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Grating-Mediated Waveguiding
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We propose a method of optical waveguiding, which relies on Bragg diffractions from a 1D grating
that gives rise to waveguiding in the direction normal to the grating wave vector. The waveguide
structure consists of a shallow 1D grating that has a bell- or trough-shaped amplitude in the
confinement direction. Finally, we provide an experimental proof of the concept for this mechanism.
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FIG. 1 (color online). Structure of (a) type I (bell-shaped) and
(b) type II (trough-shaped) grating-mediated waveguides.
Optical waveguides are widely used in modern opto-
electronic systems. Thus far, three physical mechanisms
for optical waveguiding have been proposed and demon-
strated. The most commonly used waveguiding scheme
relies on total internal reflection (TIR) [1,2], in which
light is propagating in a core region that has a refractive
index higher than that of the cladding. The second
method exploits the process of ‘‘Bragg reflection’’ and
is sometimes called ‘‘photonic band gap waveguiding’’
[3–5]. In this scheme, light is confined into a core region
that is surrounded by stacks of alternating dielectric
layers. The propagation constants of the guided modes
reside in the forbidden gaps of the cladding’s transmission
spectrum and, consequently, light is trapped due to Bragg
reflections from the cladding regions. The third type of
optical waveguiding is based on the CROW (coupled
resonator optical waveguide) system [6], in which wave-
guiding is achieved through weak coupling between ad-
jacent high-Q optical microresonators.

Here we propose a method for optical waveguiding:
grating-mediated waveguiding (GMW). GMW is driven
by a shallow 1D grating with a bell- or trough-shaped
amplitude that is slowly varying in the direction normal
to the grating wave vector. The waveguiding in this
system occurs in the direction normal to the grating
wave vector, when two Bragg-matched beams are incident
upon the grating in an angularly symmetric fashion.
These beams are simultaneously Bragg reflected from
the grating and are jointly guided in the direction normal
to the grating wave vector. As explained below, GMW
differs from the other three generic waveguiding meth-
ods. This technique can be implemented in wave systems
beyond optics as well, such as matter waves in Bose-
Einstein condensates and density waves in acoustics.

For demonstration purposes, let the refractive index
profile associated with such a planar grating-mediated
waveguide be given by:

n�x; y� � n0�1� "A�y� cos�2�x=d��: (1)

This structure consists of a shallow grating in x with
periodicity d and an amplitude "A�y�. In Eq. (1), A�y� is
a normalized profile [0 � A�y� � 1], and the small pa-
0031-9007=04=93(10)=103902(4)$22.50 
rameter " �0< " � 1� indicates the peak amplitude of
the grating involved. The structure is uniform in the z
direction, which is also the propagation direction of the
waveguide. Here we focus on two generic families of
GMW, corresponding to A�y� having a bell shape
[Fig. 1(a)] or a trough shape [Fig. 1(b)]. In both cases,
the average index in every ‘‘layer’’ (cross section) in the y
direction is equal to n0, i.e., �n�y� �

R
d
0 n�x; y�dx � n0.

We begin by giving a qualitative explanation of the
basic mechanism underlying GMW. For this purpose,
we assume that the width of the grating amplitude is
several times larger than the grating period and, of
course, much larger than the wavelength. Within this
limit, the guided modes of these systems can be described
by the modes of the 1D grating, with their amplitudes
slowly modulated (on a wavelength scale) in the y direc-
tion through the change in the grating amplitude.
Figure 2(a) shows three gratings with different ampli-
tudes, corresponding to three different y planes (layers)
of this structure. The dispersion curves in these layers,
namely, the propagation constant � vs the transverse
momentum kx, are shown in Fig. 2(b). The dispersion
curves coincide everywhere except near the edges of the
Brillouin zones [see magnified section of Fig. 2(b)], where
a large amplitude " yields a larger gap (outermost curves)
and " ! 0 leads to a diminishingly small gap. The modes
of shallow gratings are approximately plane waves
exp�
ikxx� or, equivalently, standing waves cos�kxx�
and sin�kxx� [7]. Note that near the Brillouin zone edge,
that is near kx � 
�=d, the grating removes the degen-
eracy between the cos and sin modes. In the vicinity of
this region, the wave with the cos��x=d� dependence is
more concentrated in the higher index regions, whereas
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FIG. 2 (color online). (a) Index grating with three different
amplitudes, corresponding to three different y planes (layers)
in grating-mediated waveguides. (b) The dispersion curves
(propagation constant � vs the transverse momentum kx)
near the edge of the first Brillouin zone for the gratings shown
in (a). The inset shows the dispersion curves at the edge of the
first Brillouin zone. (c),(d) Typical grating index amplitudes of
(c) type I and (d) type II grating-mediated waveguides. (e) The
effective waveguide structure in y; type I beams need a
cos��x=d� dependence and type II beams need a sin��x=d�
dependence to experience Bragg-mediated waveguiding.
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the sin��x=d� wave is more concentrated in the lower
index regions. Hence, the propagation constant (or, equiv-
alently, the effective refractive index neff � �=k0) of the
cosine wave is shifted upward, while the propagation
constant of the sine wave is shifted downward, as shown
in Fig. 2(b). For shallow gratings, this shift is propor-
tional to the grating amplitude [7].

The first generic type of GMW, the type I waveguide,
has a bell-shaped amplitude in y [Fig. 2(c)]. The change in
propagation constant (the effective index) for the
cos��x=d� grating mode, due to the grating, is propor-
tional to the grating amplitude "A�y�. Hence, beams with
a cos��x=d� dependence experience effective waveguid-
ing in y; that is, the effective index for such beams has a
waveguide structure, as shown in Fig. 2(e). GMW of the
second generic kind, type II, relies on a trough-shaped
grating amplitude A�y� [Fig. 2(d)]. Here the change in
propagation constant � (the effective index) for beams
having a sin��x=d� dependence is proportional to
�"A�y�, which (again) results in an effective waveguide
structure for these sin beams [Fig. 2(e)].

It is instructive to highlight the difference between
GMWand waveguides that rely either on Bragg reflection
or on TIR. At first sight, one might mistakenly think that
because the structures of a GMW are periodic, then the
waveguiding effect is identical to that of Bragg reflection
waveguides [3–5]. However, in Bragg reflection wave-
guides, the waves are Bragg reflected from the cladding
regions back into the core region; i.e., the reflections are
in the plane defined by the propagation and confinement
directions. In contrast, for GMW, the grating is perpen-
dicular to the direction of confinement, and the confined
waves are Bragg scattered in the direction normal to the
103902-2
confinement direction. Likewise, grating-mediated wave-
guides are also different from TIR waveguides: in TIR
structures, the light is confined in regions of higher
refractive index [2], whereas for GMW all the waveguide
layers have the same average refractive index n0. This last
argument becomes more apparent in type II grating-
mediated waveguides, for which the grating amplitude
has a trough shape. In this case, waveguiding is achieved
even though light is not concentrated in the regions of the
peaks of the refractive index.

We find the guided modes of the GMW through
coupled mode theory. Since the index change is small,
we neglect any vectorial effects and solve for the guided
modes ���x; y� and propagation constants � of the scalar
Helmholtz equation:

@2�

@x2
�

@2�

@y2
� �k20n

2 � �2�� � 0; (2)

where n�x; y� is given by Eq. (1) and k0 � !=c. Following
the above discussion, we seek modes of the form [8]

��x; y� � ��y�
�
cos��x=d�
sin��x=d�

�
:

Inserting this ansatz and Eq. (1) into Eq. (2) and neglect-
ing the "2 term yields
�
cos��x=d�

sin��x=d�

�
f�00 ���k20n

2
0 � ��=d�2 � �2�

2"A�y�k20n
2
0 cos�2�x=d��g � 0: (3)

Utilizing trigonometric identities and neglecting asyn-
chronous terms of spatial frequency 3�=d yields

�00 ���k20n
2
0 � ��=d�2 � �2 
 "k20n

2
0A�y�� � 0; (4)

where the plus (minus) corresponds to the cos (sin) x
dependence of ��x; y�.

Consider first Eq. (4) with the plus sign. As a con-
crete example of a type I waveguide, we analyze the

case where A�y� � sech2�y=y0�, with y0 �
������������������
2="k20n

2
0

q
.

The first guided (bound) solution to Eq. (4) is �1 �
sech�y=y0�, with propagation constant �1 ����������������������������������������������������
k20n

2
0�1� "=2� � ��=d�2

q
. The second guided mode is

�2 � tanh�y=y0�, with �2 �
�������������������������������
k20n

2
0 � ��=d�2

q
. We solved

Eq. (2) numerically with the following parameters: " �
10�4, d � 5 �m, k0 � 2� �m�1, and n0 � 2 (resulting
with y0 � 11:25 �m) and found that the numerical solu-
tions almost perfectly match the analytical solutions. The
analytic approximation is excellent for shallow gratings
with envelopes that are several times wider than the
grating period. We emphasize, however, that the idea of
grating-mediated waveguides works well beyond the re-
gime described by coupled mode theory.

To further study GMW, we simulate the propagation of
various beam configurations when launched into this
103902-2
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system. Our simulation is carried out using a standard
beam-propagation method and is based on the paraxial
version [2] of the Helmholtz equation. The parameters
used are those mentioned in the previous section.
Figures 3(a)–3(c) show a typical evolution of such beams
when they are not Bragg matched with the index grating.
Specifically, these figures show the evolution of a
sech�y=y0� beam, launched on axis. The beam broadens
from 20 �m at z � 0 to 150 �m at z � 2 cm. In a homo-
genous medium with n � n0, the same beam would have
diffracted (broadened) to 167 �m. On the other hand,
Figs. 3(d)–3(f) display the evolution of a beam with the
same shape in y but with a cos��x=d� modulation in x.
Such a beam displays stationary evolution, maintaining
its narrow 20 �m width in y, thereby demonstrating
grating-mediated waveguiding. However, as discussed
above, type I GMW necessitates matching between the
phase front of the propagating field and the grating. This
phase selectivity is demonstrated in Figs. 3(g)–3(i),
which show the evolution of a single sech�y=y0� beam
incident at the Bragg angle, which can also be viewed as a
superposition of cos��x=d� and sin��x=d� beams. The
sine component radiates [Fig. 3(h)], whereas the cosine
component stays guided within the structure.

Next we demonstrate type II GMW, for which the
grating envelope in y has a trough shape. We solve
Eq. (4) with the minus sign and set A�y� � 1�
sech2�y=y0�. The only difference in Eq. (4) in this
example from the previous one is the constant term
"k20n

2
0. Hence, the envelopes of the guided modes are

identical to those of the previous example, �1�
sech�y=y0� and �2 � tanh�y=y0�, but with different

propagation constants: �1�
�������������������������������������������������
k20n

2
0�1�"=2����=d�2

q

and �2�
�������������������������������������������
k20n

2
0�1�"����=d�2

q
, respectively. Figure 4

shows the propagation in such a waveguide with the
same parameters f", d, k0, n0g as in Fig. 3.
FIG. 3 (color online). Propagation of different beams in a
type I (bell-shaped) GMW, each with a y profile of the first
guided mode. Shown are the intensities at the propagation
planes z � 0, 2=3, and 2 cm for (a)–(c) a beam uniform in x,
(d)–(f) a beam with cos��x=d� dependence, and (g)–(i) a beam
with exp�i�x=d� dependence. Note that, for the latter case, the
sine component radiates while the cosine component is trapped.
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Figures 4(a)–4(c) show the propagation of an on-axis
sech�y=y0� beam with a uniform x structure, which broad-
ens from 20 �m at z � 0 to 190 �m at z � 2 cm.
Figures 4(d)–4(f) display the stationary evolution of
the sech�y=y0� sin��x=d� beam. On the other hand, a
beam that is sech�y=y0� in y but has a cos��x=d� shape
in x broadens considerably [Figs. 4(g)–4(i)]. We empha-
size that waveguiding occurs in this trough-shaped type II
GMW in spite of the depression in the grating amplitude.
Waveguiding, however, is achieved only at the proper
angles of incidence, with the proper relative phase be-
tween the waves, so that the interference maxima coincide
with the valleys in the index grating.

An experimental proof of concept for the type II
(trough-shaped) GMW is shown in Fig. 5. We generate
the waveguide in a 5 mm long photorefractive SBN:60
crystal through optical induction. An index grating is
induced in the crystal by interfering two plane waves,
while the trough is created by illuminating the central
region with a narrow stripe beam that is incoherent
with the interfering waves [Fig. 5(a)]. The total trough-
shaped GMW structure �n / I1 cos�2�x=d� �=2�=
�I1 � I2 exp��y2=y20��, forms through photorefractive dif-
fusion effects [2]. Here d is the periodicity of the grating
intensity interference pattern, y0 is the width of the stripe,
and I1, I2 are the peak intensities of the grating and stripe
beams, respectively. The beams inducing the waveguide
are ordinarily polarized; hence, they experience approxi-
mately linear propagation, as if they propagate in a ho-
mogenous linear medium. Next we launch the probe
beams into the trough structure. The probe beams are
very weak and extraordinarily polarized; hence, they
‘‘feel’’ the waveguide structure. To generate a probe
beam with a proper guided mode profile, we interfere
two beams that are wide in x, narrow in y, propagate at

�Bragg with respect to the z axis, and posses the ‘‘cor-
rect’’ � phase shift relative to the grating index.
Figures 5(b) and 5(c) show the intensity pattern at the
FIG. 4 (color online). Propagation of different beams in a
type II (trough-shaped) grating-mediated waveguide, each with
a y profile of the first guided mode. Shown are the intensities at
the propagation planes z � 0, 2=3, and 2 cm for (a)–(c) a beam
uniform in x, (d)–(f) a beam with sin��x=d� dependence, and
(g)–(i) a beam with cos��x=d�.
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FIG. 5 (color online). Experimental
scheme and results of a type II
grating-mediated waveguide. (a) Sche-
matic of the optically induced tech-
nique we use to obtain a type II GMW.
The photographs are of a probe beam at
(b) the input and (c) output of the wave-
guide providing experimental proof of
concept for GMW. (d)–(f) Diffraction
in unguided conditions: (d) a homoge-
neous medium, (e) when the beams are
not Bragg matched with the index grat-
ing, (f) when the beams are Bragg
matched with the grating but have the
‘‘wrong’’ phase relative to the grating.
In (b)–(f), the intensity in each figure is
normalized to its own peak intensity.
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input and output faces of the crystal, respectively, dem-
onstrating the confinement of the beam in the GMW
structure. For comparison, Figs. 5(d)–5(f) show diffrac-
tion in three different conditions: propagation in a homo-
geneous medium [Fig. 5(d)], when the beams are not
Bragg matched with the index grating [Fig. 5(e)], and
when the beams are Bragg matched with the grating but
have the ‘‘wrong’’ phase relative to the grating [Fig. 5(f)].

Let us now briefly discuss other interesting choices
for the grating amplitude A�y� which arise from com-
binations of the two generic (bell and trough) cases.
For example, the structure with envelope A�y� �
sech2�y=y0� � tanh2�y=y0� also acts as a GMW in the
vicinity of y � 0. Another interesting example is A�y� �
sech2�y=y0� � tanh2�y=y0� exp���y=4y0�

2�, which guides
both the cosine and the sine beam components but at
different layers (in the vicinities of y � 0 and y �

2y0, respectively). A third example is the structure
with a periodic grating amplitude A�y� � cos�y=y0�,
which results in an array of grating-mediated wave-
guides. Here beams with different x dependencies expe-
rience different ‘‘effective structures’’ in y. Specifically,
beams with cos��x=d� exhibit waveguiding in layers y �
2�y0m, whereas beams with sin��x=d� are guided at y �
�y0�1� 2m� [where �m � 0;
1;
2; . . .�]. At the same
time, beams lacking a spatial frequency of �=d do not
feel any waveguide array but behave approximately as
they would in a homogenous medium.

While we considered here the optical domain, a GMW
mechanism is clearly applicable to any �2� 1�D or �3�
1�D wave equation [e.g. the Helmholtz equation (2) or the
Schrödinger equation]. For example, a periodic density
variation with a transverse profile (established, say, by a
standing wave of suitable frequency) can waveguide
acoustic or ultrasonic waves. The only requirement is
the ability to create (or induce) a sinusoidal grating and
propagate in the structure a distance greater than the
103902-4
grating period by orders of magnitude. This can be
achieved with sound waves [9] as well as with matter
waves [10]. Indeed, any coherent wave propagating in a
potential that is periodic in one dimension, with a slowly
varying amplitude in one or two transverse dimensions,
will experience grating-mediated waveguiding.

In conclusion, we have proposed and provided an ex-
perimental proof of concept for a new method of optical
waveguiding that is driven by a shallow 1D grating with a
bell- or trough-shaped amplitude, which is slowly vary-
ing in the direction normal to the grating wave vector.
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