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Abstract:  We study the long-range propagation of incoherent light 
following the modulation instability (MI) process in non-instantaneous 
nonlinear Kerr-type media. We find that the system eventually reaches a 
steady-state characterized by a lower degree of coherence than in the initial 
state, with small fluctuations around a pronounced mean value. We find that 
the average values of the spatial correlation distance at steady-state and the 
fluctuations around it, which are obtained either through ensemble 
averaging, or by spatial averaging, or via temporal averaging, are all 
identical. This feature may be viewed as indication of ergodic behavior, 
which occurs in the long-time evolution following incoherent MI. Finally, 
we find that the steady-state properties of the system depend on the initial 
coherence but not on the nonlinearity strength, although the system evolves 
faster to steady-state as the strength of the nonlinearity is increased.  

©2008 Optical Society of America  

OCIS codes: (190.3100) Nonlinear optics, Instabilities and chaos; (190.3270) Nonlinear 
optics, Kerr effect; (030.6600) Coherence and statistical optics, Statistical optics. 

References and links 

1. M. C. Cross and P. C. Hohenberg, "Pattern formation outside of equilibrium," Rev. Mod. Phys. 65, 851-
1112 (1993). 

2. V. I. Bespalov and V. I. Talanov, "Filamentary Structure of Light Beams in Nonlinear Liquids," Zh. 
Eksperim. i Teor. Fiz.-Pis'ma Redakt. 3, 471 (1966); [translation: JETP Letters 3, 307-312 (1966)]. 

3. M. D. Iturbe-Castillo, M. Torres-Cisneros, J. J. Sanchez-Mondragon, S. Chavez-Cerda, S. I. Stepanov, V. 
A. Vysloukh, and G. E. Torres-Cisneros, "Experimental evidence of modulation instability in a 
photorefractive Bi12TiO20 crystal," Opt. Lett. 20, 1853 (1995). 

4. R. Malendevich, L. Jankovic, G. Stegeman, and J. Stewart Aitchison, "Spatial modulation instability in a 
Kerr slab waveguide,"  Opt. Lett. 26, 1879-1881 (2001). 

5. K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. 
Lett. 56, 135-138 (1986). 

6. L. A. Lugiato, Chaos Solitons Fractals 4, 1245-1251 (1994). 
7. F. T. Arecchi, S. Boccaletti, and P. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. 

Rep. 318, 1-83 (1999). 
8. R. W. Boyd, Nonlinear Optics (Academic Press, New York, 1994). 
9. M. Mitchell, Z. Chen, M. Shih, and M. Segev, "Self-Trapping of Partially Spatially Incoherent Light," 

Phys. Rev. Lett. 77, 490-493 (1996). 
10. M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature (London) 387, 880-883 (1997). 
11. M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Theory of Self-Trapped Spatially 

Incoherent Light Beams," Phys. Rev. Lett. 79, 4990-4993 (1997).  
12. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, "Modulation Instability of 

Incoherent Beams in Noninstantaneous Nonlinear Media," Phys. Rev. Lett. 84, 467-470 (2000). 
13. S. M. Sears, M. Soljačić, D. N. Christodoulides, and M. Segev, "Pattern formation via symmetry breaking 

in nonlinear weakly correlated systems," Phys. Rev. E 65, 036620-9 (2002).  
14. H. Buljan, A. Šiber, M. Soljačić, and M. Segev, "Propagation of incoherent “white” light and modulation 

instability in noninstantaneous nonlinear media," Phys. Rev. E 66, 035601-4 (2002). 

#93524 - $15.00 USD Received 10 Mar 2008; revised 3 May 2008; accepted 5 May 2008; published 15 May 2008

(C) 2008 OSA 26 May 2008 / Vol. 16,  No. 11 / OPTICS EXPRESS  7818



15. D. Kip, M. Soljacic, M. Segev, E. Eugenieva, and D. N. Christodoulides, "Modulation Instability and 
Pattern Formation in Spatially Incoherent Light Beams," Science 290, 495-498 (2000). 

16. D. Kip, M. Soljacic, M. Segev, S. M. Sears, and D. N. Christodoulides, "(1+1)-Dimensional modulation 
instability of spatially incoherent light," J. Opt. Soc. Am. B 19, 502-512 (2002). 

17. J. Klinger, H. Martin, and Z. Chen, "Experiments on induced modulational instability of an incoherent 
optical beam," Opt. Lett. 26, 271-273 (2001). 

18. T. Schwartz, T. Carmon, H. Buljan, and M. Segev, "Spontaneous Pattern Formation with Incoherent White 
Light," Phys. Rev. Lett. 93, 223901-5 (2004). 

19. Z. Chen, S. M. Sears, H. Martin, D. N. Christodoulides, and M. Segev, "Clustering of solitons in weakly 
correlated wavefronts," PNAS  99, 5223-5227 (2002). 

20. D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov,"Features of modulational instability of 
partially coherent light: Importance of the incoherence spectrum," Phys. Rev. E 69, 025601-025604 (2004).  

21. D. Anderson, B. Hall, M. Lisak, and M. Marklund, "Statistical effects in the multistream model for 
quantum plasmas," Phys. Rev. E  65, 046417-5 (2002). 

22. E. Fermi, J. Pasta, and S. Ulam,  "Studies of non linear problems," Los Alamos Rpt. LA-1940 (1955). 
23. A. Picozzi, "Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics," Opt. 

Express 15, 9063-9083 (2007).  
24. S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave 

Packets," Phys. Rev. Lett. 97, 033902-5 (2006).  
25. S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharo., "Optical turbulence: weak turbulence, 

condensates and collapsing filaments in the nonlinear," Physica D (Amsterdam) 57, 96-160 (1992). 
26. E. A. Kuznetsov, A. V. Mikhailov, and I. A. Shimokhin, "Nonlinear interaction of solitons and radiation," 

Physica D 87, 201-215 (1995) 
27. The only exception we know of is M. Rigol et al., Phys. Rev. Lett. 98, 050405-5 (2007) where a quantum 

integrable system relaxes to a steady state, carrying memory of initial conditions. 
28. D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun, and M. Segev,"Equivalence of three approaches 

describing partially incoherent wave propagation in inertial nonlinear media," Phys. Rev. E 63, 035601-
035603 (R) (2001). 

29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics,  (Cambridge University Press, 1995). 
30. E. T. Jaynes, "Information Theory and Statistical Mechanics," Phys. Rev. 106, 620-630 (1957).  
31. E. T. Jaynes, "Information Theory and Statistical Mechanics. II," Phys. Rev. 108, 171-190 (1957).  
32. V.G. Makhan’kov and O. K. Pashaev, "Nonlinear Schrödinger equation with noncompact isogroup," Teor. 

Mat. Fiz. 53, 55 (1982) [Theor. Math. Phys. 53, 979-987 (1982)].  
33. M. Soljac ̆ić, K. Steiglitz, S. M. Sears, M. Segev, M. H. Jakubowski, and R. Squie, "Collisions of Two 

Solitons in an Arbitrary Number of Coupled Nonlinear Schrödinger Equations," Phys. Rev. Lett. 90, 
254102-254105  (2003). 

34. H. Buljan, M. Segev, and A. Vardi, "Incoherent Matter-Wave Solitons and Pairing Instability in an 
Attractively Interacting Bose-Einstein Condensate," Phys. Rev. Lett. 95, 180401-4 (2005). 

 
1. Introduction  

The phenomena of spontaneous pattern formation and modulation instability (MI) are found 
in many nonlinear systems in nature [1]. In such a process, an extended state breaks up, 
disintegrating into localized excitations (e.g., filaments in spatial optical systems [2-4] or short 
pulses in temporal ones [5]), as random noise gets amplified through nonlinear evolution. The 
end result could be an ordered pattern (typically, if the system supports stable solitons) [5], or 
an ongoing dynamic process such as catastrophic collapse [2] or even chaos [6,7]. In spatial 
optical systems, MI was traditionally believed to be a fully coherent process [8]. However, 
following the discovery of incoherent (random-phase) solitons [9-11], MI was predicted [12-
14] and demonstrated [15-19] also in incoherent wave systems. These studies revealed that 
incoherent MI occurs only when the nonlinearity exceeds a well-defined threshold value, 
which manifests the balance point between two opposing tendencies: the nonlinear self-
focusing of small perturbations, and their linear diffusive washout resulting from the 
combined effect of diffraction and incoherence [12-16]. Below the threshold, no pattern 
emerges, whereas above threshold self-focusing leads to the formation of a periodic pattern 
[12-21]. The studies on incoherent MI were thus far concerned only with the early stages of 
MI formation. It is, however, natural to ask what happens after the MI pattern has already 
formed, and continues to evolve for a long distance. Does the system ever relax to a steady-
state?  If so, how is this steady-state characterized, and how does it depend on the initial state 
of coherence and the strength of the nonlinearity?  
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The fundamental question of relaxation to equilibrium via nonlinearity dates back to 
Fermi, Pasta and Ulam [22]. Several recent studies address relaxation in the context of 
incoherent light ([23,24] and references therein). In those systems, relaxation processes were 
studied by using kinetic wave theory [23-25], in which linear dispersive effects dominate over 
the nonlinear phenomena [23]. It is generally accepted that relaxation occurs in non-integrable 
systems, where diffusion in phase space leads to equilibrium [23,24], whereas integrable 
systems are expected to exhibit recurrent motion reflecting the regular phase space structure 
of nested tori [23]. Despite that general trend, one may find examples of relaxation in 
integrable systems [26,27].    

Here, we study the long-range propagation of incoherent waves, following incoherent MI, 
in non-instantaneous Kerr-type media, and in one spatial dimension. In section 2 we describe 
the mathematical model we utilize, and in section 3 we define the physical quantities 
describing the relaxation process in the system. In the following section (4) we will show that 
this integrable classical nonlinear wave system reaches a steady-state (a dynamic equilibrium 
state), at which the coherence is smaller than the initial coherence, i.e., the disorder within the 
beam increases to its steady-state value. In section 5 & 6 we show that the average values of 
the spatial correlation distance at steady-state and the fluctuations around it, obtained either 
through ensemble averaging, or by spatial averaging, or via temporal averaging, are all 
identical. This feature may be viewed as an indication that the system is ergodic. In section 7, 
we show that, above the MI threshold, the spatial correlation distance at the steady-state does 
not depend on the nonlinearity strength, but on the initial coherence; however, the strength of 
the nonlinearity scales the distance to equilibrium. Finally, we summarize our results in 
section 8. 

2. Model 
 

We study the propagation of quasi-monochromatic spatially incoherent light in a non-
instantaneous Kerr medium by using the modal theory [11]. The slowly-varying envelope of 
the partially-incoherent wave ( )tzxE ,,  is represented via the sum of orthonormal modes 

( )zxn ,Ψ , as ( ) ( ), , ( ) ,n n
n

E x z t c t x z= Ψ∑ , where the modal coefficients nc  stochastically 

fluctuate in time in a fully uncorrelated fashion, that is, *
m n m n nc c dδ=  [11]; nd  are real 

numbers representing the modal weights. The modal functions ( )zxn ,Ψ , within the slowly-

varying amplitude approximation, obey a set of coupled nonlinear-Schrödinger equations 
(also known as the integrable N-Manakov set [29-30]), 

 

             ( ) ( ) ( ) ( ) 0,,
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where ( ) ( ) 2
, ,n n

n

I x z d x z= Ψ∑  denotes the time-averaged intensity (units are dimensionless 

as in [31]); the average is taken with respect to the response time of the nonlinearity, which is 

considerably longer than the fluctuation time of the modal coefficients )(tcn . The system can 

be equivalently described by the mutual coherence function  
                 ( ) ( ) ( ) ( ) ( )zxzxdtzxEtzxEzxxB n

n
nn ,,,,,,,, 2

*
112

*
21 ΨΨ== ∑                    (2) 

describing the field correlations between two spatially-separated points across the wave [28]. 
The evolution of the mutual coherence function ( )1 2, ,B x x z  can be derived straightforwardly 

from Eq. (1): 

#93524 - $15.00 USD Received 10 Mar 2008; revised 3 May 2008; accepted 5 May 2008; published 15 May 2008

(C) 2008 OSA 26 May 2008 / Vol. 16,  No. 11 / OPTICS EXPRESS  7820



   ( ) ( ) ( ) ( ) ( )( ) ( )
2 2

1 2 1 2 1 2
1 1 2 2 1 22 2

1 2

, , , , , ,
, , , , , ,

B x x z B x x z B x x z
i i B x x z B x x z B x x z

z x x

⎛ ⎞∂ ∂ ∂
= − + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

     (3) 

One of the integrals of motion of this system, that we will utilize later on, is 
2

1 2 1 2( , , )B x x z dx dx∫∫ . This follows after integrating Eq. (3) over 
1x and 2x , and by 

assuming that the fields decay to zero at infinity (which is reasonable for physical systems), or 
that the boundary conditions are periodic (as we assume in this paper).  

3. Physical quantities used for describing relaxation 

The state of the system is fully described with the mutual coherence function ( )1 2, ,B x x z  (or 

equivalently the modes ( )zxn ,Ψ , and their weights nd ). We emphasize that the initial 

condition for incoherent MI is ( ) ( ) ( )0,,0,, 21121021 =+−== zxxBxxBzxxB , where 0B  denotes a 

beam with uniform intensity ( ) ( ) ( ) 00 ,0 IxIxxBB ≡=≡ , while ( )0,, 211 xxB  denotes small initial noise 

upon the beam [12-16]. Thus, at a given propagation distance (“time”) z , the mutual 
coherence function and local physical quantities derived from it (such as the intensity pattern 
emerging from the MI process) depend on the spatial variable(s) and on the particular 
realization of the initial noise. It is however desirable that the quantities characterizing the 
long-term evolution do not depend on the particular realization of the noise. Hence, it is 
essential to repeat the simulations many times, each time with a different structure of the 
initial noise (of the same statistics), and obtain ensemble-averaged values. In order to 
understand the long-term dynamics, following incoherent MI, it is essential to study certain 

averages made over ( )1 2, ,B x x z . We introduce the spatial average ∫=
d

d-
 

2

1
dx

dx
��

 

( d2 is the size of the numerical window), the “time average" (which actually should be 

defined as "propagation averages") 
z

�  (averages over the propagation coordinate), and the 

ensemble average 
e

�  (in a similar fashion, statistical mechanics does not consider exact 

positions and velocities of molecules in a gas, but rather distributions and averaged 
quantities). All possible realizations of the initial noise span the ensemble. The ensemble 
averages are obtained by repeating numerical simulations, each time with a different 
realization of the (random) initial noise, and averaging a quantity over the thus obtained 
ensemble. As we show below, we find a relation between these averages, calculated in 
fundamentally different fashions. We also study the fluctuations around these averages which 
are quantified by the standard deviations (and higher moments).  

The physical quantities utilized to describe relaxation are as follows. The first is the 
normalized transverse spatial correlation distance      

                              ∫
−

==
d

d
xc dxzxx

d
zxxzxl '2,

'

2, |),,(|
2

1
|),,(|),( μμ                    (4) 

Here, ( ) ( ) ( ) ( )zxIzxIzxxBzxx ,,/,,,, 212121 =μ  [29] is the complex coherence factor, for which 

1),,(0 21 ≤≤ zxxμ . In the limiting case the fields at 1x  and 2x  are completely uncorrelated 

(fully correlated), 0),,( 21 =zxxμ   ( 1),,( 21 =zxxμ , respectively). The quantity ),( zxlc  is a 

measure for the order/disorder of the beam, as it is directly related to the randomness of the 
propagating field [29] [ 1),( =zxlc  for full coherence between all points on the cross section 

and point x, whereas 0),( =zxlc  for full incoherence]. Besides ),( zxlc , we analyze the 
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evolution of its ensemble average 
ec zxl ),( , spatial average ∫== dxzxl

d
zLzxl ccxc ),(

2

1
)(),( , 

and “time”
z

� average. The quantity )(zLc describes the average spatial correlation 

distance at a given plane z.  
 

Next quantity of interest is the transverse-variance of the intensity 

                           ( ) ( )∫
−
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22
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where 0),()( IzxIzI
x

==  (conservation of power). )(zM  is a measure of the modulation 

depth (visibility) of the emerging pattern following MI at a plane located at z. This quantity is 
particularly useful as it is connected to the nonlinear (potential U) and diffractive (kinetic T) 
energies of the beam. Namely, the Hamiltonian of the system  
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is conserved. The intensity variance may be written as  

            [ ] )()()(),(
2

1
)( 2

0
2
0

22 zTIHIzUzIzxIdx
d

zM
d

d

+−−=−−=−= ∫
−

         (7) 

Clearly, if )(zM  reaches steady-state, so do the nonlinear (potential) and diffractive (kinetic) 
"energies" within the beam. 

Finally, we will use the spatial power spectrum of the incoherent beam to study relaxation. 
This quantity is the incoherent sum of the Fourier transforms of the N modes comprising the 

beam, that is,
2

( , ) ( , )xik x
x n n

n

P k z d dxe x zψ−= ∑ ∫  . 

4. Results: Dynamics of averaged values 

In what follows we simulate the evolution of the beam numerically over very large 
propagation distances (by solving Eq. (1) with a standard split-step Fourier method), and 
study the evolution of quantities defined in Sec. 3. The simulation consists of launching N=3 
uncorrelated plane waves into the system, n

xik
n

nex δψψ +=)0,(  3,2,1=n , where nδψ  

denotes small initial noise upon each mode (see Fig. 1(a)); for all our initial conditions 
/ 5%n nδψ ψ < . The modal weights nd  are chosen to conform to a Gaussian distribution 

in xk  space (see Fig. 1(b)). This means that the incoherent beam comprises of several plane 

waves (each superimposed with small noise) propagating at symmetrical angles around the 
optical axis z, while the ratios among the amplitudes are given by the set }{ nd . The noise is 

chosen so that its spectral density is a Gaussian which is significantly wider than the Gaussian 
modal distribution of the beam, depicted in Fig 1(b). 
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The dynamics of the intensity ),( zxI , ),( zxlc  and )(zM , for a single-shot propagation is 

depicted in Fig. 2(a), 2(b), and 2(c), respectively. From these figures we get an impression 
that the system evolves into some kind of steady-state. Note that ),( zxI  and ),( zxlc  are 

local quantities in the sense that they depend on both x and z   and their values at given 
coordinates depend on the structure of the initial noise (in contrast, )(zM  is already averaged 
over the spatial variables). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In order to quantify the relaxation to the steady-state (which is some kind of equilibrium), 

and obtain results which are independent of the particular structure of the initial noise, we 
study the dynamics of the ensemble and the x-averaged spatial correlation distance, illustrated 
in Fig. 3. Figure 3(a) shows a contour plot of the ensemble-averaged value of 

800
),(

=ec zxl  , 

for average taken over 800 realizations of the initial noise. The simulations are similar to 
those of Fig. 2(b), but are carried out for longer propagation distances, and are averaged over 
the ensemble. We clearly see that the ensemble-averaged value 

800
),(

=ec zxl  is x-

independent. This is underpinned in Figs. 3(b) and 3(c), which are cross sections of Fig. 3(a) 
taken at different arbitrary x values. The result that 

800
),(

=ec zxl  is x-independent follows 

from the fact the initial condition without the noise has translational symmetry. While small 

  

Intensity- I(x,z) 

X 

Z 

-50 
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Coherence length lc(x,z) 
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-50 
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Fig. 2. (a) Emergence and dynamics of the incoherent MI intensity pattern, as the system evolves 
towards steady-state. (b) Evolution of the transverse correlation distance upon the partially-spatially-
incoherent beam, as the system evolves towards the steady state. (c) Evolution of the transverse 
intensity-variance, M(z), which is a measure for the modulation depth (visibility) of the evolving MI 
pattern shown in Fig. 2(a). 

  

 

Fig. 1. (a) Input field distribution E(x,z=0) and the total intensity at the input (z=0). 
The insert shows the linear phase upon all three plane waves, indicating that the 
modes propagate in different directions with respect to the z-axis (direction of the 
central plane wave). The fluctuations in all three field amplitudes reflect one 
particular realization of the input noise. (b) Spatial power spectrum of the input field 
(z=0). The power within the three plane waves conforms to a Gaussian distribution 

in 
xk -space. The insert zooms to show the presence of small initial noise in all 

spatial wave vectors. 
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noise breaks this symmetry via MI, the average over the noise-ensemble restores this 
symmetry because the noise-ensemble should have no preferential x point. This result 

motivates us to explore and compare the ensemble-averaged ...
e
 and the spatially-averaged 

...
x
values of the correlation distance.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 

Figure 3(d) shows evolution of the 
xcc zxlzL ),()( = . We observe that it is essentially 

identical to the evolution of ...
e
, from which we conclude that in this system, an average (of 

some local quantity) over the noise-spanned ensemble, is identical to the average over the 
spatial variable. This relation may be viewed as ergodic behavior. We should mention that in 
our numerical simulations )(zLc  can depend upon the finite system size (numerical window) 

used in our simulations, while ensemble averaging depends on the size of the numerically 
used ensemble. It is clear that, when the system size is 2d and ensemble size become infinite, 
the two quantities are expected to be identical.  

The most important result that follows from the simulations depicted in Fig. 3 is that, 
after incoherent MI has occurred, the system evolves into a steady state, for which the final 
spatial correlation distance is smaller than the initial one. We note that, before reaching the 
steady-state, the system goes through an oscillatory transient period where ( )cL z  fluctuates, 

and then it gradually relaxes to a steady-state (see Fig. 3(d)). A similar behavior is observed 
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 Fig. 3. (a) Ensemble-averaged value of 
800

),(
=ec zxl  taken over 800 realizations of the 

initial noise The initial transient behavior for 40<z , and the final steady-state are clearly 

observed. (b),(c) Dynamics of ),( zxlc
 along to arbitrary chosen x values, showing that 

the behavior in equilibrium is x-independent. (d) Dynamics of ( )L zc  shows the same 

behavior as in (b) and (c). See text for details.  
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for )(zM  (see Fig. 2(c)), although it is opposite in its nature:  while the system relaxes to its 
lower degree of coherence in steady-state, its visibility is increasing. This suggests that the 
two quantities, ( )cL z and )(zM , are connected.  

Figure 4 shows medium-range simulations of, ( )cL z  (solid line; left axis) and )(zM  

(dashed line; right axis) superimposed on the picture of the MI intensity pattern. Figure 4 
reveals that ( )cL z  and )(zM  exhibit anti-correlated oscillations throughout propagation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We explain this observation by employing the conservation laws of our integrable 
system. If the beam maintains a uniform intensity during propagation, 

0),( IzxI ≅ , then the 

definition of ( )cL z , and the fact that 
21

2

21 ),,( dxdxzxxB∫  is an integral of motion, yield 

that the average spatial-correlation-distance does not change during propagation, 
2

1 2 1 22
0

1
( ) ( , , ) .

2cL z B x x z dx dx const
dI

≅ =∫  This situation, which necessitates a uniform 

intensity (or almost uniform), can occur (i) in the early stages of propagation, when the MI 
pattern has not formed yet (e.g., Fig. 4 for 3z ≤ ), and (ii) when the nonlinearity is below the 
MI threshold (the pattern never develops) [12-19].  However, Fig. 4 reveals much more: that 

( )cL z  and )(zM  are anti-correlated not only in the regimes where the intensity is uniform, 

but actually throughout evolution, including at stages where the beam has high-contrast 
structures within it (see, for example, the intensity pattern in Fig. 4 at planes 9,13,18z = ). To 
explain this, we employ Eq. (7), and the expression for the kinetic term via the spatial power 
spectrum of the light 2 ( , )x x xT dk k P k z= ∫ . When a high-contrast pattern appears, )(zM  

increases;  thus, according to Eq. (3), T  increases, and the power spectrum ( , )xP k z  

broadens. At the same time, the increase in the width of the power spectrum ( , )xP k z  is 

generally associated with a decrease in the spatial correlation distance ( )cL z  (see Chap. 5 in 
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Fig. 4. Emergence and dynamics of the incoherent MI pattern as 
the system evolves towards equilibrium. The intensity pattern is 
shown in the background, while superimposed on it are the average 
correlation distance  ( )L zc (solid line; left axis), and the transverse-

variance of the intensity, M(z) (dashed line; right axis). 
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[29]). This explains why )(zM  and ( )cL z  are always anti-correlated. An alternative, more 

intuitive, explanation is as follows. When the pattern is of high contrast ( )(zM  is large), 
regions of high intensity occupy a smaller region in space (conservation of power), i.e., the 
beam is effectively squeezed. Squeezing the beam in space due to high-contrast intensity 
fluctuations reduces the spatial coherence (just as the spatial coherence increases when an 
incoherent beam experiences diffraction-broadening [29]). We find this anti-correlation effect 
in all our simulations on incoherent MI, irrespective of the number of fields comprising the 
incoherent beam and of all parameters involved.   

In this section we have shown that our system, described by a classical integrable model, 
enters a steady-state after long term propagation. Let us discuss the differences between our 
findings and another example of relaxation in an integrable system. It is well known that a 
localized excitation of coherent light [described with the NLSE] can relax to a soliton state by 
emitting redundant radiation to infinity (e.g., see [26]). This scenario is closely related to the 
fact that an integrable system is naturally divided into two subsystems: one of which includes 
one localized state (the soliton), whereas the other subsystem includes non-localized modes 
(radiation modes), which play the role of a dissipative-like mechanism enabling relaxation. In 
contrast to that scenario, where the separation between localized and extended states is clear-
cut [26], our system of incoherent MI, albeit being integrable -  cannot be easily separated into 
two such subsystems (simply because it is difficult to identify the soliton states – including the 
high-order ones – embedded within the pattern emerging from the incoherent MI process). 
Consequently, the dynamic equilibrium state described here is fundamentally different from 
that of Ref. [26]. 

5. Fluctuations around the mean values  

In order to characterize the steady-state features of a many-body system, the mean values are 
insufficient. We would like to address the following questions. What are the fluctuations 

around the mean values? What is the probability of measuring ),( zxlc  within some interval 

cc ll Δ± , after the system has reached steady-state? In addition, it is very interesting to know 

whether propagation in z spans the same statistics as the ensemble does. In order to address 

these questions, we take a single coordinate 1 1( , )x z , where 1z  is sufficiently large so that the 

system has already reached steady-state, and calculate the distribution of the ),( 11 zxlc  

values that result from all possible values of initial-noise (i.e., these values are obtained by 
repeating the simulation many times, each time with different initial noise, and calculating 

),( 11 zxlc ). This distribution is plotted in Fig. 5(a). Figure 5(b) shows the distribution of the 

),( zxlc  values calculated at a fixed 1xx = , as it evolves in z [only 40>z  values were 

taken into account, to ensure that in all cases the system has reached steady-state].  When the 
two histograms are normalized to have unity area, they serve as valid probability measures 
from which we can calculate fluctuations around the mean physical values. For example, in 
both histograms, the STD is 25% of the mean. Thus, fluctuations around the averaged value 

ec zxl ),( are fairly large (25%).  

It is important to point out that both probability distributions appear to be equal. This may 
be quantitatively inferred as follows. We calculate the moments for both histograms, up to the 
4th moments and compare them. Comparison between the moments of the two histograms 
reveals a high correspondence between their values. For example, the mean (1st moment) 
exhibit 98% correspondence, the STD (2nd moment) exhibits 96% correspondence and the 3rd  
and 4th  moments exhibits 83% and 78% correspondence, respectively. We believe that the 
decrease in correspondences between the ensemble histogram (Fig. 5(a)) and cross-sectional 
histogram (Fig. 5(b)) as we go to higher moments is because the higher moments require a 
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larger statistics. That is, for accurate higher moments we need a much larger ensemble and a 
much longer evolution in z in order to sample the whole "phase space" of the system.  

 
These findings suggest that both histograms display the same statistics. This can be viewed 

as another ergodic behavior of the system in the sense that probabilities obtained by ensemble 
averaging, or averaging over (“time”) z-coordinate (also x-coordinate, see Sec 4.), are 
practically identical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Evolution of the spatial power spectrum 

Another interesting and useful indication for the dynamics of the system is provided by 
analyzing the power spectrum of the incoherent beam as it propagates (see Fig. 6). Figure 6(a) 
shows the contour plot of the spatial power spectrum for a beam comprised of 41 plane waves, 
with modal weights - 

nd - chosen at the input (z=0) to conform to a Gaussian distribution in 

xk  space (Fig. 6(b)). Figure 6(c) shows the power spectrum at z=150. Evidently, the power 

spectrum significantly broadens until reaching a given width, at which it stabilizes. This initial 
increase in width is consistent with the decrease of the spatial correlation distance (see Sec 4). 
To show this feature more quantitatively, Fig. 6(d) displays cross-sections of Fig. 6(a) at 
various propagation distances. 

We should emphasize that the steady-state reached in the system is not a thermodynamic 
equilibrium, where the modes of the linear system (plane waves) would have been populated 
according to the Boltzmann distribution. This is in fact an expected result, because Eq. (1) 
possesses an infinite number of integrals of motion (conserved quantities; not only energy is 
conserved), thus the dynamics is far more restrictive in phase space. We conjecture that the 
properties of our dynamic steady-state are governed by the maximal entropy principle, 
constrained by the integrals of motion in the sense of Refs. [30,31]. 
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Fig. 5. (a) Distribution of the
cl values at the point 1 1( , )x z shown in Fig. 3a, from an 

ensemble of 800 samples. (b) Distribution of the ),( zxlc
values chosen from a cut 

taken at a fixed 1xx = , and for various z. The values are chosen from a single-shot 

evolution, after the system has reached steady-state (i.e., only values for  z>40 taken).  
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7. Dependence on the nonlinearity and on the degree of coherence 

We now study how the steady-state depends on the strength of the nonlinearity. Our system is 
Kerr-type, where the nonlinear index-change is proportional to the intensity, hence the system 
dependence on the nonlinearity strength is equivalent to its dependence on the optical 
intensity. Figure 7(a) shows the evolution of the average spatial correlation distance 

xcc zxlzL ),()( =  for different values of the initial intensity (all cases are above the MI 

threshold). For all values of the intensity (i.e., nonlinearity), the initial coherence )0( =zLc
 is 

the same. After the system has reached a steady state, )(zLc
 seems to fluctuate around the 

same average value for all values of the nonlinearity. In order to quantify this, we rely on our 
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Fig. 6. (a) Evolution of the power spectrum along z . (b) Input power spectrum. (c) Power 
spectrum at 150=z . (d) Power spectrum at various propagation distances. At 5=z , the 

side-lobes are significant, indicating MI formation. For 5>z , the power spectrum broadens 
gradually, until it reaches a constant width and fluctuates around that value, indicating the 
existence of a steady-state. 
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previous results
zcxcec yxlyxlyxl ),(),(),( == , and employ an averaging window, 

which moves along z  [see Fig. 7(a)]; we calculate the average and the STD of ( )cL z  within 

that window as function of its position. This quantifies the difference/similarity in the 
evolution of ( )cL z  for different levels of the nonlinearity. The length of the window zΔ  is 

chosen to be much longer than the mean period of the fluctuations in ( )cL z , but much shorter 

than the period of the large oscillations ( )cL z  exhibits during the initial stages (see Figs. 3 and 

4). The use of this window is fully equivalent to averaging ),( zxlc
 over a rectangle in the 

),( zx  plane which extends for a length of d2  in the x-direction, and zΔ  in the z-direction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We clearly observe that ( )c z
L z and the STD z

σ  are practically the same in all 

simulations [Fig. 7(b)]. That is, the nonlinearity has a negligible influence on the correlation 
properties at the steady-state. This observation is intriguing: for intensity values below MI 
threshold, ( )cL z  remains constant, maintaining its initial value ( 0)cL z = , whereas for 

intensity values above the MI threshold (e.g., those of Fig. 7), ( )cL z  clearly evolves, yet its 

steady-state value ( )c z
L z  does not depend on intensity, as long as it is above the MI 

threshold. This implies that the steady-state value ( )c z
L z  exhibits a sharp decrease when 

the nonlinearity goes through the MI threshold. This is a surprising observation, because the 
system is Kerr-type, hence it is tempting to think that the evolution dynamics is scalable. 

Evidently, the sharp transition in ( )c z
L z , when the nonlinearity goes through the MI 

threshold, defies scalability. Rather, the sharp transition is indicative of a phase-transition 
between two generically different behaviors [12-14]. What is indeed scalable is the distance 
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Fig. 7. (a) Evolution of the correlation distance, ( )L zc , for five values 

of the initial intensity; the plots are similar for 10z ≥ . (b) ( )
z

L zc< >  

and the STD 
zσ . Both are independent of the position of the center 

of the averaging window. (c) Zooming into the initial stages of 
evolution; the distance to equilibrium, increases as the total intensity 
decreases. 
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("time") to reach equilibrium, which is inversely proportional to the strength of the 
nonlinearity, as we find from many simulations as those displayed in Fig. 7(c). 
 

Finally, we study the dependence of the steady-state properties on the initial coherence of 
the system, ( 0)cL z = . We do this by varying the ratio between the modal weights { }nd , while 

keeping the initial total intensity ( n
n

d∑ ) unchanged. Figure 8 shows the relative loss of spatial 

coherence of the beam at the steady-state, )0(/ =Δ zLL cc
 [left axis; black curve, where 

zccc zLzLL )()0( −==Δ ], as a function of the initial coherence, ( 0)cL z = . Figure 8 also 

shows the ratio 
zcz zL )(/σ  (right axis; red curve), which indicates the magnitude of the 

fluctuations at the steady-state, also as a function of ( 0)cL z = . We find that the largest 

relative loss of coherence and the largest fluctuations occur at similar values of the initial 
coherence ( 0)cL z = . The existence of both maxima observed in Fig. 8 can be understood by 

considering the two extreme cases of fully-coherent light and highly-incoherent light, where 
0)0(/ ==Δ zLL cc

 and 0)(/ =
zcz zLσ . For a fully coherent beam, MI occurs 

without any threshold, and always remains coherent ( 1cL =  for all z ). For a highly 

incoherent beam, such that it is below the MI threshold, 
cL  remains unchanged for all z , 

because ( ) 0M z =  (see discussion above). Between these two extreme cases, the coherence of 
the system at steady-state is smaller than the initial coherence, hence a maximum change in 
coherence and in STD must occur at some intermediate value of ( 0)cL z = . Thus, as Fig. 8 

reveals, the initial level of coherence ( 0)cL z =  strongly affects the steady-state of the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

8. Conclusion 
 

Summarizing our findings, we conclude first that the long-range propagation of incoherent 
light following the modulation instability (MI) process in non-instantaneous nonlinear Kerr-
type brings the system into a steady-state. We have shown that the experimentally-relevant 
quantities (spatial correlation distance and intensity-variance) after long-term propagation 
converge to mean values with fluctuations around them. The steady-state coherence is found 
to be lower than in the initial coherence.   Further, we have also shown that the averages of the 

spatial correlation distance obey ... ... ...
e x z
= = , and that their STD's obeys e x zσ σ σ= = . 

This can be viewed as ergodic behavior. We have found that the mean value of coherence at 
the steady state depends on the initial coherence of the system, but not on the strength of the 
nonlinearity (above the MI threshold). 
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state, both as functions of the initial coherence. 
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Our results are interesting also from the point of view of integrability. The numerical 
simulations are performed in a classical nonlinear integrable system (the N-Manakov system 
with periodic boundary conditions), where it was generally believed that dynamics cannot 
relax but rather exhibit recurrences. Clearly, our system does reach a steady-state, with no 
recurrence.  

We expect that the long-term evolution following incoherent MI in other systems will 
exhibit relaxation to some kind of steady-state as well. We believe that our findings in optics 
have counterpart in other fields, such as matter waves (e.g., see [34]), sound waves, plasmas, 
etc., basically wherever the governing equations are the same or similar. One such example is 
the long-term evolution (from some initial far-from-equilibrium state) of 1D δ-interacting 
bosons, which is governed by a quantum integrable model [32,33] but is not yet fully 
understood (apart from the hard-core regime [27]). 
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