
LETTER
doi:10.1038/nature12066
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Topological insulators are a new phase of matter1, with the striking
property that conduction of electrons occurs only on their surfaces1–3.
In two dimensions, electrons on the surface of a topological insulator
are not scattered despite defects and disorder, providing robustness
akin to that of superconductors. Topological insulators are predicted
to have wide-ranging applications in fault-tolerant quantum com-
puting and spintronics. Substantial effort has been directed towards
realizing topological insulators for electromagnetic waves4–13. One-
dimensional systems with topological edge states have been demon-
strated, but these states are zero-dimensional and therefore exhibit no
transport properties11,12,14. Topological protection of microwaves
has been observed using a mechanism similar to the quantum Hall
effect15, by placing a gyromagnetic photonic crystal in an external
magnetic field5. But because magnetic effects are very weak at optical
frequencies, realizing photonic topological insulators with scatter-free
edge states requires a fundamentally different mechanism—one
that is free of magnetic fields. A number of proposals for photonic
topological transport have been put forward recently6–10. One sug-
gested temporal modulation of a photonic crystal, thus breaking
time-reversal symmetry and inducing one-way edge states10. This is
in the spirit of the proposed Floquet topological insulators16–19, in
which temporal variations in solid-state systems induce topological
edge states. Here we propose and experimentally demonstrate a photo-
nic topological insulator free of external fields and with scatter-free
edge transport—a photonic lattice exhibiting topologically pro-
tected transport of visible light on the lattice edges. Our system is
composed of an array of evanescently coupled helical waveguides20

arranged in a graphene-like honeycomb lattice21–26. Paraxial diffrac-
tion of light is described by a Schrödinger equation where the pro-
pagation coordinate (z) acts as ‘time’27. Thus the helicity of the
waveguides breaks z-reversal symmetry as proposed for Floquet
topological insulators. This structure results in one-way edge states
that are topologically protected from scattering.

Paraxial propagation of light in photonic lattices is described by the
Schrödinger-type equation:
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where y(x,y,z) is the electric field envelope function defined by
E(x,y,z) 5 y(x,y,z)exp(ik0z 2 ivt)x; E is the electric field, x is a unit
vector and t is time; the Laplacian, =2, is restricted to the transverse
(x–y) plane; k0 5 2pn0/l is the wavenumber in the ambient medium;
v 5 2pc/l is the optical frequency; and c and l are respectively the
velocity and wavelength of light. Our ambient medium is fused silica
with refractive index n0 5 1.45, andDn(x,y,z) is the ‘effective potential’,
that is, the deviation from the ambient refractive index. The array is
fabricated using the femtosecond laser writing method; each elliptical
waveguide has a cross-section with major and minor axis diameters of
11mm and 4mm, respectively. The photonic lattice is an array of eva-
nescently-coupled waveguides arranged in a honeycomb structure
with nearest-neighbour spacing of 15mm. The total propagation length
(in the z direction) is 10 cm, which corresponds to the wavefunction y

of a single waveguide mode completing ,20 cycles in phase while
propagating from z 5 0 to z 5 10 cm. The increase in refractive index
associated with the waveguides isDn 5 7 3 1024. The quantum mecha-
nical analogue of equation (1) describes the propagation of a quantum
particle that evolves in time—for example, an electron in a solid. The
waveguides act like potential wells, similarly to nuclei of atoms in
solids. Thus, the propagation of light in the array of helical waveguides
as it propagates in the z direction is equivalent to the temporal evolu-
tion of an electron as it moves through a two-dimensional lattice with
atoms that are rotating in time.

A microscope image of the input facet of the photonic lattice is
shown in Fig. 1a, and a diagram of the helical waveguides arranged
in a honeycomb lattice is shown in Fig. 1b. The period (or pitch) of the
helical waveguides is sufficiently small that a guided mode is adiabati-
cally drawn along with a waveguide as it curves. We therefore trans-
form the coordinates into a reference frame where the waveguides are
invariant in the z direction (i.e., straight), namely: x9 5 x 1 Rcos(Vz),
y9 5 y 1 Rsin(Vz) and z9 5 z, where R is the helix radius and V 5 2p/F
5 2p/1 cm is the frequency of rotation (F 5 1 cm being the period). In
the transformed coordinates, the light evolution is described by:
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where y9 5 y(x9,y9,z9), and A(z9) 5 k0RV[sin(Vz9),2cos(Vz9), 0] is
equivalent to a vector potential associated with a spatially homogene-
ous electric field of circular polarization. The adiabaticity of the guided
modes and the presence of the vector potential yield a coupled mode
(tight-binding) equation, via the Peierls substitution10:

iLz’yn(z’)~
X

hmi
ceiA z’ð Þ:rmn ym(z’) ð3Þ

where the summation is taken over neighbouring waveguides; yn(z9) is
the amplitude in the nth waveguide, c is the coupling constant between
waveguides and rmn is the displacement between waveguides m and n.
Because the right-hand side of equation (3) is z-dependent, there are no
static eigenmodes. Rather, the solutions are described using Floquet
modes, of the form yn(z9) 5 exp(ibz9)Qn(z9), where the function Qn(z9)
is F-periodic18. This yields the spectrum of b (the Floquet eigenvalues
or ‘quasi-energies’) as a function of the Bloch wavevector, (kx, ky), as
well as their associated Floquet eigenmodes. Floquet eigenmodes in the
z direction are equivalent to Bloch modes in the x–y plane. Therefore,
our input beam (initial wavefunction) excites a superposition of Flo-
quet modes whose population does not change over the course of
propagation17,18. The band structure for the case of non-helical wave-
guides (R 5 0) is shown in Fig. 1c. The conical intersections between
the first and second bands are the ‘Dirac points’28, a feature of graphene
that makes it semi-metallic. When the waveguides are made helical
(R . 0), a bandgap in the Floquet spectrum opens, as shown in Fig. 1d,
and the photonic lattice becomes analogous to an insulator—indeed,
to a Floquet topological insulator. As we show below, this structure
possesses topologically protected edge states.
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We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses
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Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and

a b

c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.
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simulations of equation (1)30. We examine a lattice with a defect on the
edge in the form of a ‘missing’ waveguide (Fig. 5a). Because of topo-
logical protection, the wavepacket should simply propagate around the
missing waveguide (the defect) without backscattering. An experi-
mental image of the output facet is shown in Fig. 5b (for R 5 8mm).
The excited waveguide is at the top right, and the edge state propagates
clockwise, avoiding the defect, and eventually hitting the next corner.
In Fig. 5c–h we show simulations for the optical intensity at z 5 0, 2, 4,
6, 8, 10 cm, respectively. The wavepacket clearly propagates around the

defect, continuing forward without backscattering. Note that the simu-
lated wavepacket has progressed slightly farther than that in the
experiment. This is a result of small uncertainty in the coupling con-
stant, c. Taken together, these data show the progression of topologic-
ally protected modes as they travel along the edge.

Photonic Floquet topological insulators have the potential to provide
an entirely new platform for probing and understanding topological
protection. For example, our photonic lattices have the same geometry
as photonic crystal fibres, and thus these systems are likely to exhibit
robust topologically protected states. Many interesting open questions
are prompted, concerning (for example) the behaviour of entangled
photons in a topologically protected system, the effect of interactions
on the non-scattering behaviour, or the possibility of simulating photo-
nic Majorana fermions for applications in robust quantum computing.
The realization of a photonic Floquet topological insulator in our rela-
tively simple classical system will enable these questions, as well as many
others, to be addressed.
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