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Observation of random-phase gap solitons in
photonic lattices
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We report what is to our knowledge the first experimental observation of gap random-phase lattice solitons:
self-trapped spatially incoherent entities whose modal constituents lie within a photonic bandgap. © 2006
Optical Society of America
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Wave propagation in nonlinear lattices is fundamen-
tal to various branches of physics.1 The transport dy-
namics of incoherent (random-phase) waves in such
structures is of particular interest, as most natural
sources emit waves with only partial coherence. The
distinction between coherent and incoherent waves
in periodic structures becomes especially significant
when the correlation distance is of the order of the
lattice spacing or smaller. An incoherent field can be
decomposed into a set of coherent modes with sto-
chastic coefficients.2 In linear systems, the evolution
of these modal constituents is uncoupled; hence the
dynamics of a weakly correlated (incoherent) wave
packet in a linear lattice can be analyzed through su-
perposition. On the other hand, in nonlinear lattices
the modal constituents are coupled through nonlin-
earity; hence superposition is inapplicable. Conse-
quently, weakly correlated waves in nonlinear peri-
odic systems yield a wealth of new phenomena,
arising from the interplay between interference ef-
fects (partial reflections in the lattice), nonlinearity,
and the statistical (coherence) properties of the
waves. These ideas are augmented by the recently
discovered random-phase lattice solitons3–5 (RPLSs),
which introduced the first study of incoherent wave
dynamics in nonlinear lattices. In Refs. 3–5, a signifi-
cant part of the modes originated from the first Bril-
louin zone, residing in the semi-infinite gap above the
first band. These modes were localized through total
internal reflection from the defect in the lattice in-
duced by the soliton intensity. Here, we demonstrate
incoherent gap solitons for which all modal constitu-
ents reside within the photonic bandgaps between
bands. All the modal constituents of such a gap RPLS
are localized through Bragg reflection.

A gap soliton (GS) is a self-localized wave packet in
a nonlinear periodic system whose propagation con-
stant resides in the gap between two bands. Gap soli-
tons were first found as temporal pulses in fiber
gratings,6 and later as self-trapped beams in wave-
guide arrays.7 The recent progress with nonlinear

photonic lattices has led to the first observation of
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dark8 and bright9 spatial GSs, which were followed
by observations of 2D spatial GSs,10 and of GSs origi-
nating from higher bands in 1D11 and 2D12 lattices.
All of these spatial GSs were constructed from spa-
tially coherent light. Building on the knowledge accu-
mulated on incoherent solitons,13–15 our group has
recently predicted3 and observed5 random-phase soli-
tons in photonic lattices. Subsequent theoretical
studies predicted the existence of gap RPLSs in 1D
waveguide arrays: gap solitons constructed from par-
tially spatially incoherent light.16,17

Here we present what is to our knowledge the first
experimental observation of gap RPLSs. The modal
constituents of such solitons reside in the gaps of the
unperturbed lattice, having no contribution from
modes whose propagation constant lies in the semi-
infinite gap above the first band and are localized by
total internal reflection. We observe the self-trapped
structure of these gap RPLSs as well as their multi-
hump power spectra.

A spatially incoherent field E�x ,y ,z , t� can be de-
scribed as an incoherent superposition of coherent
modes E=�mcm�t��m�x ,y ,z�, where cm�t� are ran-
domly fluctuating coefficients with �cn

*cm�=dm�mn,
where brackets denote the average over the response
time of the nonlinearity, and dm is the weight of the
mth mode.3 The concept of gap RPLS is general.
However, to describe our experiments, we analyze in-
coherent beams propagating in optically induced
waveguide arrays in photorefractives.9,10,18 The
paraxial dynamics of such an incoherent beam is de-
scribed by the set of dimensionless equations3
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where I= �
E
2�=�mdm
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2 is the time-averaged
intensity. Here we use a self-defocusing nonlinearity
�=−1 and V=V0�cos�2��x+y� /d�+cos�2��x−y� /d��2,

where V0 is the maximal lattice depth and d is the

2006 Optical Society of America



484 OPTICS LETTERS / Vol. 31, No. 4 / February 15, 2006
lattice spacing. The lattice in this case is the “back-
bone lattice,” with its maximal points connected by a
grid of equipotential lines.10,18 The bandgap structure
of our lattice is sketched in Fig. 1(a). For typical ex-
perimental parameters, there is only one gap (be-
tween the first and the second bands) in a backbone
lattice of a square symmetry.18 We therefore expect
that the propagation constants of the modal constitu-
ents of our gap RPLSs will reside in that gap, with
the modes arising from the anomalous diffraction re-
gions of the first band. We calculate the modes of a
representative gap RPLS by employing the self-
consistency method.19 The soliton in this example is
composed of five localized modes. The time-averaged
intensity of the beam induces a defect in the lattice,
and the soliton forms when its modal constituents
populate, with the proper weights, the bound states
of the defect that they jointly induce.3 The intensity
structure of the soliton and its (Fourier) power spec-
trum are shown in Fig. 1. The stability of the soliton
is checked numerically by adding small-amplitude
initial noise to the modes and propagating the soliton
for a number of diffraction lengths. Figure 1(b) de-
picts linear diffraction of the soliton in the lattice.

Our experiments are carried out in optically in-
duced nonlinear lattices formed in a photorefractive
SBN:75 crystal [Fig. 2(a)9,10,12]. The response time of
the nonlinearity is much longer than the characteris-
tic time of random field fluctuations; hence the non-
linearity responds to the time-averaged intensity.
The bias field is 1700 V/cm, corresponding to a 0.001
ratio of the lattice depth to the linear index of refrac-
tion. Our probe (soliton-forming) beam is extraordi-
narily polarized and is made spatially incoherent by

13

Fig. 1. (Color online) (a) Backbone lattice band structure.
The three lowest bands are presented top to bottom. Note
that there is no gap between the second and the third
bands. (b) Linear lattice diffraction of the calculated ex-
ample of gap RPLS at low intensity. (c) Intensity and (d)
power spectrum of the gap RPLS example.
passing a laser beam through a rotating diffuser
and then focusing the beam onto the input face of the
2D photonic lattice [Fig. 2(b)]. We control the degree
of spatial coherence and the shape of the power spec-
trum of the input probe beam by means of a spatial
filter in the Fourier plane of the 4f system. The lat-
tice period is 11 �m, and the probe beam is 20 �m
FWHM, covering an area of 10 channel
waveguides. We image the input and output planes of
the lattice onto a CCD camera, and in parallel view
the power spectrum of the beam exiting the
lattice.4,20

Two experimental examples of gap RPLSs are
shown in Figs. 3 and 4. The input beams have similar
widths, yet their structures in k space differ; hence
under proper nonlinear conditions, they evolve to dif-
ferent gap RPLSs. The input beams are engineered
with the central region of their power spectra re-
moved, so they do not excite first-band Bloch modes
from the normal diffraction region. We find (numeri-
cally and experimentally) that without such “spectral
engineering” the random-phase beams do not evolve
into gap RPLSs within a reasonable propagation dis-
tance �1 cm�.

Figure 3 demonstrates the evolution of an input
beam whose power spectrum consists of four humps,
each centered on an M-symmetry point of the square
lattice, into a gap RPLS. Such a beam excites mostly
anomalously diffracting Bloch modes. When the in-
put probe beam is at low intensity (peak intensity 50

Fig. 2. (Color online) (a) Optical induction technique used
to obtain a nonlinear photonic lattice. (b) The setup for pro-
ducing a partially spatially incoherent beam with an engi-
neered power spectrum.

Fig. 3. (Color online) Experimental observation of a gap
RPLS with a four-hump power spectrum. (a) Intensity and
(b) power spectrum of the input beam. (c) Diffraction of the
input beam after 5 mm free space propagation. (d) Low-
intensity output beam after 5 mm propagation in the lat-
tice. (e) Intensity and (f) power spectrum of the high inten-

sity gap RPLS exiting the lattice.
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times smaller than V0) the beam broadens to an out-
put of 50 �m FWHM after 5 mm propagation.
When the intensity of the probe beam is sufficiently
high (peak intensity V0 /4), the beam self-traps and
forms a gap RPLS, with a width of 18 �m FWHM.
Figure 4 shows the evolution of another incoherent
input beam into a gap RPLS. In this second example,
the input beam has an annular power spectrum with
a square hole in the middle. At low intensity, this
beam broadens to 80 �m after 5 mm propagation in
the lattice. When the beam intensity is increased to
V0 /4, it evolves into a gap RPLS of a width 30 �m
FWHM, and its power spectrum reshapes to have
most of its power located in the areas of anomalous
diffraction. Such a soliton is different in shape,
width, and power spectrum from the gap RPLS of
Fig. 3.

In conclusion, we have presented what is to our
knowledge the first experimental observation of gap
random-phase lattice solitons. The modal constitu-
ents of such solitons reside in the gaps between adja-
cent bands of the lattice, having no contribution from
modes whose propagation constant lies in the semi-
infinite gap, being self-trapped only by virtue of
Bragg reflections. We have observed the self-trapped
intensity structure of two different gap RPLSs, as
well as their multihump power spectra, and verified
the nonlinear nature of the self-trapping process by
observing significant broadening of these beams at
lower intensities. We have shown that, by engineer-
ing the power spectrum of the input beam, one can
control the width of the random-phase lattice soliton.
Random-phase gap solitons are generic entities;
hence such weakly correlated self-trapped waves
should also appear in other nonlinear periodic sys-
tems. One possibility is with incoherent temporal gap
solitons in fiber gratings, which seem feasible follow-
ing the recent progress with incoherent temporal
solitons21 and resonance solitons in photo-induced
gaps.22 Another possibility is with random-phase

Fig. 4. (Color online) Experimental observation of a gap
RPLS evolving from an input beam with an annular power
spectrum. (a) Intensity and (b) power spectrum of the input
beam. (c) Diffraction of the input beam after 5 mm free
space propagation. (d) Low-intensity output beam after
5 mm propagation in the lattice. (e) Intensity and (f) power
spectrum of the high intensity gap RPLS exiting the lattice.
matter wave solitons, which were predicted to occur
at finite temperatures.23 Following the observation of
matter–wave gap solitons,24 it is natural to envision
matter–wave gap RPLSs. We anticipate the observa-
tion of these gap random-phase lattice solitons in
these other fields in the near future.
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