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Two-dimensional higher-band vortex lattice solitons
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We study self-localized second-band vortex states in two-dimensional photonic lattices and find stable ring
solitons whose phase forms an array of counterrotating vortices. We also identify composite solitons in which
a second-band vortex is jointly trapped with a mode arising from the first band and study their stability.
When such a composite entity is unstable, it disintegrates while exchanging angular momentum between its
constituents, eventually stabilizing into another form of composite soliton. © 2004 Optical Society of America
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Wave propagation in nonlinear periodic structures
exhibits many interesting phenomena.1 The periodi-
city of the refractive index alters diffraction, whereas
the nonlinearity leads to the creation of localized
waves: lattice (discrete) solitons.1,2 The observation
of such solitons3 has led to a surge of research on wave
propagation in one-dimensional (1D) nonlinear peri-
odic structures and to the observation of gap lattice
solitons,4 dipole mode lattice solitons,5 high band lat-
tice solitons,6 and vector lattice solitons.7 This recent
progress has led to exciting ideas in two-dimensional
(2D) lattices,8 such as vortex lattice solitons,9 –11 2D
vector lattice solitons,12 etc. Experimentally, the re-
cent suggestion of the real-time optical induction tech-
nique13 has allowed the first observations of 2D lattice
solitons14 and of first-band vortex lattice solitons.15,16

Here, we identify lattice solitons arising from the X
symmetry points of the second band, residing in the
gap between the first and the second bands of a square
lattice, i.e., a spatial gap soliton with vorticity. Such
solitons have the phase structure of a counterrotating
vortex array and are stable for moderate lattice depths
and soliton intensities. We also identify composite
lattice solitons in which such a second-band vortex
mode is jointly trapped with a mode arising from the
first band. Interestingly, in regimes in which such an
entity is unstable, it disintegrates while exchanging
angular momentum between its constituents, eventu-
ally stabilizing into another form of composite lattice
soliton.

Linear lattices show typical transmission spectra ex-
hibiting allowed bands and forbidden gaps. In a wave-
guide array, a complete gap is a range of propagation
constants �b� that are not associated with any propa-
gating mode. For 1D lattices there are typically an
infinite number of complete gaps, whereas in 2D lat-
tices14 the number of complete gaps can be small, some-
times none.8 The higher dimensionality also leads to
the existence of multiple symmetry points setting the
band edges of 2D lattices, which can exhibit direct or
indirect bandgaps. Specifically, a square lattice ex-
hibits an indirect gap [Fig. 1(a)], with the upper edge
of the gap occurring at the corner (M point) of the f irst
Brillouin zone and the lower edge at the X point of the
second band [Fig. 1(b)]. When such a square lattice
is nonlinear and has a complete gap, a narrow beam
propagating in the lattice can induce a localized defect,
thereby creating defect states residing in the gap of
the transmission spectrum. When the beam inducing
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such a defect in the lattice has the same wave func-
tion as a defect state of the defect it induces, this wave
packet self-localizes, becoming a lattice soliton when
the self-localized state is stable.17

All 2D lattice solitons studied thus far9 – 16 have
originated from the first band. Here, we find vortex
lattice solitons arising from the second band and asso-
ciated with the four X symmetry points [kx � p�D,
ky � 0, etc., with D being the lattice spacing; Fig. 1(a)].
Such a soliton can be viewed as a superposition of two
degenerate (same b) modes of the induced defect that
arises from the second band: one associated with
the X point (kx � 6p�D and ky � 0) and the other
associated with the X 0 point (kx � 0 and ky � 6p�D,
which is a 90±-rotated version of the former) with a
p�2 phase delay. In a square lattice, modes arising
from the second-band X point have a wave func-
tion (to the leading Fourier form in x) of the term
c ~ g�x, y�sin�px�D�f � y�, where g�x, y� is a posi-
tive exponentially decaying function and f � y� is a posi-
tive function with periodicity D. Adding an X mode
and a p�2-phase-delayed X 0 mode yields a new mode
proportional to sin�px�D� 1 i sin�py�D�, which can
be expanded about its zeros as c�xn 1 Dx, ym 1 Dy� ~

�21�n�Dx 1 iDy�21�m2n� ~ exp�i�21�m2nu� (with u

being an angle around the expansion points), dis-
playing the phase structure of a 2D array of vortices
with alternating rotation between neighboring sites
[Fig. 1(c)]. (This expression is a good approximation
for b close to the second-band edge; the phase struc-
ture deviates from the perfect array of counterrotating
vortices as b goes deeper into the gap.)

Fig. 1. (a) First two bands of the transmission spectrum
in a 2D square lattice with D � 10. (b) High-symmetry
points of the reciprocal lattice. (c) Phase structure of a
counterrotating vortex array, with arrows showing the di-
rection of increasing phase in each vortex.
© 2004 Optical Society of America
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Second-band lattice solitons are generic to all non-
linear 2D lattices with a complete gap. As an
example, consider the optically induced lattice in
Ref. 14. The paraxial dynamics of a linearly po-
larized beam propagating in such a lattice can be
approximated by the dimensionless equation8,13
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y , V � V0�cos�p�x 1 y��D� 1

cos�p�x 2 y��D��2 is the square (induced) lattice14 and
c is the slowly varying amplitude of the f ield. V0 is
the modulation depth of the lattice, and I � jcj2 is
the soliton intensity, both in units of the background
irradiance. For typical experimental values (wave-
length l � 0.5 mm, linear refractive index n � 2.3,
relevant electro-optic coeff icient r33 � 1340 pm�V, and
applied f ield of 250 V�mm), one z unit corresponds to
�39 mm, and one transverse (x or y) unit corresponds
to �0.8 mm. For the specif ic case studied below, the
lattice spacing is D 	13 mm.

We seek stationary solutions of the form
c � u�x, y�exp�ibz� and find u�x, y� by solving
the correspofnding eigenvalue equation by use of self-
consistency.17 Typical results are shown in Fig. 2.
The amplitude (absolute value) of this X-point
second-band soliton is a ring around the central
site, having four weaker rings around it [Fig. 2(a)].
Its phase is an array of counterrotating vortices
[Figs. 2(b)]. The central vortex is centered on the
central waveguide, and the surrounding vortices have
their singularities in adjacent waveguides. The field
of this soliton has a singularity in every waveguide it
populates, with the phases in adjacent sites rotating
in opposite directions [as in Fig. 1(c)].

We simulate the propagation and the stability (in
the presence of noise) of these X-point second-band
lattice solitons by use of a standard beam propagation
method. Typical results are shown in Fig. 2, depict-
ing the amplitude [Fig. 2(a)] and phase [Fig. 2(b)] of
an input field (at z � 0), the linear diffraction pattern
(nonlinearity off ) after 100 z units (approximately one
diffraction length LD ) [Fig. 2(c)], and the self-trapped
output after 100 LD with an appropriate nonlinearity
[Fig. 2(d)]. Note that these modes diffract primarily
along the lattice axes, unlike modes residing in the
first band. At low amplitudes the soliton extends
over several sites, and its propagation constant b
is close to the second band edge [Fig. 2(e)]. As
the amplitude of the soliton is increased, its wave
function is more localized, and its b approaches
the lower edge of the first band, eventually be-
coming a single-site soliton. These second-band
vortex lattice solitons do not exist below a thresh-
old power8 [Fig. 2(e)]. We identify, through simu-
lations, three stability regions for this second-band
vortex lattice soliton. For shallow lattices �V0 ,, 1�
the soliton is unstable. For lattices with moderate
depths �V0 � 1� and for a range of moderate soliton
amplitudes �jcmaxj

2 � 0.5�, the soliton is stable. The
stable soliton in Figs. 2(a) and 2(b) is marked on the
graph in Fig. 2(e) by a dot. For deeper lattices
the soliton is unstable. In both its instability
regimes, at high peak intensities, the second-band
vortex breaks up due to azimuthal instability. It
transforms into a rotating dipole structure that loses
power and angular momentum as it propagates, rotat-
ing more and more rapidly until its poles merge into a
stable f irst-band lattice soliton with zero topological
charge. The existence of a stability region for these
second-band vortex ring lattice solitons is in direct
contrast with vortex ring structures in homogeneous
nonlinear media, in which they always undergo azi-
muthal instabilities.18

Next, we find composite multiband solitons made
up of two components (with a logic similar to that in
Refs. 17 and 19), the first associated with the G point
of the first band [Fig. 1(b)] and having a bell-shaped
structure [Fig. 3(a)], whereas the second has the
amplitude and phase structure of the second-band
vortex lattice soliton in Figs. 3(b) and 3(c). We find
that these composite solitons are stable in the regime
in which a scalar soliton made of the dominant com-
ponent is stable. Namely, if the composite soliton is
such that the second-band component is dominant,
the composite soliton is stable when the scalar sec-
ond-band soliton is stable. The same logic applies
when the first-band component is dominant. The
composite soliton is also stable when the intensities of
the components are comparable, in regimes in which a
scalar soliton made of either one of the individual com-
ponents is stable. This is the most interesting regime
of composite solitons, because each of the components
diffracts when launched individually. In exploring
the stability of such composite lattice solitons, we
also studied regimes in which the scalar second-band
soliton is unstable. It is in this instability regime,
and when the intensities of the components are com-
parable, that we find intriguing new effects. The
composite entity disintegrates within z � 100 �1 LD �
while exchanging angular momentum between its
constituents, eventually stabilizing into another form

Fig. 2. (a), (b) Intensity and phase of a scalar second-
band vortex lattice soliton. (c) Linear diffraction after
z � 100. (d) Intensity after propagation of z � 10, 000.
(e) Total power of the soliton as a function of the propa-
gation constant and peak soliton intensity for D � 16 and
V0 � 1.1. The dot represents the soliton shown in (a) and
(b). The white circles in (b) and (c) indicate the waveguide
boundaries.
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Fig. 3. Vector soliton: (a) intensity of first-band compo-
nent and (b), (c) intensity and phase of the vortex com-
ponent arising from the second band. (d) Evolution of
the propagation constants of the two components (solid
curves), and the propagation constants of the induced de-
fect modes (dotted curves). When the composite entity
destabilizes, its second (initially second-band) component
transforms into a scalar first-band lattice soliton, whereas
its first (initially f irst-band) component becomes localized
by the defect induced by the second component.

of composite soliton. Initially, the first-band com-
ponent has zero angular momentum (its phase is
uniform), whereas the second-band component carries
angular momentum and has the complex vortex array
shown in Fig. 2(b). As the composite entity becomes
unstable, there is a complete metamorphosis: The
first-band component acquires angular momentum
(transferred from the second component) and the
phase structure of a counterrotating vortex array,
whereas its amplitude transforms from a bell shape
into a ring. Simultaneously, the second-band com-
ponent undergoes the opposite transformation, losing
angular momentum and transforming from a ring
into a uniform-phase bell-shaped structure. To un-
derstand this process, we estimate the evolving propa-
gation constant of each component and calculate the
eigenmodes of the system dynamically while the waves
propagate. The evolving propagation constant b is
estimated through an intensity-weighted average of
b�x, y� � 2�i�Dz�ln�c�x, y, z 1 Dz��c�x, y, z��, where
Dz is the propagation step in the beam propagation
method. The results are shown in Fig. 3(d). Af-
ter z � 100, the second-band component undergoes
azimuthal symmetry breaking, which causes this
component to rotate, giving rise to rotation of the
first component as well. This moves b1 (of the
first component) toward the second band and b2
toward the f irst band. In this process most of the
angular momentum of the second component is lost,
yet part of it is transferred to the f irst component.
The first component, which started at the semi-
infinite gap above the f irst band, penetrates into the
second band, then loses energy by coupling to the
modes of the second band, f inally stabilizing as an
excitation of a localized mode in the gap between the
first and the second bands. When that happens, the
second component stabilizes as a lattice soliton in
the semi-infinite gap and has a structure (amplitude
and phase) similar to that initially had by the f irst
component.

In conclusion, we have presented new types of 2D
lattice solitons: scalar and composite second-band
vortex solitons that have the phase structure of a coun-
terrotating vortex array. These structures can be
experimentally realized by exciting two dipole modes
with a p�2 relative phase or by reducing the spatial
size (increasing the k-spectrum) of the input vortex
beam used in Refs. 4 and 5. The ideas presented here
could be implemented in 2D nonlinear photonic lat-
tices, Bose–Einstein condensates, and any other non-
linear periodic system of dimensionality 2 or higher.
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