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Abstract:  We study modulation instability (Ml) of random-phase waves
in nonlinear photonic lattices. We find that an incoheremtesposition of
extended nonlinear eigenstates of the system, that iscahénent extended
stationary beam, may become unstable due to nonlineafig.ifstability
process depends on the nonlinearity, on the structure ofiffi@ction
curves of the lattice, as well as on the properties of the beshose
spectrum can be comprised of Bloch modes from different $aaad from
different regions of diffraction (normal/anomalous). lnterplay among
diffraction, incoherence, and nonlinearity leads to aetgrof phenomena,
including the possibility of tailoring the diffraction cueg of the lattice, or
the coherence properties of the beam, to enhance or suppedsstability.
We present several examples of such phenomena, includiageavwehere
increasing the lattice depth flattens the diffraction cuhereby enhancing
the instability, "locking” the most unstable mode to the edyf the 1st
Brillouin zone for large nonlinearity, and incoherent Mlself-defocusing
media.
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1. Introduction

The nonlinear phenomenon of modulation instability (Ml)cocs in diverse physical sys-
tems. In nonlinear optics, it usually refers to a processrevsenall perturbations upon a uni-
form intensity beam grow exponentially due to the interdi@yween nonlinearity and disper-
sion/diffraction [1], thereby breaking the symmetry of tin@form beam. The process of Mi
has been studied for decades with coherent optical waveswAdirection of research on the
MI phenomenon was initiated with the theoretical predit{i®] and experimental observation
[3] of MI with incoherent light in noninstantaneous nonlamenedia. The phenomenon of in-
coherent MI draws interest because the three-fold intgr@maong coherence, diffraction, and
nonlinearity strongly affects the process of the instabi, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Fol-
lowing its discovery [2, 3], incoherent MI has been studiethie context of induced instability
[4], and clustering [5]. Ml was demonstrated to occur withatsdly and temporally incoherent
white-light [6, 7]. It has been shown that the MI process mageahd on the shape of the power
spectrum [8]. Besides noninstantaneous local nonlinealiarig, 3, 4, 5, 6, 7, 8], incoherent
MI occurs in nonlocal nonlinear media such as liquid crys{al0], in media with integrat-
ing nonlinearity [11], and under certain conditions, it @spible even in nonlinear media with
instantaneous temporal response [9]. However, to the emiroknowledge, the process of
incoherent MI has not yet been addressed in nonlinear pldttdtices.

The physics of coherent optical beams in nonlinear photattices gives rise to lattice soli-
tons (initially referred to as "discrete” solitons, follavg the discrete model used in their pre-
diction). Optical lattice solitons were predicted in 1982], and observed ten years later [13].
The intriguing features of nonlinear dynamics in theseesyst have stimulated considerable
activity in this field (for recent reviews, e.g., see Ref4,[15]). The nonlinear phenomenon of
MI, which is closely related to solitons, has been predist@tiin the context of the discrete
nonlinear Schidinger equation (discrete NLSE), first at the base of thédBih zone [14],
and later within the entire band [16]. The interplay betwé®n spatial and temporal effects
on the MI process has been studied in Ref. [17]. The first éxartal observation of Ml in
discrete optical systems was reported in [18]. Further expsnts demonstrated discrete Ml in
periodically poled lithium niobate waveguide arrays [lif]self-defocusing media [20], and in
a layered Kerr medium (nonlinearity is periodic in the evioln variable) [21].

Our current study of incoherent lattice Ml combines the mimeenon of coherent Ml in
("discrete”) periodic nonlinear systems [14, 16, 17, 18,2@®, 21], and that of incoherent Ml
in homogeneous nonlinear systems [2, 3, 4, 5, 6, 7, 8, 9, 10T ik analysis draws upon recent
studies of partially coherent wave dynamics in noninstagas nonlinear photonic lattices [22,
23,24, 25, 26, 27, 28, 29], including the prediction [22] adervation [23] of random-phase
lattice solitons, and the possibility of Brillouin-zone {Bspectroscopy [24] with incoherent
light (see Ref. [25] for a review of the topic).

Here we study modulation instability of incoherent extahd&tionary beams in nonlinear
photonic lattices. The intensity and coherence structittiease extended states posses the peri-
odicity of the lattice. In contrast to coherent Ml in a lagtjthese incoherent beams may excite
an ensemble of Bloch modes from different bands and fronewifft regions of diffraction
(normal/anomalous). The instability process depends erpthperties of the excitation, the
nonlinearity, and the structure of diffraction (spatiadpirsion) curves. This leads to a variety
of phenomena, and includes the possibility of tailorindrddtion curves and/or excitation (e.g.,
degree of coherence) to enhance or suppress the instalhiétpresent the features of incoher-
ent Ml in several examples including (i) a case where thesi®e of the lattice depth flattens
the diffraction curve, thereby enhancing the instabiliiy,MI of an incoherent extended beam
whose constituents arise from multiple bands, (iii) logkof the most unstable mode to the
edge of the 1st Brillouin zone for large nonlinearity, (ivppression of MI due to incoherence,
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and (v) incoherent Ml in self-defocusing media.

It is important to emphasize that, even though this studyges on instability of incoherent
beams, some of our conclusions (e.g., Sec. 5) hold gendoalyoth coherent and incoherent
MI in continuous nonlinear periodic structures.

2. The physical system and the corresponding model

The physical system is identical to the one considered irs.H2R, 23, 25]: We study prop-
agation of a spatially incoherent, quasimonochromatid, larearly polarized light beam in a
nonlinear photonic lattice with a noninstantaneous neuliity. The electric fieldE(x, zt) of
such a beam randomly fluctuates on time-scales much shbéerthe response time of the
nonlinearity Ty, [2, 3], which implies that nonlinearity cannot follow fastiftuations of the
field, but responds to the time-averaged intensity. Thee sththe system can be described
with a mutual coherence functid(xy, x2,2z) = (E*(x2,2,t)E(x1,2t)), which in the paraxial
approximation, obeys [30]

0B 1 9% 92 k

i + Zk[dxf dxg]BJr % [V (x1,2) —V(x2,2)|B=0. 1)
The potentiaV (x,z) = p(x) + on[l (x,z)] contains both the periodip(x) = p(x+ D), and the
nonlinear termdn[l (x,2)]; 1 (X, 2) = B(X, X, z) denotes the time-averaged intengikyis the linear
part of the index of refraction, arld= 2rmp/A, whereA denotes the vacuum wavelength.

Instead of the mutual coherence function approach, equsatibmotion can be written in a

fully equivalent modal form [31, 32], which is suitable fonmronumerical calculations. Within
the modal theory, the electric field is written through a sppsition of coherent waves (modes)
with randomly varying coefficient€(x,z,t) = 3 mcm(t) Ym(X,2) [31], while the statistics fol-
lows from (cm(t)C;, (t)) = dmdmni; cOherent wavegim(x, z) are connected to the mutual coher-
ence function via

B(x1,%2,2) = dmn(X1,2) Y(X2,2). 2

The functiongpm(x, z) form an orthonormal set, art}, denotes the power within theth wave
[32]. The evolution of coherent waves, follows a set of coupled nonlinear equations (e.g.,
see [25]),

idwm_i_idzll’m V(x,2)k
0z 2k 0x? No
whereV (x,2) = p(x) + on[¥ mdm|Ym(X,2)|?] again contains both the linear periodic and the

nonlinear term.

Ym(x,2) = 0. 3)

3. Extended stationary states of the nonlinear system

The state of the system is given by the mutual coherenceifumabr equivalently a set of
modes and their weights. Thus, ttrajectoryin the phase space of this nonlinear dynamical
system is given by a set of functioB$xs, X2, z) for continuous set of values> 0 (which plays
the role of time in our dynamical system). The concept ofitaf this trajectory is well
defined irrespective of whether this trajectory is statign2B/dz = 0, or not. The stability
describes the behavior of trajectories that are initiadlyz(= 0) nearbyB(xz, X2, z= 0), that is,
the trajectories from initial conditior® (x;, X2, z= 0) = B(x, X2, 0) + B(X1, X2, 0), wheredB
denotes a small perturbationzt 0, |0B| << |B|. The trajectoryB(xy, X, 2) is stable if the per-
turbationdB remains small during the evolution. Conversely, its expiakincrease indicates
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instability. Even though stability is a well-defined contégr various types of trajectories, the
stability of stationary states is much easier to analyzergteally (analytically/numerically)
and experimentally, and it provides important insight itite dynamics of the system.

The concept of Ml in nonlinear optical systems usually refera stability analysis of cer-
tain steady states, which are in most cag@form-intensity waveg.g., plane waves are steady
states in homogeneous nonlinear media). The first studibH ofith coherent waves in non-
linear waveguide arrays were performed within "discret@del(s) [12], e.g., a discrete NLSE.
Within these models a "discrete” plane wave is a steady Et&8leand the linear stability anal-
ysis leads to a closed form expression for a gain curve [18vév¥er, here we investigate Ml
in a nonlinear photonic lattice by using a continuous modet] uniform intensity waves are
(in general)not steady states within this model (i.e., an initial conditisith uniform inten-
sity evolves in a nontrivial fashion). For this reason, wstfitescribe the extended, stationary,
incoherent states in our system.

Extended stationary states of the system self-consigtebdy the equations of motion, with
appropriate boundary conditions. We seek solutions wikmisity structure displaying the lat-
tice periodicitylo(x) = lo(x+ D). Such solutions can be constructed in the form

Bo(x1. %) = Y Ckk (xa) gk (%), (4)

where @)'(x) are the Floguet-Bloch (FB) waves of the periodic potenRék) = p(x) +
on[lo(x)], P(x P(x+ D); here,k denotes the Bloch-wave vector. The nonlinear FB waves
@ (x) = ul (x) exp(ikx) are eigenfunctions of the operatd(x),

N (x) = Beax' (5)
where
2
NX) = o5 2+ [P+ 3T gl (0P ©)

the boundary conditions ang\ (x) = ul(x+ D). For the sake of clarity, the FB modes and
eigenvalues corresponding to th'maear periodic potentialp(x) will be denoted byt (x) and

L respectively. For a given set of parameters, the soluBi@ifprovided it exists) may be
found numerically by iteratively solving a set of modal efijoias (5); incoherent solitons are
found in an identical fashion, with different boundary citimhs [22]. We should state that our
extended stationary states are, in fact, composite narlBiech waves [33], and in some cases
multi-band nonlinear Bloch waves.

It should be emphasized that by changing any parameter aytstem, e.g., the strength
of the nonlinearity, we change the stationary state solBig{x1,x2), and effectively, for each
value of the parameter(s), we analyze the stability of adbffit solutiorBy(xy, x2). Neverthe-
less, in order to characterize lattice M, it is instructieestudy the stability in dependence of
certain parameters, e.g., the depth of the lattice or neatity, as we discuss below.

4. Linear stability analysis

In order to analyze the stability @y, we slightly perturb it az = 0, and observe the evolu-
tion of the mutual coherenc®(x1,X2,2) = Bo(x1,X%2) 4+ B1(X1,X2,2), whereB; denotes a small
perturbationB;| << |Bp|. The linearized evolution equation fBf reads [2]

iﬁBl(Xl,Xz,Z)

~ N k
FE + [N(x1) — N(x2)]B1(X1,%2,2) + %[Bl(X17X17Z) — B1(X2,%2,2)|Bo(X1,%2) = 0;

)
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we have assumed the nonlinearity is of the Kerr-typé ) = y1, thus,N(x;) = 1/(2k)9? /32 +
k/no[p(xj) + yBo(Xj,Xj)], ] = 1,2. The perturbationB; can be generally expanded in a set of
eigenmodesBy (X1, %2,2) = T fa[Ba (X1,%2)e9 @)% 4 B (x2,x1)€9(%) 7], whereBg (x1,%2) de-
notes the structure of the eigenmode, whyle) is the corresponding eigenvalue. Clearly, if
O{g(a)} > 0 the mode (and therefore the whole beam) is unstable. TeamigdeB, (x1,%2)
and their eigenvalugg a) can be found from the equation

[N(Xl) — N(Xz)]Ba + %[Ba (Xl,Xl) — Ba (Xz,Xz)]Bo(Xl,Xz) = —igBa (X1,X2). (8)

In order to proceed with the stability analysis in the fashad Refs. [2, 6], which consider
incoherent Ml in a homogeneous medium, we would have to gilresdiagonal structure of
the growing modes;, (X) = By (X, X). For the sake of clarity it should be noted that the diagonal
structure ofB, is notintensity (it can assume complex values); the intensityhefgierturba-
tion corresponding to the eigenmoBg is By (x,x)e9@)Z 4 c.c., which is a real quantity. In
a homogeneous medium, the diagonal structure of the grogiggnmodes are plane waves,
lo O expliax) [2, 6]. Intuition therefore suggests thit(x) should be related to FB waves,
which we corroborate in the next section.

Here we obtain an integral equation for the gain from Eq. (8ubing the fact that every
modeB, can be represented in the FB ba@s(x): By (X1, X2) = ¥ gy, He, , @y (X2) O (1)
(the summation goes over FB modes in the extended Brillooie zcheme). After a straight-
forward calculation equivalent to the one presented in R2f$6], Eq. (8) may be cast into an
integral form:

N

P\ v 4
< ky —ol (X)%E((Xa)z) /Ia ()@, () (X)dXCa, — Cay - 9)

|a(X/) = alaznioig—’—ﬁ(al) _

Equation (9) can be solved (numerically) in an iterativénfas. First, we assumk (x) = ¢k,
and findg(a) by usingx’ = 0. From this value ofj(a), and the r.h.s. of Eg. (9), we obtain the
next iterate fol 4 (x), and repeat this procedure until convergence, which yislegain curve
g(a).

We conclude this section by emphasizing that we can usegbtfarward numerical evolu-
tion with initial conditionsBg + B1, whereB,; denotes small initial noise, and characterize the
instability. The evolution is performed with a standarditsgiep Fourier method applied on
evolution Eq. (3). Alternatively, we can obtain the gainvaufrom Eq. (9). In the following
sections we utilize both procedures to study incoherentrMlits features in photonic lattices.

5. Inducing MI by flattening the diffraction curve

In this section we demonstrate how a change in the latticenpetiers (the lattice depth) can af-
fect MI through the change of the diffraction curves. Altgbuve consider incoherent beams,
the results of this section can be applied also to the casetarent MI. Let us consider ex-
tended steady stat&g with a broad and symmetrik-spectrum €, = c_,) shown in Fig. 1(a).
The ck-spectrum is the FB power spectrum [22] expressed in ternitseof B eigenmodeg)
(for p(x) =0, itis in fact a Fourier power spectrum). We investigatedtadility of the solution
Bo in dependence of the lattice depify p(x) = pocog 7x/D)?, while keeping the,-spectrum
and all other parameters fixea = 2.3, A = 488nm,D = 10 um, ylg = 1.97 x 10°°.

First we analyze the stability @&y by direct numerical evolution with initial conditioBg +
B1, |B1| << |Bo|. When the lattice depth is zero, the stationary sBates stable. However, by
increasing the lattice depth, above a certain thresholteyB becomes unstable. The intensity
structure ofBg for pp = 3.4 x 104 is shown in Fig. 1(b) (red dashed line); black solid line
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Fig. 1. Features of incoherent lattice MI. (a) Thespectrum of a stationary beam. (b)
The intensity of the beam at= 0 (red dashed line) anzl= 283 mm (black solid line).
(c) The linear diffraction curvegt vs. k for pg = 0 (no lattice, dashed line) angh =
3.4x 104 (solid line). (d) Thedk-spectrum of the noise intensity at= 0 (red dotted
line) andz = 236 mm (black solid line). (e) The exponential growth of the maximally
destabilizing perturbatiord ; kK +2rm/D, n= —1,0, 1. (f) The growth rateg(a) reduced

to the 1st BZ, as calculated from the numerical evolution (red dasheddm)Eq. (9)
(black solid line).

shows the intensity 0By + Bz after propagation for = 283 mm. This apparent instability,
which occurs when the lattice is sufficiently deep, can bdagxed by observing the diffraction
curves [see Fig. 1(c)] of the linear system fay= 0 (dashed line) angy = 3.4 x 10~* (solid
line). The curvature close ® = 0, where most of the,-spectrum is located, is smaller for a
deeper lattice. Hence, diffraction is smaller. Because &tuos when nonlinear self-focusing
overcomes incoherent diffraction [2, 3], it follows thaetstationary state’y, with a spectrum
similar to that of Fig. 1(a), and corresponding to deepeickd, will be more unstable.

In order to characterize the growing eigenmo@gs we project the perturbation intensity
11(x,2) = B1(X,x,2) onto the FB waves of the linear lattide(x,2) = ¥ d« (2) g (X) +c.C.; the
dk-spectrum of the perturbation at= 0 andz= 236 mm is shown in Fig. 1(d). Clearly, the
power within certain linear FB modes grows, indicating thstability. This is underpinned in
Fig. 1(e) which shows the exponential growth of thespectrum witte. We find that the growth
rates corresponding to modcp,bﬂm/D, n=0,1,..., are identical. For this reason, we plot the
growth ratesg(a) [red dashed line in Fig. 1(f)] in the reduced BZ scheme. Thimerical
observation suggests that the diagonal structure of trengigdeBy is 14 (X) = By (X, X) =
ana+2nn/D(Po'7+2m/D (n integer). The accuracy of our calculations is checked bypaoing
the gain curves obtained from straightforward numerical@ion and from Eq. (9); the gain
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Fig. 2. () Gain curve for various values of the nonlineayity. 3.48 x 10~ (black solid
line), 374x 10> (red dashed line),.87 x 10~° (blue dotted line), and.2 x 10> (green
dashed line). The most unstable mode locks at the edge of the firsbBafficiently high
values of the nonlinearity. (b) The power spectrum of the extended siayistate (see text
for details).

curve obtained from Eq. (9) is shown with black solid line ig.FL(f). The two gain curves in
Fig. 1(f) obtained with two different methods coincide.

6. Locking of the most unstable mode

The process of Ml is enhanced by increasing the strengtheohtimlinearity. In the case of
a homogeneous medium, an incoherent beam of uniform inyeissstable (unstable) below
(above) a nonlinearity threshold, whose value is deterchinyethe degree of incoherence [2, 3].
In a similar fashion, we find such a threshold to exist in theecaf incoherent lattice MlI;
however, the behavior of the instability for high values loé thonlinearity is fundamentally
changed by the presence of the lattice.

Figure 2(a) shows the gain curves for various values of tidimearity. The parameters are
identical to those of Fig. 1pp = 3.4 x 10~%) except that the,-spectrum is somewhat broader
[shown in Fig. 2(b)]. We clearly see that the gain of the maallyaunstable perturbation de-
creases for smaller values of the nonlinearity, and thaetlsea threshold value, below which
the stationary stat8 is stable. Just above this threshold, the gain curve (blati#l §ne)
looks similar to that of incoherent Ml in homogeneous medialjecause the largest unstable
(cut-off) a value is smaller tham/D. That is, the interval of unstable mode values is smaller
than the extent of the 1st BZ. However, by increasing theineatity further, the cut-off value
reaches the edge of the BZ, and it stéyckedat the edge for larger values of the nonlinear-
ity. This result is a consequence of the periodic potensial does not have its counterpart
in homogeneous media. By increasing the nonlinearity &irtthe most unstable mode is that
for a = /D, and it staydockedthere for any higher value of the nonlinearity. It should be
noted that the same locking of the most unstable mode wasvabwithin a discrete nonlin-
ear Schadinger model [18]. We have obtained the same result by wsiogntinuous model.
Here we show this effect for an incoherent beam, but the samdtolds in the coherent limit
as well.

7. Influence of the spatial coherence; Ml of a multi-band incolerent beam

The degree of spatial coherence of a beam has profound in#ueEnits stability [2, 3], which
is manifested in the existence of a threshold for incohekdin{see Sec. 6). The degree of
incoherence is associatedbe width of the spatial power spectruthe wider thec,-spectrum,
the larger is the degree of incoherence. It should be nottdbsside the width, the shape of
the power spectrum can also affect the Ml process [8]. In #se ©f incoherent lattice MI, the
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Fig. 3. Gain curves for two types @f-spectrum and various degrees of the coherence;
a more incoherent beam has a broadeispectrum. (a) The gain curves correspond to
different widths of the bell-shaped and symmetriespectra in (b). (c) The gain curves
correspond to multi-band beams with different widths of the two-hunepespectra shown

in (d).

position of theck-spectrum ink-space is important as well, because by shifting the spectru
from k = 0, the excitation corresponds to higher bands, and in facart be a multi-band
excitation [34, 35].

Figure 3(a) shows the gain curves for extended stationatgsstvithc,-spectra shown in Fig.
3(b). Other parameters are identical to those of Figogl= 3.4 x 10~4). The maximal value
of the gain curve [Fig. 3(a)] decreases with the decreaseltfrence [broadey -spectra, Fig.
3(b)], as expected from the homogeneous studies of the @menoh M| process [2, 3]. It is
interesting to note that the interval of the unstadtenodes is approximately the same for all
of the graphs in Fig. 3(a), while the Bloch wave of the mosttainie perturbation is roughly
unchanged.

A different behavior of the gain curves occurs for the mblind excitations depicted in Figs.
3(c) and (d). The parameters gig= 2.9 x 10~% andylg = —7.9 x 10~°; note that in this case
the nonlinearity is of the self-defocusing type. Fig. 3(ddws thec,-spectra of a few extended
stationary states; the spectra have two side-bands. Tteiss sxcite Bloch waves from both
the first and the second band, i.e., they are multi-band atianits. In addition, about half of
the power excites Bloch waves from the normal, and the othkiflom anomalous diffraction
regions. When each side-band of the spectrum is narrowertfieebeam is more coherent),
the maximal gain value is higher, that is, the instabilitgtionger. However, by increasing the
width of each side-lobe of thg-spectrum, the most unstable mode shifts towards the edge of
the Brillouin zone and gets locked there. This behavior &itatively different from that shown
in Figs. 3(a) and (b), which points at the complexity of theaherent lattice Ml phenomena.
The complexity is enhanced by the fact that specific propedf the excitation (such as the FB
power spectra) can have significant influence on the prodessaherent lattice MI.

8. Incoherent lattice Ml in self-defocusing nonlinear potettial

It has been experimentally demonstrated that cohereitdadl is possible in a self-defocusing
medium, when a nonlinear Bloch mode is excited in the anounsatiffraction region [20]. In a
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Fig. 4. Incoherent Ml in self-defocusing nonlinear medium. (a) Thespectrum, and (b)
the intensity structure of an unstable bearn-atO (red dashed line) arm= 263 mm (black
solid line).

similar fashion, we demonstrate the existence of incotlidagtice MI within a self-defocusing
nonlinearity, with thec,-spectrum exciting Bloch waves mostly from the anomalogsores.
Let us consider an extended incoherent beam with Gausgi@pectrum displayed in Fig.
4(a). A beam with such a spectrum in a nonlinear homogeneeasum [Py = 0) with a self-
defocusing nonlinearity of the strengttly = —5.25x 10°° is stable (other parameters are
identical to those of Fig. 1). However, within a nonlineaofunic lattice, a solution with such
acg-spectrum can become unstable. Figure 4(b) displays sesulhe numerical evolution of
such extended steady state with small initial noise plaped the beam; the depth of the lattice
is po = 1.05x 10~°. Figure 4(b) shows the intensity structure of the beam-a0 (red dashed
line), and atz =263 mm (black solid line), when the instability has alreadyaloped.

9. Discussion, Conclusion, and Outlook

In this paper we have studied the stability of extendedataty incoherent beams in nonlinear
photonic lattices. The intensity and coherence structfithese stationary states posses the
periodicity of the lattice, and they self-consistently plibe equations of motion (see Sec.
3). The incoherent lattice MI phenomenon studied here fonegaally differs in many aspects
from coherent lattice MlI, as well as from incoherent Ml in tioear homogeneous media.
Quite generally, we have found that the structure of thealmlstmodes and their growth rates
are governed by the structure of the periodic potential.rAightforward consequence of this
effect is that the most unstable mode is locked at the eddeedBtillouin zone for sufficiently
high value of the nonlinearity (see Sec. 6)

The extended incoherent beam is comprised of an ensembledésnand it can excite
modes from different bands, and from regions of both normelanomalous diffraction. This
feature does not have a counterpart in the coherent lattlaeab® where a single mode is ex-
cited. This fact makes the phenomena of incoherent latticgdkler, but at the same time harder
to explore (see Sec. 7). The complexity of the incoheretitéaMI phenomena is enhanced by
the fact that diffraction curves change considerably bydhange of the lattice parameters,
which can profoundly affect MI. This is demonstrated by ewdiag the lattice Ml by flattening
the diffraction in Sec. 5. This opens the possibility todathe diffraction curves to stimulate or
inhibit MI. It is important to emphasize that these conabnsi hold generally for both coherent
and incoherent Ml in continuous periodic photonic lattices

We envision several further research themes following ourent study. Recent studies of
incoherent white-light solitons in nonlinear photoniditzgs [29] suggest that Ml in photonic
lattices is possible with incoherent white light [6, 7] asliwé would be interesting to see
whether all frequencies would behave collectively, as tiheyn a homogeneous medium [6,
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7], or certain departures from this behavior would occuraoee diffraction curves differ for

different temporal frequencies [29]. Finally, the simitarbetween the dynamics of partially
coherent optical- and matter-waves [36] suggests thateadfmstability similar to incoherent

MI should occur for partially condensed interacting bosgither in a cigar-shaped harmonic
trap [37] or in an optical lattice [38]).
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