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Ofer Manela, Guy Bartal and Mordechai Segev
Physics Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

hbuljan@phy.hr

Abstract: We study modulation instability (MI) of random-phase waves
in nonlinear photonic lattices. We find that an incoherent superposition of
extended nonlinear eigenstates of the system, that is, an incoherent extended
stationary beam, may become unstable due to nonlinearity. The instability
process depends on the nonlinearity, on the structure of thediffraction
curves of the lattice, as well as on the properties of the beam, whose
spectrum can be comprised of Bloch modes from different bands, and from
different regions of diffraction (normal/anomalous). This interplay among
diffraction, incoherence, and nonlinearity leads to a variety of phenomena,
including the possibility of tailoring the diffraction curve of the lattice, or
the coherence properties of the beam, to enhance or suppressthe instability.
We present several examples of such phenomena, including a case where
increasing the lattice depth flattens the diffraction curvethereby enhancing
the instability, ”locking” the most unstable mode to the edge of the 1st
Brillouin zone for large nonlinearity, and incoherent MI inself-defocusing
media.
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1. Introduction

The nonlinear phenomenon of modulation instability (MI) occurs in diverse physical sys-
tems. In nonlinear optics, it usually refers to a process where small perturbations upon a uni-
form intensity beam grow exponentially due to the interplaybetween nonlinearity and disper-
sion/diffraction [1], thereby breaking the symmetry of theuniform beam. The process of MI
has been studied for decades with coherent optical waves. A new direction of research on the
MI phenomenon was initiated with the theoretical prediction [2] and experimental observation
[3] of MI with incoherent light in noninstantaneous nonlinear media. The phenomenon of in-
coherent MI draws interest because the three-fold interplay among coherence, diffraction, and
nonlinearity strongly affects the process of the instability [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Fol-
lowing its discovery [2, 3], incoherent MI has been studied in the context of induced instability
[4], and clustering [5]. MI was demonstrated to occur with spatially and temporally incoherent
white-light [6, 7]. It has been shown that the MI process may depend on the shape of the power
spectrum [8]. Besides noninstantaneous local nonlinear media [2, 3, 4, 5, 6, 7, 8], incoherent
MI occurs in nonlocal nonlinear media such as liquid crystals [10], in media with integrat-
ing nonlinearity [11], and under certain conditions, it is possible even in nonlinear media with
instantaneous temporal response [9]. However, to the best of our knowledge, the process of
incoherent MI has not yet been addressed in nonlinear photonic lattices.

The physics of coherent optical beams in nonlinear photoniclattices gives rise to lattice soli-
tons (initially referred to as ”discrete” solitons, following the discrete model used in their pre-
diction). Optical lattice solitons were predicted in 1988 [12], and observed ten years later [13].
The intriguing features of nonlinear dynamics in these systems have stimulated considerable
activity in this field (for recent reviews, e.g., see Refs. [14, 15]). The nonlinear phenomenon of
MI, which is closely related to solitons, has been predictedwithin the context of the discrete
nonlinear Schr̈odinger equation (discrete NLSE), first at the base of the Brillouin zone [14],
and later within the entire band [16]. The interplay betweenthe spatial and temporal effects
on the MI process has been studied in Ref. [17]. The first experimental observation of MI in
discrete optical systems was reported in [18]. Further experiments demonstrated discrete MI in
periodically poled lithium niobate waveguide arrays [19],in self-defocusing media [20], and in
a layered Kerr medium (nonlinearity is periodic in the evolution variable) [21].

Our current study of incoherent lattice MI combines the phenomenon of coherent MI in
(”discrete”) periodic nonlinear systems [14, 16, 17, 18, 19, 20, 21], and that of incoherent MI
in homogeneous nonlinear systems [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. This analysis draws upon recent
studies of partially coherent wave dynamics in noninstantaneous nonlinear photonic lattices [22,
23, 24, 25, 26, 27, 28, 29], including the prediction [22] andobservation [23] of random-phase
lattice solitons, and the possibility of Brillouin-zone (BZ) spectroscopy [24] with incoherent
light (see Ref. [25] for a review of the topic).

Here we study modulation instability of incoherent extended stationary beams in nonlinear
photonic lattices. The intensity and coherence structure of these extended states posses the peri-
odicity of the lattice. In contrast to coherent MI in a lattice, these incoherent beams may excite
an ensemble of Bloch modes from different bands and from different regions of diffraction
(normal/anomalous). The instability process depends on the properties of the excitation, the
nonlinearity, and the structure of diffraction (spatial dispersion) curves. This leads to a variety
of phenomena, and includes the possibility of tailoring diffraction curves and/or excitation (e.g.,
degree of coherence) to enhance or suppress the instability. We present the features of incoher-
ent MI in several examples including (i) a case where the increase of the lattice depth flattens
the diffraction curve, thereby enhancing the instability,(ii) MI of an incoherent extended beam
whose constituents arise from multiple bands, (iii) locking of the most unstable mode to the
edge of the 1st Brillouin zone for large nonlinearity, (iv) suppression of MI due to incoherence,
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and (v) incoherent MI in self-defocusing media.
It is important to emphasize that, even though this study focuses on instability of incoherent

beams, some of our conclusions (e.g., Sec. 5) hold generallyfor bothcoherent and incoherent
MI in continuous nonlinear periodic structures.

2. The physical system and the corresponding model

The physical system is identical to the one considered in Refs. [22, 23, 25]: We study prop-
agation of a spatially incoherent, quasimonochromatic, and linearly polarized light beam in a
nonlinear photonic lattice with a noninstantaneous nonlinearity. The electric fieldE(x,z, t) of
such a beam randomly fluctuates on time-scales much shorter than the response time of the
nonlinearityτm [2, 3], which implies that nonlinearity cannot follow fast fluctuations of the
field, but responds to the time-averaged intensity. The state of the system can be described
with a mutual coherence functionB(x1,x2,z) = 〈E∗(x2,z, t)E(x1,z, t)〉, which in the paraxial
approximation, obeys [30]

i
∂B
∂z

+
1
2k

[
∂ 2

∂x2
1

−
∂ 2

∂x2
2

]B+
k
n0

[V(x1,z)−V(x2,z)]B = 0. (1)

The potentialV(x,z) = p(x)+ δn[I(x,z)] contains both the periodicp(x) = p(x+ D), and the
nonlinear termδn[I(x,z)]; I(x,z) = B(x,x,z) denotes the time-averaged intensity,n0 is the linear
part of the index of refraction, andk = 2πn0/λ , whereλ denotes the vacuum wavelength.

Instead of the mutual coherence function approach, equations of motion can be written in a
fully equivalent modal form [31, 32], which is suitable for our numerical calculations. Within
the modal theory, the electric field is written through a superposition of coherent waves (modes)
with randomly varying coefficients:E(x,z, t) = ∑mcm(t)ψm(x,z) [31], while the statistics fol-
lows from〈cm(t)c∗m′(t)〉 = dmδmm′ ; coherent wavesψm(x,z) are connected to the mutual coher-
ence function via

B(x1,x2,z) = ∑
m

dmψm(x1,z)ψ∗
m(x2,z). (2)

The functionsψm(x,z) form an orthonormal set, anddm denotes the power within themth wave
[32]. The evolution of coherent wavesψm follows a set of coupled nonlinear equations (e.g.,
see [25]),

i
∂ψm

∂z
+

1
2k

∂ 2ψm

∂x2 +
V(x,z)k

n0
ψm(x,z) = 0. (3)

whereV(x,z) = p(x) + δn[∑mdm|ψm(x,z)|2] again contains both the linear periodic and the
nonlinear term.

3. Extended stationary states of the nonlinear system

The state of the system is given by the mutual coherence function, or equivalently a set of
modes and their weights. Thus, thetrajectory in the phase space of this nonlinear dynamical
system is given by a set of functionsB(x1,x2,z) for continuous set of valuesz≥ 0 (which plays
the role of time in our dynamical system). The concept of stability of this trajectory is well
defined irrespective of whether this trajectory is stationary ∂B/∂z = 0, or not. The stability
describes the behavior of trajectories that are initially (at z= 0) nearbyB(x1,x2,z= 0), that is,
the trajectories from initial conditionsB′(x1,x2,z= 0) = B(x1,x2,0)+δB(x1,x2,0), whereδB
denotes a small perturbation atz= 0, |δB|<< |B|. The trajectoryB(x1,x2,z) is stable if the per-
turbationδB remains small during the evolution. Conversely, its exponential increase indicates

(C) 2007 OSA 16 Apr 2007 / Vol. 15,  No. 8 / OPTICS EXPRESS  4626
#80148 - $15.00 USD Received 15 Feb 2007; accepted 19 Mar 2007; published 3 Apr 2007



instability. Even though stability is a well-defined concept for various types of trajectories, the
stability of stationary states is much easier to analyze theoretically (analytically/numerically)
and experimentally, and it provides important insight intothe dynamics of the system.

The concept of MI in nonlinear optical systems usually refers to a stability analysis of cer-
tain steady states, which are in most casesuniform-intensity waves(e.g., plane waves are steady
states in homogeneous nonlinear media). The first studies ofMI with coherent waves in non-
linear waveguide arrays were performed within ”discrete” model(s) [12], e.g., a discrete NLSE.
Within these models a ”discrete” plane wave is a steady state[18], and the linear stability anal-
ysis leads to a closed form expression for a gain curve [18]. However, here we investigate MI
in a nonlinear photonic lattice by using a continuous model,and uniform intensity waves are
(in general)not steady states within this model (i.e., an initial conditionwith uniform inten-
sity evolves in a nontrivial fashion). For this reason, we first describe the extended, stationary,
incoherent states in our system.

Extended stationary states of the system self-consistently obey the equations of motion, with
appropriate boundary conditions. We seek solutions with intensity structure displaying the lat-
tice periodicityI0(x) = I0(x+D). Such solutions can be constructed in the form

B0(x1,x2) = ∑
κ

cκ φN
κ (x1)φN∗

κ (x2), (4)

where φN
κ (x) are the Floquet-Bloch (FB) waves of the periodic potentialP(x) = p(x) +

δn[I0(x)], P(x) = P(x+ D); here,κ denotes the Bloch-wave vector. The nonlinear FB waves
φN

κ (x) = uN
κ (x)exp(iκx) are eigenfunctions of the operatorN̂(x),

N̂(x)φN
κ (x) = β N

κ φN
κ , (5)

where

N̂(x) =
1
2k

∂ 2

∂x2 +
k
n0

[p(x)+δn(∑
κ

cκ |φN
κ (x)|2)]; (6)

the boundary conditions areuN
κ (x) = uN

κ (x+ D). For the sake of clarity, the FB modes and
eigenvalues corresponding to thelinear periodic potentialp(x) will be denoted byφL

κ (x) and
β L

κ , respectively. For a given set of parameters, the solutionB0 (provided it exists) may be
found numerically by iteratively solving a set of modal equations (5); incoherent solitons are
found in an identical fashion, with different boundary conditions [22]. We should state that our
extended stationary states are, in fact, composite nonlinear Bloch waves [33], and in some cases
multi-band nonlinear Bloch waves.

It should be emphasized that by changing any parameter of thesystem, e.g., the strength
of the nonlinearity, we change the stationary state solution B0(x1,x2), and effectively, for each
value of the parameter(s), we analyze the stability of a different solutionB0(x1,x2). Neverthe-
less, in order to characterize lattice MI, it is instructiveto study the stability in dependence of
certain parameters, e.g., the depth of the lattice or nonlinearity, as we discuss below.

4. Linear stability analysis

In order to analyze the stability ofB0, we slightly perturb it atz= 0, and observe the evolu-
tion of the mutual coherence:B(x1,x2,z) = B0(x1,x2)+B1(x1,x2,z), whereB1 denotes a small
perturbation|B1| << |B0|. The linearized evolution equation forB1 reads [2]

i
∂B1(x1,x2,z)

∂z
+[N̂(x1)− N̂(x2)]B1(x1,x2,z)+

kγ
n0

[B1(x1,x1,z)−B1(x2,x2,z)]B0(x1,x2) = 0;

(7)
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we have assumed the nonlinearity is of the Kerr-typeδn(I) = γI , thus,N̂(x j) = 1/(2k)∂ 2/∂x2
j +

k/n0[p(x j)+ γB0(x j ,x j)], j = 1,2. The perturbationsB1 can be generally expanded in a set of
eigenmodes,B1(x1,x2,z) = ∑α fα [Bα(x1,x2)eg(α)z + B∗

α(x2,x1)eg(α)∗z], whereBα(x1,x2) de-
notes the structure of the eigenmode, whileg(α) is the corresponding eigenvalue. Clearly, if
ℜ{g(α)}> 0 the mode (and therefore the whole beam) is unstable. The eigenmodesBα(x1,x2)
and their eigenvaluesg(α) can be found from the equation

[N̂(x1)− N̂(x2)]Bα +
kγ
n0

[Bα(x1,x1)−Bα(x2,x2)]B0(x1,x2) = −igBα(x1,x2). (8)

In order to proceed with the stability analysis in the fashion of Refs. [2, 6], which consider
incoherent MI in a homogeneous medium, we would have to guessthe diagonal structure of
the growing modesIα(x) = Bα(x,x). For the sake of clarity it should be noted that the diagonal
structure ofBα is not intensity (it can assume complex values); the intensity of the perturba-
tion corresponding to the eigenmodeBα is Bα(x,x)eg(α)z + c.c., which is a real quantity. In
a homogeneous medium, the diagonal structure of the growingeigenmodes are plane waves,
Iα ∝ exp(iαx) [2, 6]. Intuition therefore suggests thatIα(x) should be related to FB waves,
which we corroborate in the next section.

Here we obtain an integral equation for the gain from Eq. (8) by using the fact that every
modeBα can be represented in the FB basisφN

κ (x): Bα(x1,x2) = ∑α1α2
Hα

α1α2
φN∗

α2
(x2)φN

α1
(x1)

(the summation goes over FB modes in the extended Brillouin zone scheme). After a straight-
forward calculation equivalent to the one presented in Refs. [2, 6], Eq. (8) may be cast into an
integral form:

Iα(x′) = ∑
α1α2

kγ
n0

−φN∗
α2

(x′)φN
α1

(x′)

ig+β (α1)−β (α2)

∫
Iα(x)φN

α2
(x)φN∗

α1
(x)dx[cα2 −cα1]. (9)

Equation (9) can be solved (numerically) in an iterative fashion. First, we assumeIα(x) = φL
α ,

and findg(α) by usingx′ = 0. From this value ofg(α), and the r.h.s. of Eq. (9), we obtain the
next iterate forIα(x), and repeat this procedure until convergence, which yieldsthe gain curve
g(α).

We conclude this section by emphasizing that we can use straightforward numerical evolu-
tion with initial conditionsB0 +B1, whereB1 denotes small initial noise, and characterize the
instability. The evolution is performed with a standard split-step Fourier method applied on
evolution Eq. (3). Alternatively, we can obtain the gain curve from Eq. (9). In the following
sections we utilize both procedures to study incoherent MI and its features in photonic lattices.

5. Inducing MI by flattening the diffraction curve

In this section we demonstrate how a change in the lattice parameters (the lattice depth) can af-
fect MI through the change of the diffraction curves. Although we consider incoherent beams,
the results of this section can be applied also to the case of coherent MI. Let us consider ex-
tended steady statesB0 with a broad and symmetriccκ -spectrum (cκ = c−κ ) shown in Fig. 1(a).
Thecκ -spectrum is the FB power spectrum [22] expressed in terms ofthe FB eigenmodesφN

κ
(for p(x) = 0, it is in fact a Fourier power spectrum). We investigate thestability of the solution
B0 in dependence of the lattice depthp0, p(x) = p0cos(πx/D)2, while keeping thecκ -spectrum
and all other parameters fixed:n0 = 2.3, λ = 488nm,D = 10 µm, γI0 = 1.97×10−5.

First we analyze the stability ofB0 by direct numerical evolution with initial conditionB0 +
B1, |B1| << |B0|. When the lattice depth is zero, the stationary stateB0 is stable. However, by
increasing the lattice depth, above a certain threshold value,B0 becomes unstable. The intensity
structure ofB0 for p0 = 3.4× 10−4 is shown in Fig. 1(b) (red dashed line); black solid line
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Fig. 1. Features of incoherent lattice MI. (a) Thecκ -spectrum of a stationary beam. (b)
The intensity of the beam atz = 0 (red dashed line) andz = 283 mm (black solid line).
(c) The linear diffraction curvesβ L

κ vs. κ for p0 = 0 (no lattice, dashed line) andp0 =
3.4× 10−4 (solid line). (d) Thedκ -spectrum of the noise intensity atz = 0 (red dotted
line) andz = 236 mm (black solid line). (e) The exponential growth of the maximally
destabilizing perturbationsdκ ; κ +2πn/D, n=−1,0,1. (f) The growth ratesg(α) reduced
to the 1st BZ, as calculated from the numerical evolution (red dashed line)and Eq. (9)
(black solid line).

shows the intensity ofB0 + B1 after propagation forz = 283 mm. This apparent instability,
which occurs when the lattice is sufficiently deep, can be explained by observing the diffraction
curves [see Fig. 1(c)] of the linear system forp0 = 0 (dashed line) andp0 = 3.4×10−4 (solid
line). The curvature close toκ = 0, where most of thecκ -spectrum is located, is smaller for a
deeper lattice. Hence, diffraction is smaller. Because MI occurs when nonlinear self-focusing
overcomes incoherent diffraction [2, 3], it follows that the stationary statesB0, with a spectrum
similar to that of Fig. 1(a), and corresponding to deeper lattices, will be more unstable.

In order to characterize the growing eigenmodesBα , we project the perturbation intensity
I1(x,z) = B1(x,x,z) onto the FB waves of the linear lattice:I1(x,z) = ∑κ dκ(z)φL

κ (x)+c.c.; the
dκ -spectrum of the perturbation atz= 0 andz= 236 mm is shown in Fig. 1(d). Clearly, the
power within certain linear FB modes grows, indicating the instability. This is underpinned in
Fig. 1(e) which shows the exponential growth of thedκ -spectrum withz. We find that the growth
rates corresponding to modesφL

κ±2πn/D, n = 0,1, . . ., are identical. For this reason, we plot the
growth ratesg(α) [red dashed line in Fig. 1(f)] in the reduced BZ scheme. This numerical
observation suggests that the diagonal structure of the eigenmodesBα is Iα(x) = Bα(x,x) =

∑ndα+2πn/DφL
α+2πn/D (n integer). The accuracy of our calculations is checked by comparing

the gain curves obtained from straightforward numerical evolution and from Eq. (9); the gain
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Fig. 2. (a) Gain curve for various values of the nonlinearityγI0: 3.48×10−5 (black solid
line), 3.74×10−5 (red dashed line), 3.87×10−5 (blue dotted line), and 4.2×10−5 (green
dashed line). The most unstable mode locks at the edge of the first BZ, for sufficiently high
values of the nonlinearity. (b) The power spectrum of the extended stationary state (see text
for details).

curve obtained from Eq. (9) is shown with black solid line in Fig. 1(f). The two gain curves in
Fig. 1(f) obtained with two different methods coincide.

6. Locking of the most unstable mode

The process of MI is enhanced by increasing the strength of the nonlinearity. In the case of
a homogeneous medium, an incoherent beam of uniform intensity is stable (unstable) below
(above) a nonlinearity threshold, whose value is determined by the degree of incoherence [2, 3].
In a similar fashion, we find such a threshold to exist in the case of incoherent lattice MI;
however, the behavior of the instability for high values of the nonlinearity is fundamentally
changed by the presence of the lattice.

Figure 2(a) shows the gain curves for various values of the nonlinearity. The parameters are
identical to those of Fig. 1 (p0 = 3.4×10−4) except that thecκ -spectrum is somewhat broader
[shown in Fig. 2(b)]. We clearly see that the gain of the maximally-unstable perturbation de-
creases for smaller values of the nonlinearity, and that there is a threshold value, below which
the stationary stateB0 is stable. Just above this threshold, the gain curve (black solid line)
looks similar to that of incoherent MI in homogeneous media [2], because the largest unstable
(cut-off) α value is smaller thanπ/D. That is, the interval of unstable mode values is smaller
than the extent of the 1st BZ. However, by increasing the nonlinearity further, the cut-off value
reaches the edge of the BZ, and it stayslockedat the edge for larger values of the nonlinear-
ity. This result is a consequence of the periodic potential,and does not have its counterpart
in homogeneous media. By increasing the nonlinearity further, the most unstable mode is that
for α = π/D, and it stayslockedthere for any higher value of the nonlinearity. It should be
noted that the same locking of the most unstable mode was observed within a discrete nonlin-
ear Schr̈odinger model [18]. We have obtained the same result by usinga continuous model.
Here we show this effect for an incoherent beam, but the same result holds in the coherent limit
as well.

7. Influence of the spatial coherence; MI of a multi-band incoherent beam

The degree of spatial coherence of a beam has profound influence on its stability [2, 3], which
is manifested in the existence of a threshold for incoherentMI (see Sec. 6). The degree of
incoherence is associated tothe width of the spatial power spectrum; the wider thecκ -spectrum,
the larger is the degree of incoherence. It should be noted that beside the width, the shape of
the power spectrum can also affect the MI process [8]. In the case of incoherent lattice MI, the
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Fig. 3. Gain curves for two types ofcκ -spectrum and various degrees of the coherence;
a more incoherent beam has a broadercκ -spectrum. (a) The gain curves correspond to
different widths of the bell-shaped and symmetriccκ -spectra in (b). (c) The gain curves
correspond to multi-band beams with different widths of the two-humpedcκ -spectra shown
in (d).

position of thecκ -spectrum inκ-space is important as well, because by shifting the spectrum
from κ = 0, the excitation corresponds to higher bands, and in fact itcan be a multi-band
excitation [34, 35].

Figure 3(a) shows the gain curves for extended stationary states withcκ -spectra shown in Fig.
3(b). Other parameters are identical to those of Fig. 1 (p0 = 3.4×10−4). The maximal value
of the gain curve [Fig. 3(a)] decreases with the decrease of coherence [broadercκ -spectra, Fig.
3(b)], as expected from the homogeneous studies of the incoherent MI process [2, 3]. It is
interesting to note that the interval of the unstableα-modes is approximately the same for all
of the graphs in Fig. 3(a), while the Bloch wave of the most unstable perturbation is roughly
unchanged.

A different behavior of the gain curves occurs for the multi-band excitations depicted in Figs.
3(c) and (d). The parameters arep0 = 2.9×10−4 andγI0 = −7.9×10−5; note that in this case
the nonlinearity is of the self-defocusing type. Fig. 3(d) shows thecκ -spectra of a few extended
stationary states; the spectra have two side-bands. These states excite Bloch waves from both
the first and the second band, i.e., they are multi-band excitations. In addition, about half of
the power excites Bloch waves from the normal, and the other half from anomalous diffraction
regions. When each side-band of the spectrum is narrower (i.e., the beam is more coherent),
the maximal gain value is higher, that is, the instability isstronger. However, by increasing the
width of each side-lobe of thecκ -spectrum, the most unstable mode shifts towards the edge of
the Brillouin zone and gets locked there. This behavior is qualitatively different from that shown
in Figs. 3(a) and (b), which points at the complexity of the incoherent lattice MI phenomena.
The complexity is enhanced by the fact that specific properties of the excitation (such as the FB
power spectra) can have significant influence on the process of incoherent lattice MI.

8. Incoherent lattice MI in self-defocusing nonlinear potential

It has been experimentally demonstrated that coherent lattice MI is possible in a self-defocusing
medium, when a nonlinear Bloch mode is excited in the anomalous diffraction region [20]. In a
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Fig. 4. Incoherent MI in self-defocusing nonlinear medium. (a) Thecκ spectrum, and (b)
the intensity structure of an unstable beam atz= 0 (red dashed line) andz= 263 mm (black
solid line).

similar fashion, we demonstrate the existence of incoherent lattice MI within a self-defocusing
nonlinearity, with thecκ -spectrum exciting Bloch waves mostly from the anomalous regions.
Let us consider an extended incoherent beam with Gaussiancκ -spectrum displayed in Fig.
4(a). A beam with such a spectrum in a nonlinear homogeneous medium (p0 = 0) with a self-
defocusing nonlinearity of the strengthγI0 = −5.25× 10−5 is stable (other parameters are
identical to those of Fig. 1). However, within a nonlinear photonic lattice, a solution with such
a cκ -spectrum can become unstable. Figure 4(b) displays results of the numerical evolution of
such extended steady state with small initial noise placed upon the beam; the depth of the lattice
is p0 = 1.05×10−5. Figure 4(b) shows the intensity structure of the beam atz= 0 (red dashed
line), and atz= 263 mm (black solid line), when the instability has already developed.

9. Discussion, Conclusion, and Outlook

In this paper we have studied the stability of extended stationary incoherent beams in nonlinear
photonic lattices. The intensity and coherence structure of these stationary states posses the
periodicity of the lattice, and they self-consistently obey the equations of motion (see Sec.
3). The incoherent lattice MI phenomenon studied here fundamentally differs in many aspects
from coherent lattice MI, as well as from incoherent MI in nonlinear homogeneous media.
Quite generally, we have found that the structure of the unstable modes and their growth rates
are governed by the structure of the periodic potential. A straightforward consequence of this
effect is that the most unstable mode is locked at the edge of the Brillouin zone for sufficiently
high value of the nonlinearity (see Sec. 6)

The extended incoherent beam is comprised of an ensemble of modes, and it can excite
modes from different bands, and from regions of both normal and anomalous diffraction. This
feature does not have a counterpart in the coherent lattice MI case where a single mode is ex-
cited. This fact makes the phenomena of incoherent lattice MI richer, but at the same time harder
to explore (see Sec. 7). The complexity of the incoherent lattice MI phenomena is enhanced by
the fact that diffraction curves change considerably by thechange of the lattice parameters,
which can profoundly affect MI. This is demonstrated by enhancing the lattice MI by flattening
the diffraction in Sec. 5. This opens the possibility to tailor the diffraction curves to stimulate or
inhibit MI. It is important to emphasize that these conclusions hold generally for both coherent
and incoherent MI in continuous periodic photonic lattices.

We envision several further research themes following our current study. Recent studies of
incoherent white-light solitons in nonlinear photonic lattices [29] suggest that MI in photonic
lattices is possible with incoherent white light [6, 7] as well. It would be interesting to see
whether all frequencies would behave collectively, as theydo in a homogeneous medium [6,
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7], or certain departures from this behavior would occur because diffraction curves differ for
different temporal frequencies [29]. Finally, the similarity between the dynamics of partially
coherent optical- and matter-waves [36] suggests that a type of instability similar to incoherent
MI should occur for partially condensed interacting bosons(either in a cigar-shaped harmonic
trap [37] or in an optical lattice [38]).
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