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Dark stationary matter waves via parity-selective filtering in a Tonks-Girardeau gas
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We propose a scheme for observing dark stationary waves in a Tonks-Girardeau (TG) gas. The scheme is
based on parity-selective dynamical filtering of the gas via a time-dependent potential, which excites the gas
from its ground state towards a desired specially-tailored many-body state. These excitations of the TG gas are
analogous to linear partially coherent nondiffracting beams in optics, as evident from the mapping between the

quantum dynamics of the TG gas and the propagation of incoherent light in one-dimensional linear photonic

structures.
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I. INTRODUCTION

Trapped bose gases confined to one-dimensional (1D) ge-
ometry are highly attractive for studying quantum many-
body dynamics because pertinent models yield exact solu-
tions [1-4], these regimes are experimentally accessible
[5-8], and quantum effects are enhanced [9-11]. Tonks-
Girardeau (TG) gas is a system of 1D bosons with “impen-
etrable core” repulsive interactions [1]. In the fashion of the
Pauli exclusion principle, impenetrable cores prevent bosons
from occupying the same position in space, which causes TG
gas to exhibit fermionic properties. This similarity is mani-
fested in the mapping between 1D noninteracting fermions
and TG bosons [1,4]. From the properties of atomic interac-
tions in tight atomic waveguides [9] it follows that the TG
regime can be reached at low temperatures, low linear den-
sities, or stronger effective interactions [9—11]. The experi-
mental realizations of the TG gas in 2004 [6,7] boosted the
physical relevance of the model. A recent experiment has
demonstrated that such gas does not relax to the thermody-
namic equilibrium even after numerous collisions [8], due to
the integrability of the underlying model. This work inspired
a theoretical study of 1D impenetrable core bosons on a lat-
tice, which suggested that the system can undergo irrevers-
ible relaxation to a steady state carrying more memory of the
initial conditions than the usual thermodynamic equilibrium
[12]. The process of equilibration of a 1D bose gas has also
been recently studied within the two—particle irreducible
(2PI) effective action approach [13]. Some aspects of the TG
quantum dynamics have been studied theoretically within the
context of so-called “dark solitons” [4,14], matter-wave in-
terference [15], 1D expansion [16,17], irregular dynamics
[18], and coherent states [19]. In this work, we study the
dynamical tailoring of the TG gas via a time-dependent po-
tential to produce dark stationary states, as well as point out
the relation between TG dynamics and the propagation of
incoherent light in linear photonic structures.

The Fermi-Bose mapping [1,4], applicable both in the
static [1] and time-dependent case [4], prescribes the con-
struction of the exact many-body wave function of the TG
gas from single-particle (SP) wave functions, which obey a
set of uncoupled linear SP Schrédinger equations. In Ref. [4]
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Girardeau and Wright discuss the dynamics of the TG gas
within the context of dark solitons [20-23]. Dark solitons are
fundamental nonlinear excitations, which have been studied
theoretically within the nonlinear mean-field theories appli-
cable for weakly interacting gases [20,22,23], and observed
experimentally in these regimes [21]. For a strongly interact-
ing TG gas on a ring, Girardeau and Wright [4] noticed that
if the many-body wave function is constructed solely from
the odd-parity SP eigenstates of the system, the SP density
will have a dip at zero, similar in structure to dark solitons.
However, such a specially structured many-body state is un-
likely to occur without deliberate preparation, since even and
odd parity SP states of that system are intermingled when
ordered with respect to energy (see the discussion in Ref.
[4]). In the study of Busch and Huyet [14], the collapses and
reappearances of TG dark solitonlike structures in an har-
monic trap are attributed to the mixture of the odd and the
even components in the excitation. Generally, the SP eigen-
states in parity-invariant 1D potentials can be chosen to be
either even or odd, which makes them candidates for observ-
ing dark stationary structures in the TG gas. However, for
their experimental realization under such confinement, it is
essential to separate components of different parity.

Here we propose a scheme for observing dark stationary
waves in a TG gas. A time-dependent potential is used to
selectively filter the even component of the many-body wave
function, thereby creating a dark stationary wave. Such ex-
citation of the strongly interacting TG gas is in fact an ex-
cited many-body eigenstate of the system, which distin-
guishes it from dark solitons of the nonlinear mean-field
equations applicable for weak interactions [20-23]. Dark sta-
tionary waves are found in various types of parity-invariant
potentials; we demonstrate these waves in a containerlike
potential, and in a periodic (lattice) potential. We point out
that such excited eigenstates of the TG gas are analogous to
linear partially coherent nondiffracting beams in optics
[24,25], as evident from the mapping between the quantum
dynamics of the TG gas and the propagation of incoherent
light in one-dimensional linear photonic structures, presented
in this paper. This mapping adds to the analogies between
optical and matter waves [26], and in particular to the simi-
larity between nonlinear partially coherent optical waves and
matter waves [27].
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II. DARK STATIONARY WAVES VIA DYNAMICAL
PARITY-SELECTIVE FILTERING

We consider N impenetrable bosons, confined within a 1D
external potential V,,(x,7). The fully symmetrized many-
body wave function describing the system, (x|, ... ,xy,1),
is constructed according to the Fermi-Bose mapping [1,4].
Let ,,(¢£,7) denote a set of orthonormal SP wave functions
obeying the set of uncoupled linear Schrodinger equations,

i% = {— &igz + V(f,T):|¢'m(§,T), m=1,....,N. (1)
In order to unify notation and discuss the equivalence with
optics, we find it convenient to use dimensionless units. The
boson mass m and the (arbitrary) choice of spatial length-
scale xy (£=x/x,) determine the units of time 7y=2mx}/%
(7=t/1y) and energy 60=ﬁ2/(2mx%) [V(&, )=V, (x,1)] &)].
From the SP wave functions ¢,, one first constructs a fully
antisymmetric (fermionic) wave function in the form of the
Slater determinant, g(x;,...,xy,1)= \s"ng IN! det[4,,(¢;,7)];
Y describes a system of spinless noninteracting fermions in
the 1D potential V,,,(x,7) [1,4]. The bosonic many-body so-
lution ¢g(x;,...,xy,7) is obtained after symmetrization of
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where A=Il,-;.;,—ysgn(x;—x;) is a “unit antisymmetric
function” [1]. Thus, the quantum dynamics of the TG gas is
obtained from Eq. (2) after solving Eq. (1). For example, the
evolution of the single-particle  density  pgp(x,1)
=[dx,...dxy|Ps(x,x,, ..., xy,0)|?* corresponds to the evolu-
tion of p(&,7)=2,,|¢,(& 7)|* [4]. It should be noted that
while some quantities of the corresponding fermionic system
are identical (e.g., the SP density), some significantly differ
(e.g., the momentum distribution [3,7]).

Excited many-body eigenstates with solitonlike SP den-
sity are found in real, time-independent, and parity-invariant
potentials, V(§)=V(-§). Let ¢, () denote the eigenstates,
and let e denote eigenvalues (energies) of the SP Hamil-
tonian H=—d>/d&+V(£) with appropriate boundary condi-
tions. The extra index v is used in case there are degenerate
SP eigenstates. Since the Hamiltonian commutes with the
parity operator, they can have a common complete set of
eigenstates, in which case the eigenstates ¢, () are either
symmetric ¢:,7(§)=¢:’y(—§) (even parity) or antisymmetric

;y(§)=—¢;y(—§) (odd parity). Consider a bosonic many-
body wave function, constructed according to Eq. (2), from
odd-parity eigenmodes only, i.e., every ¢, equals one of the
eigenstates ¢ _(€)(4,, 7 i, for m# n). Such a wave function
is an excited many-body eigenstate of the system. Its SP
density p‘(§)=2|¢;7(§)|2 is stationary, and p~(0)=0 because

,(0)=0. The SP density of this excited many-body eigen-
state thus has a dip at £&=0, which resembles the structure of
nonlinear dark solitons [20-23]. Therefore we will refer to
these states as dark many-body eigenstates. If we construct
waves ¢, from symmetric eigenmodes qﬁ:’ y(f) only, the den-
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FIG. 1. (Color online) The dark and anti-dark many-body eigen-
states: structure and excitation. (a) The container potential V(&)
(black dot-dashed line), the even p* (blue dashed line), odd p~ (red
dotted line), and total SP density p=p*+p~ (black solid line) of the
ground state with 20 bosons; the first 20 eigenvalues are shown as
blue squares (even SP eigenstates) and red circles (odd SP eigen-
states). (b) The spectrum P; of the excitation at 7=0 (black squares)
and 7=19.8 (red circles), and (c) the dynamics of the SP density
following the time-dependent perturbation. (d) The SP density p(¢)
of an anti-dark (black dotted line) and dark (red solid line) many-
body eigenstate in the periodic potential (see text for details).

sity p*(&)=Z|¢t (&) is likely to have a pronounced peak at
£=0, reminiscent of anti-dark solitons. Hence, they will be
referred to as anti-dark many-body eigenstates.

Dark and anti-dark many-body eigenstates are specially
tailored excitations of the TG gas, constructed solely from
the odd or even SP eigenstates of the parity-invariant poten-
tial V(§). Assuming the absence of degeneracy, the even and
odd parity SP eigenstates alternate when ordered with respect
to energy, meaning that such specially tailored states are un-
likely to naturally occur. We illustrate this by studying N
=20 TG bosons in the external containerlike potential V()
=V2+3 ., ,(=)*" tanhx, [E+(=)x. ]} (VO=15, x,=4, and
x,=7), shown in Fig. 1(a). The SP density p of the ground
state is plotted as a solid black line, whereas the dotted red
(dashed blue) line depicts the odd (even, respectively) com-
ponent of the SP density: p(&)=p*(&)+p (&). The energies of
the even (odd) parity SP eigenmodes are shown as blue
squares (red circles, respectively). As expected odd and
even-parity eigenstates alternate with increasing energy.
Thus, half of the SP eigenstates comprising the ground state
are even and half are odd. The even p* (odd p~) component
of the SP density has the structure of the anti-dark (dark,
respectively) many-body eigenstates. In what follows we
propose a method for the dynamical excitation of dark sta-
tionary waves.

Our scheme utilizes a time-dependent potential which tai-
lors the many-body wave function in a specific desired fash-
ion, and separates the odd from the even component. The
system of N=20 TG bosons is initially in the ground state of
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the confining potential, see Fig. 1(a). In the spirit of Refs.
[4,14], we perturb this system at its symmetry point £=0,
with a spatially narrow repulsive potential, which may be
obtained with a laser [4,14]. However, in contrast to [4,14],
here we periodically switch this potential on and off in time.
Such a time-dependent potential can be modeled as
V'(&,7)=V{sgn[sin(2mt/ 7,)]+ 1}exp[-(&/0)*], where 7,
=0.1 is the periodicity of the laser signal, Vj=100 corre-
sponds to the peak intensity of the laser, and 0=0.06 to its
spatial focusing width. As bosons are kicked by the time-
dependent potential, they acquire energy which has a certain
probability of being higher than the lip of the trap and are
ejected away from it. However, because the laser is focused
close to ¢=0, it strongly affects only the even-parity SP
eigenstates, whereas the odd-parity eigenstates are left nearly
unperturbed. Consequently, the many-body wave function
within the container (|x| <x,) takes on a specific structure: it
is constructed via Eq. (2) mainly from the odd-parity SP
eigenstates. This filtering process is depicted in Fig. 1(b),
showing the spectrum of the SP wave functions ,,(¢, 7) cal-
culated according to P/(7)=3, E’;;Edgwm(g, e, (O,
where ¢,(£) is the ith eigenstate of the SP Hamiltonian. The
spectrum at 7=0 is flat (black squares) because the odd and
the even eigenstates are equally present. However, the spec-
trum after 7=19.8 (red circles) is mainly comprised from
odd-parity eigenstates. Fig. 1(c) shows the evolution of the
total SP density. The time-dependent potential acts within the
interval 7=[0,19.8]. After 7=19.8 (marked by a horizontal
line) it is turned off. The SP density nevertheless retains a
dark notch at £=0 even after the time-dependent potential is
turned off, clearly displaying a dark stationary wave evolu-
tion. The numerical evolution of Eq. (1) is performed with
the split-step Fourier method.

The scheme proposed here should work for various types
of containerlike potentials. It is also fairly robust. For lasers
with larger intensity oV{, the filtering occurs on faster time
scales (i.e., a smaller number of on-off switches is sufficient)
and is more efficient. The focusing width of the laser o limits
the number of particles that can be efficiently filtered. This
width should be sufficiently smaller than the period of the
spatial oscillation (close to £=0) of the Nth SP eigenstate. It
should be emphasized that even though we follow the spirit
of Refs. [4,14], the proposed scheme separates the odd- and
even-parity component in space, while the many-body wave
function within the container assumes the particular structure
of a dark stationary wave. Although different in nature, the
parity-selective filtering of the TG gas bears some similarity
to energy-selective removal of cold atoms from a tight opti-
cal trap by means of parametric excitation of the trap vibra-
tional modes [28].

III. DARK STATIONARY WAVES OF THE TONKS-
GIRARDEAU GAS IN A PERIODIC LATTICE POTENTIAL

While the proposed method for exciting dark stationary
states of the TG gas employs a containerlike potential, it
should be emphasized that the notion of dark and anti-dark
many-body eigenstates pertains to various parity invariant
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potentials. We illustrate this fact in a periodic potential
V(& =V(é+D) (e.g., optically induced lattices). The SP
eigenstates of this system are Bloch waves [29] of the form
Denl &, D=1, (§ebe~i%n, where n denotes the band num-
ber, k is the Bloch wave vector, and i (&) =u; ,(§+D) de-
scribes the periodic spatial profile of the Bloch wave. Since
V(€)=V(=§), the Bloch waves ¢, , and ¢_; , are degenerate.
By properly choosing the coefficients a; and a_; within the
superposition i, (&, T)=akm¢km,n+a—km¢—km,n’ degenerate
eigenstates ¢:km,n can be superimposed to obtain even
[l//;;(g’ T): l/l:—n(_g’ T)] and Odd‘Parity [lﬂ;(g’ T) =—l//;l(—§, T)]
eigenstates. The many-body wave function comprised solely
from ,(£,7) [ (&€,7)] via Eq. (2) is a dark (anti-dark) ex-
cited many-body eigenstate of the TG gas in the lattice. Fig-
ure 1(d) shows the (stationary) SP density of the dark and
anti-dark many-body eigenstate in a periodic potential V()
=10 cos?(mx), constructed by symmetrizing the lowest N
=21 SP eigenmodes. The calculation is performed on the
ring (periodic boundary conditions) of length L=71.

IV. RELATION BETWEEN TONKS-GIRARDEAU GAS
AND INCOHERENT LIGHT IN 1D PHOTONIC
STRUCTURES

Dark and anti-dark excited many-body eigenstates of the
TG gas are analogous to partially coherent nondiffracting
beams that were studied in the context of classical optics
[24,25]. In order to clarify this point, we first demonstrate the
mapping between the propagation of incoherent light in lin-
ear 1D photonic structures [30] and the TG gas dynamics.
Consider a quasimonochromatic, linearly polarized, partially
spatially incoherent light beam which propagates paraxially
in the 1D photonic structure described by the spatially de-
pendent index of refraction n’ =n2+2ngn(x,z); ny is con-
stant, while n(x,z) denotes spatial variation of the refraction
index. The classical electromagnetic field E(x,z,t) of the
beam randomly fluctuates; z (x) denotes the propagation axis
(spatial, respectively) coordinate. The state of the system is
described by the mutual coherence function B(x;,x,,z)
=(E"(x,,z,1)E(x,,z,1)) [31], where brackets denote the time
average, which equals the ensemble average assuming the
light source is stationary and ergodic [31]. The equation of
motion describing the dynamics of the intensity and coher-
ence properties of the light along the propagation axis z
(in the paraxial approximation) is

B 1(F & k
i P + 2k< ﬂx% axg)B + no[n(xl,z) n(x,,z)]B=0,

3)

where k=ngw/c, and o is the temporal frequency of the
quasimonochromatic beam. The mutual coherence function
B can be decomposed through an orthonormal set of coherent

modes ¢, and their modal weights \,, [31],

B(x1,%2,2) = 2 Nyt (%2, 2) i (1,2). (4)

In order to connect B to Eq. (1) we switch to dimensionless
units: é=x/xq, 7=z/(2kx}) (“time” is the propagation length
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here). The potential V arises from the refractive index
V(€, 7)==2(kxy)*n(x,z)/ny. From Egs. (3) and (4) it follows
that waves (£, 7)=\xy#,,(x,z) obey Eq. (1) (e.g., see Ref.
[32]), affirming the mapping between the two systems. Note
that each solution of Eq. (1) generates one bosonic many-
body wave function via Eq. (2), and, due to the arbitrary
choice of the modal weights \,,, many correlation functions
(4) corresponding to incoherent optical fields propagating in
linear 1D photonic structures. If we were to consider only
those functions B(x;,x,,z) with the modal decomposition of

the form B=3,,¢, (X5,2) #,,(x1,2), i.e., where \,, is either one
or zero, the mapping would be one-to-one. Within this map-
ping, the single-particle density p=2,,|#,|> of the TG gas
corresponds to the time-averaged intensity I=3,\,,| />
[32] of the light beam. However, the momentum distribution
of the TG gas differs from the Fourier power spectrum of the
incoherent beam [32], in the same fashion as it differs from
the momentum distribution of the corresponding noninteract-
ing fermionic system [3,7].

One particular example of a partially coherent nondif-
fracting optical beam propagating in vacuum, corresponds to
the dark stationary TG wave on a ring studied by Girardeau
and Wright [4]. An incoherent optical beam with the mutual
coherence function B(x;,x,)=[dk,G(k,)sin(kx,)sin(kx;),
or equivalently with the modal structure zjka(x)
=sin(k,x)/ \/ka), and \; =G(kN(k,), is propagation in-
variant; N(k,) serves to normalize tzkx(x). If its power spec-
trum G(k,) is rectangular, G(k,)=1,/K for |k,|<K/2, and
zero otherwise, the intensity structure has the form
Iy/2[1—-j,(Kx)], which is exactly the form of the odd
SP density component of the dark stationary wave on a
ring in the thermodynamic limit [4]. If B(x,x,)
= [dk,G(k,)cos(kx,)cos(k,x;), one obtains anti-dark optical
propagation-invariant waves.

We have thus established a link between the dynamics of
incoherent light in linear 1D photonic media and TG gas via
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Eq. (1). It should be kept in mind the former system is clas-
sical, while the latter is quantum, and the evolution of the
quantities derived from the set of waves #,, (e.g., the density
p=2,,|,]?) should be properly interpreted. This mapping
adds to the analogies between optical and matter waves [26],
and in particular to the analogy between nonlinear partially
coherent optical and matter waves [27]. We believe that the
recently discovered wave phenomena [33,34] in the context
of partially coherent optical-wave propagation in linear and
nonlinear photonic lattices [32-34], have their counterpart in
the context of matter waves.

Before closing, it should also be noted that the evolution
equation (3) for the mutual coherence function B(x;,x,,z) in
linear photonic structures [32], is identical to the evolution of
the reduced single-particle density matrix of noninteracting
spinless fermions (in 1D, and 2D as well).

V. CONCLUSION

In conclusion, we have proposed a scheme for exciting
dark stationary waves of the TG gas. Within our scheme, a
time-dependent potential focused on the center of the trap,
selectively filters a nondesirable part of the many-body wave
function, thereby creating a dark stationary wave. The sta-
tionary waves of the TG gas are analogous to partially co-
herent nondiffracting beams in optics. This analogy is a con-
sequence of the mapping between incoherent light in linear
1D photonic structures and the TG gas.
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