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Hyper-transport of light and stochastic
acceleration by evolving disorder
Liad Levi, Yevgeny Krivolapov, Shmuel Fishman and Mordechai Segev*

In 1958, Philip Anderson argued that disorder can transform a conductor into an insulator, as multiple scattering from disorder
brings transport to a complete halt. This concept, known as Anderson localization, has been tested in electronic, optical,
acoustic andmatter wave systems, which have all shown that disorder generally works to arrest transport. Onemajor condition
is common to all work on Anderson localization: for localization to take place, the underlying potential must be constant in
time (frozen). Otherwise, if the disorder is dynamically evolving, localization breaks down and diffusive transport is expected
to prevail. However, it seems natural to ask: can disorder increase the transport rate beyond diffusion, possibly even beyond
ballistic transport? Here, we use a paraxial optical setting as amodel system, and demonstrate experimentally and numerically
that an evolving random potential gives rise to stochastic acceleration, which causes an initial wave packet to expand at a rate
faster than ballistic, while its transverse momentum spectrum continuously expands. We discuss the universal aspects of the
phenomenon relevant for all wave systems containing disorder.

Over the past 50 years, Anderson localization1 has been
studied in many experiments, in periodic systems contain-
ing disorder2–4 as well as in fully random potentials5–12.

These studies, and many more theoretical studies, addressed the
regime where the disordered potential is frozen. Some researchers
also explored transport in potentials that are random in space and
also fluctuate in time13. However, only a small number of studies,
all strictly theoretical, suggested hyper-transport: transport mech-
anisms through which the region within which a particle can be
found expands faster than ballistic expansion14–18. A robust picture
of such motion in terms of resonances between the particle and the
potential was developed in ref. 14. Ten years later, ref. 15 addressed a
similar setting in the framework of quantum mechanics. Assuming
a spatially random potential fluctuating in time with a Gaussian
white-noise spectrum, they suggested that the root-mean-square
displacement of the particle growswith exponent 3/2 in time (rather
than 1/2 for diffusion and 1 for ballistic transport). Later on, several
theoretical studies identified hyper-transport of particles16–18 for
fluctuating potentials with correlated disorder (that is, when the
bandwidth of the disorder is finite). However, thus far there has
been no experimental evidence for hyper-transport by disorder. The
experimental demonstration presented here is the first experimental
proof that disorder can give rise to hyper-transport: transport at a
rate faster than ballistic.

In the experiments presented here, we study the transport
of waves in a paraxial optical system, which can be viewed
as analogous to the transport in a quantum system19–21. In
this setting, light propagating in a waveguide array exhibits
evolution analogous to that of an electron in an atomic lattice21.
Importantly, this system enables direct observation of the actual
wave packets, which is a key aspect in unravelling the mechanisms
underlying transport. Indeed, recent experiments in this photonic
system investigated fundamental transport processes, such as
Anderson localization in lattices3,4,22, in quasicrystals23,24 and
near interfaces25. Likewise, analogous experiments on Anderson
localization were demonstrated with matter waves in disordered
optical potentials8–11. However, none of these experiments studied
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transport in the presence of disorder that also fluctuates during
evolution. So far, all Anderson localization experiments in
optics as well as in matter wave systems concentrated on the
effects of frozen disorder on the transport of wave packets.
On the other hand, some pioneering experiments in optics did
demonstrate enhanced broadening due to the presence of disorder.
One example is, Lévy flights—where in the ray-optics regime,
light propagating in a disordered system performs an unusual
random walk with a step length governed by the Lévy statistics,
leading to superdiffusion26. Another example is light propagation
through layered random media demonstrating crossover from
localization to diffusion27. Another example is disorder-enhanced
wave transport in quasicrystals24. However, in none of these has the
transport rate ever exceeded the rate of ballistic transport.

Our experiments employ an optical beam propagating through a
photonicmediumcontaining spatial disorder that is also fluctuating
during evolution. Let us first describe the effect on universal
grounds, in real space and in momentum space. The hallmark of
ballistic transport is that the expansion rate of a wave packet is
proportional to time, while the width of its spectrum inmomentum
space remains constant with time. This latter feature indicates that
the population of momentum constituents does not change during
evolution: only their phases evolve, in proportion with time. In
contrast to ballistic evolution, in our hyper-transport experiments,
the wave packet expands at a rate much faster than ballistic, while at
the same time its width in momentum space also expands markedly
during propagation. More specifically, we study the evolution of
a laser beam propagating through a photonic medium containing
dynamically evolving disorder. Our photonic system is described
by a two-dimensional time-dependent Schrödinger-type equation
with a disordered potential; hence, the wave packet and its Fourier
transform, which are both directly viewed in our experiments,
are analogous to the probability amplitudes of finding a quantum
particle or its momentum27, respectively. Strictly within the domain
of optics, the results described below are intuitive. However, this
direct analogy to transport in quantum systems makes our findings
relevant for verymanywave systems containing disorder.
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We work with a photonic medium, in the transverse

localization scheme3,19 described by the paraxial equation for
monochromatic light,
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= Ĥ9 (1)

Here z is the evolution (propagation) coordinate, x and y are
the transverse dimensions, 9 is the slowly varying envelope of an
optical field E(r̄, t ) = Re[9(x,y,z)ei(kz−ωt )] of frequency ω and
wavenumber k = 2πn0/λ. In our experiments, n0 = 2.34 is the
bulk refractive index, λ= 0.514 µm is the vacuum wavelength and
1n(x,y,z)∼ 10−4 is the local change in the refractive index. To
stay within the paraxial limit, |1n| � n0, and all of its spatial
variations, as well as the fine details of9, are on a scale much larger
than λ. Equation (1) has the form of the Schrödinger equation:
the equivalence emerges when the role of time t is played by the
propagation distance z , and −1n→ V , the optical potential19.
Hence, the evolution of a light beam behaves like the wave packet
of a quantum particle in a two-dimensional potential but with
the coordinate z replacing time. In this scheme, the transverse
wavevector k⊥= (kx ,ky) of the optical wave packet is equivalent to
the momentum p= (px ,py) of a quantum particle. In the paraxial
regime where equation (1) is valid, k⊥� kz ,k. This scheme, first
proposed in 1989 (ref. 19), was used in previous experiments
in optics investigating Anderson localization3,4,21–25. As Anderson
localization occurs only if the disorder is frozen in time, those
experiments required considerable care to make the disorder in the
system perfectly uniform along the direction of propagation (the
z axis). In contradistinction, here we aim to study transport in a
temporally fluctuating spatially disordered system; hence, we design
our experiments such that we can control the rate of z-variation
of the disordered potential as it varies randomly in z , as well as
its statistical properties.

Figure 1 shows the experimental scheme described by
equation (1). We use the optical induction technique3,28–30 to
transform an optical intensity pattern into a variation in the
refractive index, 1n(x, y, z). The refractive index structure is
formed within a bulk dielectric strontium barium niobate crystal
by making use of the photorefractive screening nonlinearity31. To
make the disorder random in the x–y plane, and at the same
time have it evolving in z in a controllable manner, we pass a
ring of light through a diffuser placed in the Fourier plane of
a lens. The resultant interference pattern is a speckled structure
whose plane-wave constituents (spatial spectrum) associated with
transverse wavevectors, k⊥, reside within a ring of radius k⊥0 and
thickness δk (Fig. 1). When δk = 0, all of the plane-wave compo-
nents accumulate phase at the same rate as they evolve in z , because
they all have the same propagation constant kz =

√
k2−k2

⊥0. The
outcome is a propagation-invariant speckled pattern, giving rise to
frozen disorder3, as required for observing Anderson localization.
However, when δk 6= 0, the plane-wave constituents comprising
the speckled pattern possess different kz values. Consequently, the
speckled pattern evolves with z , which is transformed (through
the induction technique) into a disordered refractive index pattern
that also evolves randomly in z . For our present experiments, it
is essential to create disorder while controlling the statistics in the
x–y plane, and the rate of its random fluctuations in z . In the x–y
plane, the mean distance between speckles is set by the radius of
the ring in momentum space, k⊥0, whereas the rate of z-evolution
is determined by the thickness of the ring, δk (Fig. 2f–h). For this
setting, the characteristic distance for the z-evolution of1n(x,y,z)
can be estimated from the beating rate (in z) created by the
interference between the two extreme plane waves residing on the
outer and inner radii or the momentum-space ring, corresponding
to transverse wavenumbers k⊥ = k⊥0± δk. The beating rate yields

a characteristic distance z0 = 2πk/k⊥0δk for the evolution of the
disordered potential. The larger δk is, the smaller z0, and the faster
the variations in z are. In this fashion, we generate disorder while
controlling both its spectrum and its rate of dynamic evolution.

With this system in hand, we study transport by launching a
weak, narrow, probe beam and monitoring the intensity pattern
exiting the medium containing the disorder (Fig. 1). The probe
beam is weak such that it does not contribute to the induced
refractive-index pattern. It is propagating linearly through the
medium, undergoing multiple scattering events from the disorder
in the refractive index, as described by equation (1). As for
experiments onAnderson localization in optics3, meaningful results
are obtained by repeating the experiments multiple times with
many realizations of the disorder (from the same distribution), and
ensemble-averaging over the intensity patterns at the exit face of
the disordered medium.

Wenowdescribe the experimental results.We beginwith the two
established cases: free (ballistic) diffraction, and then localization.
Figure 2a shows the width and the intensity cross-section of the
beam in the absence of any disorder, where the wave packet is
allowed to freely diffract through the medium and experience
ballistic transport. The width of the beam exiting the medium is
∼166 µm, which agrees well with the calculated value for ballistic
expansion of a Gaussian beam with an initial full-width half-
maximum of ∼15 µm in a medium with a bulk refractive index
of 2.34. Next, we establish propagation-invariant disorder, and
demonstrate Anderson localization. Figure 2b shows the ensemble-
averaged (over 100 realization of disorder) intensity structure
of the beam exiting the medium, after propagating through the
z-invariant spatial disorder. As shown at the bottom of Fig. 2b,
the beam is exponentially localized, thereby exhibiting Anderson
localization. One particular realization of the spatial disorder (for
which the localization occurs) is shown in Fig. 2e, and its spatial
spectrum—shaped as a narrow ring in the transverse momentum
space—is shown in Fig. 2f. The speckled structure of the disorder
is virtually z-invariant, as the ring in Fig. 2f is of a very narrow
thickness (δk→ 0). For this case of an Anderson-localized beam,
the mean width (defined as in ref. 3) of the exiting beam is
∼103 µm (with standard deviation of 23 µm)—much smaller than
the width of the freely diffracting beam of Fig. 2a. These results on
the beam propagating through z-invariant disorder are very similar
to those presented in ref. 3.

Having established the two extreme cases (no disorder, and
propagation-invariant disorder), we now proceed to experiment
with dynamically evolving (fluctuating) disorder, and examine
how it affects the evolution of the (ensemble-average) beam when
the rate of dynamic fluctuations is increased. Figure 2c,d show
the ensemble-averaged intensity structure and its cross-section
(averaged over 50 realization of the disorder) of the same initial
wave packet after propagating in the presence of spatial disorder
whose spatial spectra are shown in Fig. 2g,h, respectively. In these
cases, the variations of 1n in z are increasingly dominant, as
they arise from the increasingly larger widths of the disorder
spectra: δk ≈ 0.13 and 0.71 µm−1, leading to a characteristic
distance of variations of z0 ≈ 1.023 and 0.608mm, respectively.
The cross-sections shown in Fig. 2c,d, taken through the ensemble-
averaged beam, show an increasing deviation from the exponential
structure characterizing the Anderson-localized beam of Fig. 2b.
However, an even more important fact is apparent from the
widths of the (ensemble-averaged) beams experiencing dynamic
disorder: their widths, ∼230 µm and ∼270 µm (with standard
deviations 15 µm and 10.5 µm), are much larger than the width
of the freely diffracting beam (∼166 µm) of Fig. 2a. That is, the
beams propagating through the rapidly fluctuating spatial disorder
exhibit hyper-transport: the wave packets expand much faster
than ballistic expansion.
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Figure 1 | Experimental scheme for studying hyper-transport of light by virtue of evolving disorder. Left panel: making the dynamically evolving disorder.
A wide Gaussian beam is passed through a conical lens, which generates a ring of light of width δk at a predetermined plane. A diffuser placed at this plane
introduces a phase that varies randomly from point to point on the ring. The ring of light and the random phase superimposed on it form the Fourier
spectrum of the disorder. A spherical lens transforms this spectrum into a speckled beam that is propagating through a photosensitive material where it
induces a change in the refractive index proportional to the intensity pattern. The refractive index change is disordered in the x–y plane, whereas its rate of
variation in z is proportional to 1/δk. Right panel: a weak probe is launched into the disordered dielectric medium, and monitored at the output facet.
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Figure 2 | Experiments demonstrating hyper-transport of light, by controlling the evolution rate of spatial disorder. a–d, Ensemble-averaged intensity, I,
structure of the beam exiting the disordered medium. The cross-sections shown therein are shown in a logarithmic scale, with their corresponding width
Weff. In all of these experiments, the input beam is a Gaussian beam of 524 nm wavelength and an initial width of∼15 µm full-width at half-maximum. It is
propagating through the disordered medium for 1 cm. a, When the medium is homogeneous, the freely diffracting beam broadens to 166.42 µm. b, When
the disorder is propagation-invariant, the beam exhibits Anderson localization, manifested in its exponential structure. c,d, When the disorder evolves
during propagation, the beam expands faster than ballistic expansion (hyper-transport). e–h, Various realizations of the disorder. e, One typical realization
of the speckled structure inducing the disordered refractive index structure whose Fourier spectrum in shown in f. In this case, the Fourier spectrum is a
very thin ring; hence, the disorder is propagation-invariant, causing Anderson localization as shown in b. g,h, Fourier spectra of the evolving disorder
leading to hyper-transport. In this case, the spectrum corresponds to a thick ring (g) or a full circle (h), inducing evolving disorder, and leading to
hyper-transport. Indeed, the widths of the ensemble-averaged exit beams with such disorder are much broader (c,d) than the width of the freely diffracting
beam shown in a.

We corroborate these experimental findings with the sim-
ulations shown in Fig. 3. Figure 3a shows the simulated freely
diffracting beam of an initial width of ∼15 µm broadening to a
width similar to that of Fig. 2a. Figure 3b shows the ensemble-
averaged (over 50 realizations of disorder) intensity pattern and
width of the same initial wave packet, after propagating in the
presence of dynamic disorder whose (plane wave) spectrum is
numerically constructed from the experimental spectrum shown
in Fig. 2h. The value of the beam width (240 µm with standard
deviation of 11 µm) and the log-plot cross-section of the intensity
structure shown in Fig. 3b are similar (within 10% deviation)
to the experimental results shown in Fig. 2d, both exhibiting

hyper-transport. Clearly, the simulated results agree very well
with the experiments.

These experimental and numerical findings raise fundamental
questions on the evolution of the spectrum of wave packets under-
going hyper-transport. For ballistic expansion (free propagation),
the power spectrum is conserved, as the expansion occurs only
because different spectral constituents (of the plane-wave spectrum,
in our case) accumulate phase at different rates. Likewise, the
power spectrumof a wave packet undergoing Anderson localization
is found to expand initially (as it scatters from the disorder)
until localization is reached, but then the spectral expansion is
found to stop, and the power spectrum is conserved on further
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Figure 3 | Experiments and simulations showing the evolution of the momentum power spectrum of the wave packet propagating through the
disordered photonic medium. a–c, Simulations. a, Intensity structure and beam width of the freely diffracting beam exiting a homogeneous medium after
1 cm of propagation, for an initial beam width of∼15 µm. b, Ensemble-averaged intensity pattern and width for the same input beam, after propagating in
the dynamically evolving spatial disorder. The spectrum of the disorder in b is constructed from the Fourier spectrum measured in the experiments of
Fig. 2h. Note the agreement between the simulated results (b) and experiments (Fig. 2d). c, Simulated evolution of the width of the Fourier spectra of the
beams, undergoing ballistic transport (homogeneous medium; lower curve), localization (propagation-invariant disorder; middle curve), and
hyper-transport (evolving disorder; upper curve). For ballistic transport the spectral width is conserved, whereas for localization the spectrum initially
expands, but once localization is reached, the mean spectral width remains unchanged. In contrast to that, the spectrum of a beam undergoing
hyper-transport is continuously expanding. d–g, Experiments. d–g, The corresponding experimental results showing the optical spatial power spectrum of
the exiting beam whose real-space intensity pattern is presented in Fig. 2a–d, respectively.

propagation (for related references, see refs 8,32–34). Certainly,
to understand the results shown in Fig. 2c,d, it is important to
examine what happens to the power spectrum of a wave packet
undergoing hyper-transport.

Recalling that (kx ,ky) are equivalent to the momentum in the
Schrödinger equation, we simulate the propagation of the beam
through the disordered medium and calculate the spatial spectrum
spread 1k⊥ as function of z , for the cases of free diffraction,
Anderson localization and hyper-transport. For each realization
of the disorder, we calculate 1k⊥(z), by treating the momentum
representation of the wave packet—|9(kx ,ky ,z)|2 = |

∫
9(x,y,z) ·

e−ikxx ·e−iky ydxdy|2—as the probability density.We then average our
results over an ensemble of different realizations of the disorder,
and show them in Fig. 3c. The corresponding experimental results
are shown in Fig. 3d–g. These figures (taken from the output facet of
the disorderedmedium) show the optical power spectrum (absolute
value squared of the Fourier transform) of the wave packet whose
real-space intensity pattern is presented in Fig. 2a–d, respectively.
Experimentally, the spatial power spectrum ismonitored by passing
the beam exiting the medium (z = 10mm) through a lens and
capturing the intensity pattern at the focal plane with a camera.
Let us now examine the results. In the case of the free diffraction,
Fig. 3d shows the spatial power spectrum of the beam in Fig. 2a.
Indeed, the power spectrum of this freely diffracting beam is the
same as the power spectrum of the input beam, as is always the case
for ballistic transport in a homogeneous system. The simulations
presented in Fig. 3c highlight this feature: 1k⊥ in the case of free
diffraction does not change during propagation. Consider now the
case where the beam is propagating through z-invariant disorder,
where the beam becomes localized (Fig. 2b). The power spectrum
of this localized beam is shown in Fig. 3e: the spectral width1k⊥ of

the localized beam is wider than the initial spectral width (compare
Fig. 3e with Fig. 3d). Simulations of this case, presented in Fig. 3c,
reveal that1k⊥ grows during the early stages of propagation, where
the ensemble-averaged beam reshapes owing to multiple scattering,
but after localization is reached, the (ensemble-averaged) spectral
width seems to remain unchanged. Finally and most interestingly,
in contrast to the propagation-invariant power spectra of wave
packets undergoing ballistic transport and of (ensemble-average)
wave packets in the Anderson-localized state, we find that the
power spectrum of beams undergoing hyper-transport is always
broadening (expanding) throughout propagation (see Fig. 3f,g).

Before closing, we discuss the main aspects of hyper-transport,
propose some intuitive understanding and raise open questions.
We shall do this through the view point of the Schrödinger
equation, while relating to our photonic picture as reflected in the
experiments. On the one hand, the temporally fluctuating potential
evolves in a random fashion; hence, it cannot support continuous
acceleration or deceleration for any particular part of the wave
packet. On the other hand, the spectral expansion measured during
hyper-transport clearly implies acceleration, which means that
kinetic energy is being deposited into the system. This is indeed
manifested in the higher velocities and spectral expansion observed
in our experiments and simulations. A natural question to ask
is: for how long would the spectral expansion and the hyper-
transport persist? When the spectrum of the disorder is unbound,
the expansion could continue indefinitely, because momentum can
be continuously transferred from ever higher spectral components
of the disorder to the wave packet, continuously expanding its
spectrum and supporting its ongoing hyper-transport in real space.
Most probably, such ongoing expansion will exhibit universal
exponents. Amore interesting question is: what would happen if the
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spectrum of the disorder is finite, as it is in any physical system and
of course in our system (Fig. 2f–h)? The answers to these questions
call for future research, but we can already foresee two distinct
regimes where the physics may be entirely different. To explain the
intuition, we recall the analogy between our optical system and a
quantumparticle under the influence of a time-varying potential.

The first regime of hyper-transport occurs when the z-variation
of the disorder is sufficiently slow. In optical systems such as
ours, this regime corresponds to spectral components of the wave
packet undergoing consecutive Bragg scattering off the multiple
gratings comprising the spatial disorder. When scattering from
a specific grating, momentum is exchanged between the wave
packet and the disorder. However, for monochromatic light, each
plane-wave component comprising the wave packet is Bragg-
matched to scatter from a single spectral component of the disorder,
and is therefore scattered into a single direction determined by
momentum conservation. Each scattering event can extract only
one quantum of momentum from the disorder. The presence of
multiple consecutive Bragg scattering events makes the momentum
spectrum of the wave packet grow, as we observe in Fig. 3. To
be in this Bragg regime, the rate of evolution of the disorder
must be sufficiently slow to enforce phase-matching (momentum
conservation) in each scattering event. All of the experiments and
simulations presented in this article are in this Bragg regime.
Under rather general conditions (sufficiently highmomentum), it is
generally believed that such a problem can be described by classical
dynamics. In this context, one-dimensional hyper-transport seems
to be a transient phenomenon, and would eventually stop at
some point after which the wave-packet expansion will continue
at a ballistic rate35,36.

The second regime of hyper-transport occurs when the disorder
evolves very fast. In our optical system, this regime corresponds
to the case where the z-component of the momentum mismatch
between the incident and scattered waves times the characteristic
distance for disorder evolution, z0, is much smaller than π . This is
the regime of thin holograms, often referred to as the Raman–Nath
regime37,38, where a wave can scatter from many momentum
components of the disorder simultaneously (not only from a single
component, as in the Bragg regime). The quantum analogue would
be of an electron excited from one energy level to another by an
electromagnetic field that is oscillating only for a very short time,
around a frequency detuned from the difference between the energy
levels. In this case the probability of the transition is non-vanishing.
Returning to our optical system, could we expect that spectral
broadening and hyper-transport will persist in this regime even
when the spectral width of the wave packet is much broader than
that of the disorder? We leave this intriguing question for future
research. If this regime is indeed physical, this would be a very rare
example where the high-energy dynamics of waves fundamentally
differs from the classical dynamics of particles: a violation of the
correspondence principle.

Throughout this article we described the system in universal
terms, not specific to electromagnetic waves, as manifested by
the analogy between the Schrödinger equation and the paraxial
wave equation. As such, hyper-transport is in fact a universal
concept, which should be observable in a variety of systems beyond
optics, such as matter waves, sound waves, plasma, and in the
transport of conduction electrons in semiconductors. Furthermore,
fundamentally, once such temporal acceleration would reach very
high velocities, relativistic effects would have to be included.
Most certainly, these ideas open a range of exciting possibilities.
However, the dynamics of electromagnetic waves is actually
very rich in its own right. For example, how would optical
nonlinearities affect hyper-transport? Furthermore, in view of the
recent experiments on quantum walks of correlated photons39 and
on localization with entangled photons40, it would be extremely

interesting to know whether the phenomenon of hyper-transport
would occur also with entangled photons. These and many other
questions are left for future research. Our article has presented
the first experimental observation of hyper-transport, opening
a new research direction that is universal for all wave systems
containing disorder. At same time, the underlying ideas certainly
hold further aspects unique to the specific waves propagating in
the disordered system.
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