e
i�z

����������
k2
x�k2

y

p
U~k�x; y�e

i ~k?� ~r;

where ’�x; y; z� is the optical field, and �0�kx; ky� is the
amplitude of the projection of the input field (at z � 0) on
the Bloch modes U~k�x; y�e

i ~k?� ~r. The phase term represents
the conical diffraction relation around the diabolical point,

where � � �
����������������
k2
x � k

2
y

q
depends linearly on j ~k?j.

Launching a beam with initial distribution �0�kx; ky� of
Bloch modes that is symmetric around the diabolical point,
and changing integration variables so that k? � 0 matches
the diabolical point, yields

 

FIG. 2 (color online). Simulated propagation of a Gaussian
superposition of Bloch modes associated with the vicinity of a
diabolical point in a honeycomb lattice. Shown is the beam
intensity at normalized propagation distances of 0, 50, 150,
200 (a)–(d). The input bell-shaped beam transforms into a ring
of light of a nonvarying thickness, with a central spot.
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where � �
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y

q
, tan� � ky=kx. Because of the struc-

ture of the Bloch modes, this integral does not yield closed
form solutions. However, for a sufficiently narrow distri-
bution of Bloch modes, the wave functions U~k�x; y� vary
only slightly for different k’s, and thus can be approxi-
mated as having the same amplitude U~kd

�x; y� where ~kd
corresponds to the diabolical point. This approximation
allows taking U~k�x; y� outside the integral, and the second
integral in Eq. (2) gives the zero-order Bessel function,

J0���, where � �
����������������
x2 � y2

p
. It is now possible to calculate

the remaining integral numerically for any �0�kx; ky�. One
example is the Gaussian distribution �0��� � e�g

2��2=2

used in the simulations of Fig. 2, but this does not yield a
closed-form solution. Instead, using an exponential distri-
bution, �0��� � e�g�, facilitates a closed-form solution

 ’��;�z� �
g� i�z

	�g� i�z�2 � �2
3=2
; (3)

which encompasses the main features of the conical dif-
fraction process in such lattices. Comparing the numerical
solution of the integral in Eq. (2) with a Gaussian distri-
bution, to the solution for an exponential distribution given
by Eq. (3), reveals only minor differences. Hence, both
initial distributions (as well as almost any initial bell-
shaped distribution) evolve in the same fashion. It is there-
fore legitimate to relate the closed-form solution for the
exponential distribution to the simulations and the experi-
ments, which are both done with a Gaussian distribution.
At z � 0, the solution [Eq. (3)] resembles a Lorentzian,
which slowly transforms into a ring of light, whose radius
expands with z while its thickness remains unchanged.
Both the analytic model and the simulations (Fig. 2) dis-
play conical diffraction: a localized input beam with its
Bloch mode distribution localized around a diabolic point
transforms into a ring of light. Once the ring is formed (at
�z� �) it propagates with constant width, and the cone
angle in both cases coincides with the angle extracted from
the slope in the band structure to within 2.5% error.

Experimentally, we use the optical induction technique
[12–14] to induce a honeycomb lattice on a photorefractive
SBN:75 crystal. Our crystal is of dimensions of 2� 5�
10 mm, where the extraordinary axis, along which the bias
field (
1:5 kV=cm) is applied, is in the 2 mm direction,
and the propagation axis is 10 mm long. The lattice was
induced by the interference pattern of three broad beams
(‘‘plane waves’’), with their k-vector projections on the
transverse direction forming an equilateral triangle. These
lattice-forming waves are at 488 nm wavelength, each with
a intensity of 
15 mW=cm2, and they are ordinarily po-
larized so that they propagate linearly in the crystal,
thereby creating a z-invariant photonic lattice [12,13]. To

form the honeycomb lattice, we apply a negative bias field
(field opposite to the direction of the extraordinary axis),
thus using the self-defocusing nonlinearity to induce the
lattice [15]. The resultant honeycomb lattice is depicted in
Fig. 1(a), with an 8 �m distance between nearest neigh-
bors. The probe beam entering the lattice is constructed
from two 532 nm wavelength Gaussian beams, each with a
50 �m FWHM. The intensity of the probe beam is sig-
nificantly lower than that of the lattice beams (by at least
factor 10). The launch angles of the two Gaussian beams
comprising the probe are aligned to match the diabolical
points, thereby creating the intensity pattern of Fig. 3(a).
The intensity pattern at the lattice output displays a ring of
light with a dark spot at the center [Fig. 3(b)]. That is, the
bell-shaped input beam evolves into a ring of light, thereby
exhibiting conical diffraction. This conical diffraction ap-
proximately matches the simulation at dimensionless dis-
tance of 80, which corresponds to our 
10 mm experi-
mental propagation distance. Moreover, the angle of coni-
cal diffraction measured in our experiments is 
0:34�,
matching our simulations and analytic model to within
10%. Finally, when we turn the lattice off, the input beam
diffracts in the homogeneous medium into the two-lobe
beam shown in Fig. 3(c), proving that the ring of Fig. 3(b)
results solely from diffraction in the honeycomb potential.

We now study spatial gap solitons [13,14,16–19] in
honeycomb lattices [20]. Since honeycomb lattices have
no complete gap between the 1st and the 2nd bands, for any
potential depth, the first gap soliton appears in the gap
between the 2nd and 3rd bands. Unlike rectangular or
triangular lattices which possess only one atom per unit
cell, the honeycomb lattice can only be described as a
lattice with two atoms per unit cell. Consequently, both
1st and 2nd bands of the honeycomb lattice arise only from
bound states (of the individual potential of one lattice site).
Thus, the Bloch modes associated with the first two bands
always have their intensity maxima located on lattice sites.
This property is unique to honeycomb lattices; in other
lattices, when V0 is small, Bloch modes associated with
band-2 (and higher) arise from unbound states of the
individual potential. Consequently, the intensity peaks of
2nd-band Bloch modes in honeycomb lattices are always
located on lattice sites. This feature of honeycomb lattices
gives rise to spatial gap solitons located in the gap between
band-2 and band-3, with the intensity maxima all located
on lattice sites, but with a relative phase of � between

 

FIG. 3 (color online). Experimental results displaying (a) the
bell-shaped input beam, (b) the conical diffraction ring exiting
the honeycomb lattice, and (c) the far-field diffraction pattern of
the beam when the lattice is ‘‘off.’’
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nearest-neighbor peaks. Such gap solitons are a manifes-
tation of the special honeycomb symmetry, giving rise to
two bands, both arising solely from bounded states.

We find spatial gap solitons with the self-consistency
method [18]. Their wave functions arise from Bloch modes
associated with the bottom of band 2. The intensity max-
ima have one central peak and three satellite lobes
[Fig. 4(a)], with a � phase difference between the central
peak and the three satellites [Fig. 4(d)]. We simulate the
propagation of this wave packet numerically. In the linear
regime, the input beam expands [Fig. 4(b)], undergoing
anomalous diffraction, as expected from the dispersion
curvature at the bottom of band 2. Thus, to form a spatial
gap soliton from this wave packet, the nonlinearity must be
of the self-defocusing type. At the proper (high) intensity,
the self-defocusing nonlinearity balances the anomalous
diffraction, forming a second-gap lattice soliton [Fig. 4(c)].

Our experiments on gap solitons are carried out in a
honeycomb lattice with a nearest-neighbor spacing of
12 �m, under a bias field of �1000 V=cm. The 532 nm
probe beam has a central peak and an outer ring, with a
relative phase of �, which is close to the structure of the
soliton. We construct such a beam from the far-field dif-
fraction pattern of a circular aperture, which is a Bessel-
beam with the proper phase relation. The intensity of the
input beam [Fig. 4(e)] displays a main lobe filling one
lattice site, and the first order of the Bessel beam (the
ring) adjusted to match the nearest-neighbor sites.
Figure 4(f) displays the output intensity under linear con-
ditions (very low intensity), revealing a tripodlike diffrac-
tion in the lattice. At peak intensity 
10 Watt=cm2, the
beam evolves into a soliton [Fig. 4(g)]. The phase structure
of the output soliton is revealed by interfering it with a
weakly diverging Gaussian beam. When the central lobe
of the soliton interferes destructively with the Gaussian

beam, the three satellites interfere with it constructively
[Fig. 4(h)]. Thus, the central lobe and the three satellites
have a relative phase of �. We therefore conclude that the
input beam has evolved into a tripod-shaped beam
[Fig. 4(g)] with the proper phase structure [Fig. 4(h)] of a
spatial gap soliton arising from the base of the second band
of a honeycomb lattice.

In conclusion, we studied waves in honeycomb photonic
lattices, demonstrating the first observation of conical dif-
fraction arising solely from the periodicity of the potential,
and of spatial ‘‘honeycomb gap solitons.’’ These ideas raise
several intriguing questions. For example, it is possible to
observe Pogendorf’s dark ring [1] arising from conical
diffraction in a periodic lattice? How does nonlinearity
affect conical diffraction? Are there any other periodic
structures possessing diabolic points? These intriguing
questions are universal, and relate to any field in which
waves can propagate in a periodic potential.
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FIG. 4 (color online). (a)–(d) Simulation and (e)–(h) ex-
periments with a ‘‘honeycomb gap soliton.’’ (a),(e): (a) Calcu-
lated intensity structure of the soliton vs (e) experimental input
beam. (b),(f): Intensity of the beam exiting the lattice, after
linear diffraction in the lattice for z � 30 [units of Eq. (1)], and
after propagating 10 mm in the experiment. (c),(g) Calculated
and measured output intensity of the gap soliton. (d),(h)
Calculated and measured phase structure of the soliton visual-
ized by interference with a broad beam.
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