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We describe experimental and theoretical results of research on a new type of waveguide, the so-called grating-
mediated waveguide (GMW) recently reported by our group. This waveguide structure relies on Bragg diffrac-
tions from a 1D grating giving rise to wave guiding in the direction normal to the grating wave vector. The
structure consists of a shallow 1D grating having a bell- or trough-shaped amplitude in the confinement di-
rection. We provide the theoretical analysis of the underlying wave-guiding mechanism along with experimen-
tal evidence for both the bell- and the trough-shaped waveguides. We investigate the robustness of grating-
mediated wave guiding and suggest more elaborate, 2D structures, such as a GMW superlattice and a grating-
mediated ring waveguide. Finally we discuss the relation between grating-mediated wave guiding and
holographic solitons, which are the beams that are self-trapped solely by virtue of their jointly induced grating.
© 2005 Optical Society of America
OCIS codes: 190.5330, 090.7330, 230.7370.
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. INTRODUCTION
great deal of research effort has been invested in the

tudy of waveguides, since they serve as the backbone of
odern communication.1 Optical waveguides are widely
sed in modern optoelectronic systems, and new wave-
uide structures are being suggested constantly, such as
hiral waveguides serving as filters for light pulses2 and
hotonic-bandgap optical fibers.3 To date, all optical
aveguides can be classified into three generic categories.
he most commonly used wave-guiding scheme relies on
otal internal reflection (TIR),4,5 in which light propagates
n a core region with a refractive index higher than that of
he cladding, nclad,ncor. The second class of waveguides
xploits the process of “Bragg reflection,” and is some-
imes called photonic-bandgap wave guiding.6–8 In this
cheme light is confined to a core region that is sur-
ounded by stacks of alternating dielectric layers. The
ropagation constants of the guided modes reside in the
orbidden gaps of the cladding’s transmission spectrum;
onsequently, light is trapped as a result of Bragg reflec-
ion from the cladding regions. The third class of
aveguides is based on the coupled-resonator-optical-
aveguide system9 in which wave guiding is achieved

hrough weak coupling between adjacent high-Q optical
icroresonators.
We have recently proposed a new method for optical

ave guiding: grating-mediated wave guiding10 (GMW).
MW is driven by a shallow 1D grating with bell- or

rough-shaped amplitude that is slowly varying in the di-
0740-3224/05/071349-7/$15.00 © 2
ection normal to the grating wave vector. Wave guiding
n this system occurs for a probe beam constructed of two
ragg-matched beams that are incident on the grating in
n angularly symmetric fashion. These beams are simul-
aneously Bragg-reflected from the grating and are jointly
uided in the direction normal to the grating wave vector.
n our previous paper on this subject10 we presented the
asic underlying theory and an experimental proof of con-
ept for the trough-shaped GMW. Here we describe a
ore comprehensive study of GMW, including experi-
ents on both bell-shaped and trough-shaped GMWs and
theoretical study of the robustness and sensitivity to
ave guiding conditions. In addition we propose more

omplex 2D GMW structures, such as a GMW superlat-
ice and a grating-mediated ring waveguide; for complete-
ess we repeat most of the results reported in Ref. 10.
As will be explained below GMW is considered generic

nd differs from the other three generic wave-guiding
ethods. This new technique can be implemented in
ave systems beyond optics as well, such as matter waves

n Bose–Einstein condensates and density waves in
coustics.

. THEORETICAL BACKGROUND
he GMW mechanism is based on a shallow 1D grating
hat has a bell- or trough-shaped amplitude in the con-
nement direction. This bell–trough envelope changes the
odulation depth of the grating, thus causing beams that
005 Optical Society of America
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re Bragg-matched with the grating (beams at the edge of
he Brillouin zone) to “feel” a different refractive index at
ifferent y levels. This in turn creates an effective lens
hat acts on the beams. Let us now discuss this GMW
echanism in more detail. For demonstration purposes

et the refractive-index profile associated with such a pla-
ar GMW be given by

nsx,yd = n0f1 + «Asydcoss2px/ddg. s1d

his GMW consists of a shallow grating in x with period-
city d and amplitude eAsyd. In Eq. (1), Asyd is a normal-
zed profile s0øAsydø1d, and the small parameter e s0

e!1d indicates the peak amplitude of the grating in-
olved. The structure is uniform in the z direction, which
s also the propagation direction of the waveguide. In this
aper we will focus on two families of GMW correspond-
ng to Asyd having a bell shape [Fig. 1(a)] or a trough
hape [Fig. 1(b)]. Note that in both cases the average in-
ex in every “layer” (cross section) in the y direction is
qual to n0, i.e., n̄syd=e0

dnsx ,yddx=n0.
We begin by giving a qualitative explanation of the ba-

ic mechanism underlying GMW. For this purpose we as-
ume that the width of the grating amplitude is several
imes larger than the grating period and of course much
arger than the wavelength. Within this limit the guided

odes of these systems can be described by the modes of
he 1D grating with their amplitudes slowly modulated
on a wavelength scale) in the y direction through the
hange in the grating amplitude. Figure 2(a) shows three
ratings with different amplitudes corresponding to three
ifferent y planes (layers) of this structure. The disper-
ion curves in these layers, namely the propagation con-
tant b versus the transverse momentum kx, are shown in
ig. 2(b). The dispersion curves coincide everywhere ex-
ept in the vicinity of the edge of the first Brillouin zone
shown in the magnified section of Fig. 2(b)], where a
arge amplitude e yields a larger gap (outermost curves),
nd e→0 leads to a diminishingly small gap. The modes
f shallow gratings are approximately plane waves
xps±ikxxd or, equivalently, standing waves cos kxx and
in kxx.11 Because the grating is shallow, the curves for
he different layers coincide, except near the edge of the
rillouin zone, that is, near kx= ±p /d, where the grating
emoves the degeneracy between the standing waves
osspx /dd and sinspx /dd. In the vicinity of this region the
ave with the cosspx /dd dependence is more concentrated

n the higher-index regions, whereas the sinspx /dd wave
s more concentrated in the lower-index regions. Hence
he propagation constant (or equivalently the effective re-
ractive index neff=b /k0) of the cosine wave is shifted up-
ard, while the propagation constant of the sine wave is

hifted downward, as shown in Fig. 2(b). For shallow
ratings this shift is proportional to the grating
mplitude.11 An alternative way to understand intuitively

ig. 1. Schematic index structure of (a) Type I (bell-shaped) and
b) Type II (trough-shaped) GMWs.
hese shifts at kx= ±KG /2 is to view the standing waves as
wo propagating waves that propagate in angles ±uBragg.
he two Bragg-matched waves scatter into one another,
hat is, the wave propagating at angle u is scattered and
oherently added to the wave that is propagating at −u,
nd vice versa. However, if the intensity of the interfer-
nce pattern between the two waves is in phase with the
ndex grating, i.e., the intensity has a cos2sKGx /2d struc-
ure, then the scattered waves are p /2 phase-delayed
elative to the waves into which they are scattered and to
hich they are coherently added.5 Thus these multiple
ragg reflections between the two waves decrease the
hase velocity (increasing the propagation constant and
ffective index) of both waves as a consequence of the in-
eraction between the waves and the grating. In contrast
f the intensity of the interference pattern is sin2sKGx /2d,
.e., it is p phase-shifted relative to the index grating,
hen the scattered waves are p /2 phase-advanced relative
o the waves into which they are scattered. Thus in this
ase their phase velocity is increased (their propagation
onstant and effective index are decreased).

The first type of GMW, Type I [see Fig. 1(a)], has a bell-
haped amplitude in y [Fig. 2(c)]. The change in propaga-
ion constant (the effective index) for the cosspx /dd grat-
ng mode due to the presence of the grating is
roportional to the grating amplitude «Asyd. Hence beams
ith a cosspx /dd dependence experience effective wave
uiding in y, that is, the effective index for such beams
as a waveguide structure as shown in Fig. 2(e).
GMW of the second kind, Type II [see Fig. 1(b)], relies

n a trough-shaped grating amplitude Asyd [Fig. 2(d)].
ere the change in propagation constant b (the effective

ndex) for beams having a sinspx /dd dependence is pro-
ortional to −«Asyd, which (again) results in an effective
aveguide structure for these sine beams [Fig. 2(e)].

. COMPARISON WITH OTHER
AVE-GUIDING METHODS

t is instructive to highlight the difference between GMW
nd waveguides that rely either on Bragg reflection or on

ig. 2. (a) Index grating with three different amplitudes corre-
ponding to three different y planes (“layers”) in GMWs. (b) The
ispersion curves (propagation constant b versus the transverse
omentum kx) near the edge of the first Brillouin zone for the

ratings shown in (a). The inset shows the dispersion curves at
he edge of the first Brillouin zone. Typical grating index ampli-
udes of (c) Type I and (d) Type II GMWs. (e) The effective wave-
uide structure in y; Type I beams need a cosspx /dd dependence,
ype II beams need a sinspx /dd dependence to experience Bragg-
ediated wave guiding.
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IR. At first sight, one might think that because the
tructures of GMWs are periodic, the wave guiding effect
s identical to that of Bragg-reflection waveguides.6–8 This
iew is misleading, and in fact the methods are different.
pecifically, in Bragg-reflection waveguides the waves are
ragg-reflected from the cladding regions back into the
ore region, i.e., the reflections are in the plane defined by
he propagation and confinement directions. In contrast,
or a GMW the grating is perpendicular to the direction of
onfinement and the confined waves are Bragg-scattered
n the direction normal to the confinement direction. Like-
ise, GMWs are different from TIR waveguides: In TIR

tructures the light is confined in regions of higher refrac-
ive index,5 whereas for GMW all the waveguide “layers”
ave the same average refractive index n0. This last ar-
ument becomes more apparent in Type II GMWs, for
hich the grating amplitude has a trough shape. In this

ase wave guiding is achieved even though light is not
oncentrated in the regions of the peaks of the refractive
ndex. Another important difference between GMW and
ragg-reflection waveguides is that the former is both
ragg sensitive and phase sensitive, whereas the latter is
ensitive only to Bragg mismatch. That is, for GMWs the
ctual phase (and not just the periodic structure) of a
ave determines whether a beam will be guided or de-
ected. This allows for sophisticated structures to be cre-
ted, such as the GMW “superlattices” that will be dis-
ussed below.

. FINDING THE GUIDED MODES OF A
RATING-MEDIATED WAVEGUIDE
e use coupled-mode theory to find the guided modes of

he GMW. Since the index change is very small we neglect
ny vectorial effects, assume quasi-monochromatic light,
nd solve for the guided modes Cbsx ,yd and propagation
onstants b of the scalar Helmholtz equation

]2C

]x2 +
]2C

]y2 + sk0
2n2 − b2dC = 0, s2d

here nsx ,yd is given by Eq. (1) and k0=v /c. Following
ur principles we seek modes of the form Csx ,yd=Fsyd
f cosspx/dd

sinspx/ddg. Inserting this ansatz and Eq. (1) into Eq. (2)
nd neglecting terms of order «2 yields

bcosspx/dd

sinspx/ddchF9 + Ffk0
2n0

2 − sp/dd2 − b2

+ 2«Asydk0
2n0

2 coss2px/ddgj = 0. s3d

sing trigonometric identities and neglecting asynchro-
ous terms of spatial frequency 3p /d, we obtain

F9 + Ffk0
2n0

2 − sp/dd2 − b2 ± «k0
2n0

2Asydg = 0, s4d

here the plus and minus signs correspond to the cos x
nd sin x dependences of Csx ,yd, respectively.12

Consider first Eq. (4) with the plus sign. As a concrete
xample of a Type I waveguide, we analyze the case
here Asyd=sech2sy /y0d with y0= s2/«k0

2n0
2d1/2. The first

uided (bound) solution to Eq. (4) is F1=sechsy /y0d with
ropagation constant b = fk 2n 2s1+« /2d− sp /dd2g1/2. The
1 0 0
econd guided mode is F2=tanhsy /y0d with b2= fk0
2n0

2

sp /dd2g1/2. We solved Eq. (2) numerically with the pa-
ameters «=10−4, d=5 mm, k0=2p mm−1, and n0=2 (re-
ulting in y0<11.25 mm), and find that the numerical so-
utions almost perfectly match the analytical solutions.
he analytic approximation is excellent for shallow grat-

ngs with envelopes that are several times wider than the
rating period. We emphasize, however, that the idea of
MWs works well beyond the regime described by

oupled-mode theory.
To study GMW further we simulate the propagation of

arious beam configurations when launched into this sys-
em. Our simulation is carried out by a standard beam-
ropagation method (BPM) and is based on the paraxial
ersion5 of the Helmholtz equation. The parameters used
re the same as in the previous paragraph. Figures
(a)–3(c) show a typical evolution of such beams when
hey are not Bragg-matched with the index grating. Spe-
ifically, these figures show the evolution of a sechsy /y0d
eam launched on-axis. The beam broadens from 20 mm
t z=0 to 150 mm at z=2 cm. In a homogenous medium
ith n=n0 the same beam would have diffracted (broad-

ned) to 167 mm. On the other hand Figs. 3(d)–3(f) dis-
lay the evolution of a beam with the same shape in y but
ith a cosspx /dd modulation in x. Such a beam displays

tationary evolution, maintaining its narrow 20 mm
idth in y and thereby demonstrating GMW. However, as
iscussed above Type I GMW necessitates matching be-
ween the phase front of the propagating field and the
rating. This phase selectivity is demonstrated in Figs.
(g)–3(i), which show the evolution of a single sechsy /y0d
eam that is incident at the Bragg angle and that can also
e viewed as a superposition of a cosspx /dd and a
inspx /dd beam. As shown, the sine component radiates
Fig. 3(h)], whereas the cosine component stays guided
ithin the structure.
Next we demonstrate Type II GMW, that is, when the

rating envelope in y has a trough shape. We solve Eq. (4)

ig. 3. Propagation of different beams in a Type I (bell-shaped)
MW, each with a y profile of the first guided mode. Shown are

he intensities at the propagation planes z= sad 0, (b) 2/3 cm, and
c) 2 cm for a beam uniform in x, (d)–(f) a beam with cosspx /dd
ependence, and (g)–(i) a beam with expsipx /dd dependence.
ote that for the exponential profile, the sine component radiates
hile the cosine component is trapped.
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ith the minus sign and set Asyd=1−sech2sy /y0d. The
nly difference in Eq. (4) in this example from the previ-
us one is the constant term «k0

2n0
2. Hence the envelopes

f the guided modes are identical to those of the previous
xample, F1=sechsy /y0d and F2=tanhsy /y0d, but with dif-
erent propagation constants: b1= fk0

2n0
2s1−« /2d

sp /dd2g1/2 and b2= fk0
2n0

2s1−«d− sp /dd2g1/2, respectively.
igure 4 shows the propagation dynamics in such a wave-
uide with the same parameters s« ,d ,k0 ,n0d as in Fig. 3.
igures 4(a)–4(c) show the propagation of an on-axis
echsy /y0d beam with a uniform x structure that broadens
rom 20 mm at z=0 to 190 mm at z=2 cm. Figures
(d)–4(f) display the stationary evolution of the
echsy /y0dsinspx /dd beam. On the other hand a beam that
s sechsy /y0d in y but has a cosspx /dd shape in x broadens
onsiderably [Figs. 4(g)–4(i)]. We emphasize that GMW
ccurs in this trough-shaped Type II structure in spite of
he depression in the grating amplitude. Wave guiding,
owever, is achieved only at the proper angles of inci-
ence and with the proper relative phase between the
aves so that the interference maxima coincide with the
alleys in the index grating.

The two envelopes (grating amplitudes) defining the
ell and trough shapes are not the only envelopes allow-
ng for GMW. It is also possible to create grating ampli-
udes Asyd that arise from combinations of the two (bell
nd trough) cases. For example the structure with enve-
ope Asyd=sech2sy /y0d−tanh2sy /y0d also acts as a GMW in
he vicinity of y=0. Another interesting example is Asyd
sech2sy /y0d−tanh2sy /y0dexpf−sy /4y0d2g, which guides
oth the cosine and the sine beam components, but at dif-
erent layers (in the vicinity, of y=0 and y= ±2y0, respec-
ively). A third example, called GMW superlattice will be
iscussed in Section 7.

. EXPERIMENTAL PROOF OF CONCEPT
e now present an experimental proof of concept for
MW for both types, bell and trough. For the trough case,

ig. 4. Propagation of different beams in a Type II (trough-
haped) GMW, each with a y profile of the first guided mode.
hown are the intensities at the propagation planes z= sad 0, (b)
/3 cm, and (c) 2 cm for a beam uniform in x (d)–(f), a beam with
inspx /dd dependence, and (g)–(i) a beam with cosspx /dd
ependence.
e generate the waveguide in a 5 mm long photorefrac-
ive SBN:60 crystal through optical induction. The wave-
uide is formed by interfering two plane waves that in-
uce an index grating in the crystal. The trough is
nduced by illuminating the central interference region
ith a narrow stripe beam that is made incoherent with

he interfering waves. The stripe beam acts to “bleach”
he grating by reducing the visibility of the interference in
he region of the stripe.

Together these three beams induce, through photore-
ractive diffusion effects (with no external field applied
nd with no apparent photovoltaic effect), a trough-type
MW structure [Fig. 5(a)] of5

Dn ~ I1 coss2px/d + p/2d/fI1 + I2 exps− y2/y0
2dg.

ere d is the periodicity of the grating-intensity interfer-
nce pattern, y0 the width of the stripe, and I1, I2 the peak
ntensities of the grating and stripe beams, respectively.
he beams inducing the waveguide are ordinarily polar-

zed, for which the electro-optic coefficient in SBN:60 is
egligibly small. Hence the waves inducing the grating
xperience approximately linear propagation and no en-
rgy exchange (two-wave mixing), as if they were propa-
ating in a homogeneous linear medium.

Next we launch the probe beams into the trough struc-
ure. The probe beams are made very weak so as not to
ffect the waveguide structure. At the same time, the
robe beams are extraordinarily polarized; hence they
feel” the waveguide structure through the large electro-
ptic coefficient. To generate a probe beam with a proper
uided-mode profile, we interfere two beams that are
ide in x, narrow in y, propagating at ±uBragg with respect

o the z axis, and possesing the “correct” p phase shift
elative to the grating index. Figures 5(b) and 5(c) show
he intensity pattern at the input and output faces of the
rystal, respectively, demonstrating the confinement of
he beam in the GMW structure. For comparison Figs.
(d)–5(f) show diffraction in three different conditions:
ropagation in a homogeneous medium [Fig. 5(d)], when
he beams are not Bragg-matched with the index grating
Fig. 5(e)], and when the beams are Bragg-matched with

ig. 5. (a) Schematic of the optically-induced technique we use
o obtain a Type II GMW. Photographs of a probe beam at the (b)
nput and (c) output of the waveguide providing experimental
roof of concept for GMW. Diffraction in unguided conditions: (d)
homogeneous medium, (e) when the beams are not Bragg-
atched with the index grating, (f) when the beams are Bragg-
atched with the grating but have the “wrong” phase relative to

he grating. In (b)–(f) the intensity in each figure is normalized to
ts own peak intensity.
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he grating but have the “wrong” phase relative to the
rating [Fig. 5(f)]. Clearly the probe beam is guided in the
MW structure under the proper periodicity and phase

onditions.
For the case of a bell-type GMW we use a similar tech-

ique as with the trough, this time with a 7 mm long pho-
orefractive SBN:60 crystal. We can use a longer crystal
ecause of the way we induce the bell-shaped structure.
nstead of the bright stripe of light that was used for the
rough-shaped GMW to “bleach” the central region of the
rating and thereby induce the trough envelope, we now
eed to bleach the other regions of the grating (in the y
irection). We therefore need to bleach the grating with a
ark stripe beam. We generate such a bleaching beam by
se of the reflection from a step mirror fabricated by pho-
olithography. This mirror has a l /4 step in its middle,
ausing a p phase shift and resulting in a dark stripe
cross the middle of the beam. This beam superimposed
n the interference bleaches the grating everywhere ex-
ept in the middle region (the region of the dark stripe)
hereby inducing a bell-type GMW structure5 [Fig. 6(a)] of

Dn ~ I1 coss2px/d + p/2d/fI1 + I2 tanh2s− y2/y0
2dg.

Again, we launch the probe beams into the bell-shaped
MW structure. Figures 6(b) and 6(c) show the intensity
attern at the input and output faces of the crystal, re-
pectively, demonstrating the confinement of the beam in
he bell structure. For comparison Figs. 6(d)–6(f) show
iffraction in three different conditions: propagation in a
omogeneous medium [Fig. 6(d)], when the beams are not
ragg-matched with the index grating [Fig. 6(e)], and
hen the beams are Bragg-matched with the grating but
ave the “wrong” phase relative to the grating. Once
gain the probe beam is guided in the GMW structure un-
er the proper periodicity and phase conditions.
Comparing the trough-shaped and the bell-shaped

MWs, both generated through optical induction, we find
hat the optically induced bell structure can be made to
xtend over larger distances (7 mm long versus 5 mm
ong for the trough shape) for a waveguide of the same
idth. The limitation on the propagation length within

uch a waveguide is not fundamental to GMW, but rather
rises from the optical induction technique. Basically, the
tripe beam used in inducing the trough-shaped GMW is
ropagating linearly in the photorefractive crystal, thus
xperiencing diffraction broadening. The largest distance

Fig. 6. Same as Fig. 5 but for a Type I GMW.
ver which the diffraction of the stripe beam is negligible
etermines the largest propagation distance in such an
ptically-induced trough GMW. The bell-shaped GMW, on
he other hand, is induced with a beam possessing a dark
tripe in the middle. The step mirror we use creates an
ntisymmetric beam whose central dark region experi-
nces less diffraction broadening than the bright stripe of
he same width. That being said, fundamentally, for
MWs generated using fabrication techniques, the two

ypes of waveguide structure should be fully equivalent.

. GUIDED MODES WITH DETUNING
n trying to establish the robustness of the new GMW
ethod, we simulate its behavior under detuning from

he Bragg condition. That is, we study how well a beam
an be guided in a GMW when the beam is not perfectly
ragg-matched with the waveguide grating. There are

wo types of deviations form Bragg-matching (detuning
long the x axis). The first is the variation of the angle be-
ween the probe beams by an amount 2d such that the
rating wave number (periodicity) of the probe changes
Fig. 7(a)]. The second type of detuning is the variation of
he angle between the probe interference structure and
he waveguide grating by an amount D while keeping the
ngle between the probe beams 2u unchanged [Fig. 7(b)].
his second type of detuning means essentially rotating
oth probe beams together in the same direction so that
heir interference wave number remains equal to that of
he GMW, but the directions of the respective wave vec-
ors are no longer parallel. In the first case (which we
imulated but do not show here) the GMW structure dis-
lays very little tolerance, as expected from Bragg detun-
ng. This is actually a positive feature, since the GMW fil-
ering capability is based on high phase sensitivity for the
robe. For the second case our numerical simulations
how that there is a region of robustness of the GMW sys-
em that allows for some misalignment between the direc-
ions of the corresponding wave vectors. This robustness
s essential if GMWs are to be used in real applications.

ig. 7. Detuning in x direction of a probe entering a GMW. (a)
hifting of each beam by an equal opposite angle d, (b) shifting
oth beams together by an angle D in one direction relative to the
aveguide grating. Numerical results showing the guided modes

or (c) Type I and (d) Type II GMW with detuning of 2.5%, both
or a type of detuning described in (b).
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Figures 7(c) and 7(d) show typical results from our nu-
erical calculations for bell-shaped and trough-shaped
MWs, respectively, where the guided modes are calcu-

ated under detuning of 2.5% from perfect alignment.
hat is, we calculate the eigenmodes of the structure for a
ropagation direction that is tilted by <0.14° with respect
o z, and then calculate the modal confinement factors as
he overlap integral of the modal field with the absolute
alue of the waveguide envelope in the y direction. In so
oing we define (arbitrarily) a guided (localized) mode if
ts confinement factor exceeds 60%. Under these condi-
ions the maximum level of detuning in this system that
till supports a localized mode is <3.5% of the transverse
ave vector kx for the bell shape and <3% of the trans-
erse wave vector kx for the trough shape. This measure
f detuning in the wave vector corresponds to <0.2° of de-
uning in the incidence angle of the probe beams.

. FUTURE RESEARCH AND APPLICATIONS
fter analyzing in detail the 1D GMW structure, we can
tart to look at more complex GMW structures in 2D. One
dea that comes to mind is the 2D GMW “ring,” whose
uided modes are periodically modulated 2D light rings.
uch 2D structures can be thought of as folded 1D bell–
rough-shaped GMWs. These GMW shapes can be used as
ensitive phase filters for ring beams by taking advantage
f their high Bragg and phase selectivity to guide beams
ith the proper topological charge and proper phase.
Another idea is the GMW “superlattice” (see Fig. 8).

his structure has a periodic amplitude not only in x but
lso in y such that Asyd=cossy /y0d, which results in an ar-
ay of bell-shaped GMWs with a p phase shift between
hem. In this generic structure, beams with different x de-
endences experience different “effective structures” in y.
pecifically, beams with cosspx /dd exhibit wave guiding in

ayers y=2py0m, whereas beams with sinspx /dd are
uided at y=py0s1+2md (where m=0, ±1, ±2. . .). At the
ame time beams lacking spatial frequency of p /d do not
feel” any waveguiding effects but behave approximately
s they would in a homogenous medium. In this unique
tructure the probe beams themselves determine where
hey will be guided, according to their phase. In Fig. 8 we
how that a probe beam under normal incidence propaga-
ion in the superlattice undergoes “discrete
iffraction”13,14 in y, in a fashion similar to waves propa-
ating in photonic lattices.15–17 It will be particularly in-
eresting to study discrete diffraction and lattice
olitons18–21 in these special structures.

A holographic soliton,22 which is a soliton supported
olely by holographic focusing, is another very interesting
tructure related to GMWs, although such solitons are of

ig. 8. Discrete diffraction in a simulated 2D GMW superlattic
etermines whether that particular layer of the superlattice will
ourse inherently nonlinear entities. In fact a holographic
oliton can be thought of as a self-induced GMW. When a
aveguide is induced by the same light beam guided in it,

he beam is a soliton. If the beams guided in a GMW are
he waves creating–inducing it, the jointly trapped beams
orm a so-called holographic soliton: a self-trapped entity
hat forms by virtue of Bragg reflection of two waves into
ne another from a grating that these waves jointly in-
uce. When these simultaneous Bragg reflections are
roperly phase-delayed, a bright (or dark) holographic
oliton forms.22 Unlike all other kind of solitons, holo-
raphic solitons are supported solely by XPM due to re-
ections from the induced grating and not involving self-
hase modulation at all. Holographic solitons have not
een observed experimentally yet, although evidence for
rating-induced self-focusing–defocusing has already
een reported.23

Throughout this paper we have considered grating-
ediated wave guiding in the optical domain. However,

he GMW mechanism is generic and clearly applicable to
ny s2+1dD or s3+1dD wave system, i.e., any system that
an be represented by the Helmholtz equation [Eq. (2)],
he Schrödinger equation, or closely related equations.
or example a periodic density variation with a trans-
erse envelope profile (established, say, by a standing
ave of suitable frequency) can guide acoustic or ultra-

onic waves. The only requirement is the ability to create
or induce) a sinusoidal grating and propagate in the
tructure a distance greater than the grating period by or-
ers of magnitude. This can be readily achieved with
ound waves,24 as well as with matter waves.25 Indeed,
ny coherent wave propagating in a potential that is pe-
iodic in one dimension with a slowly varying amplitude
n one or two transverse dimensions will experience
ragg-mediated wave guiding.

. SUMMARY AND CONCLUSIONS
n conclusion we have presented a comprehensive study
roviding additional experimental and theoretical results
f the new method of optical wave guiding, the so-called
rating-mediated wave guiding. This wave-guiding
ethod is driven by a shallow 1D grating with a bell-or

rough-shaped amplitude that is slowly varying in the di-
ection normal to the grating wave vector. This wave-
uiding method can support new structures such as the
MW superlattice and GMW ring, and is also applicable

o matter waves, acoustic waves, and other wave systems
n nature in which a polarization grating can be gener-
ted.

phase of the probe itself relative to the initial superlattice layer
a waveguide.
e. The
act as
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