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Random-phase surface-wave solitons in nonlocal
nonlinear media
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We demonstrate, theoretically and experimentally, incoherent surface solitons in a noninstantaneous non-
local nonlinear media. These incoherent surface waves are located at the interface between a nonlinear me-
dium with long-range nonlocality and a linear dielectric medium (air). © 2007 Optical Society of America
OCIS codes: 190.0190, 190.4350, 190.6135, 240.6690.
Optical surface waves are waves localized at the
boundary between two media with different proper-
ties. The unique properties of surface waves made
them a topic of multidisciplinary research, from
physics and material science to biology and engineer-
ing, promising applications for sensing, trapping, and
imaging, with surface waves serving as tools for ex-
ploring the properties of material interfaces [1]. In
linear optics, surface waves were identified on the in-
terface between metals and dielectrics [2], at the
boundary between a periodic (layered) structure and
a homogeneous medium [3], or along the boundary
between isotropic and anisotropic materials [4]. In
the nonlinear domain, optical surface waves can exist
at the interface between two media if at least one of
them has nonlinear properties, whether the media
are homogeneous [5–7] or periodic [8,9]. Surface
waves were also observed in materials with nonlocal
nonlinearities [10]. Here, we show that random-
phase (spatially incoherent) surface-wave solitons
can exist in noninstantaneous nonlocal nonlinear me-
dia.

Before proceeding, we revisit some aspects of inco-
herent solitons [11–14]. Since their discovery [11], in-
coherent solitons have been observed in various opti-
cal nonlinear media [13,15,16]. They were also
studied in systems beyond optics, such as with mat-
ter waves [17], and spin waves [18]. Incoherent soli-
tons were also found in nonlocal nonlinear media
[19]. Combining the phenomena of surface waves and
incoherent solitons raises the possibility of incoher-
ent surface solitons. To explore this idea, we begin
with the Helmholtz equation describing the propaga-
tion of monochromatic waves of frequency �, in both
media, nonlinear (medium 1) and linear (medium 2),

�2E + k0
2n2E = 0. �1�

An incoherent spatial soliton forms when a multi-
mode beam, whose modal amplitudes vary randomly
in time, induces (via a noninstantaneous nonlinear-
ity) a multimode waveguide that traps the modes
self-consistently [14]. In �1+1� dimensions, the field
of an incoherent soliton is E�x ,z , t�
=�ncn�t�un�x�exp�i�nz�, where cn is the modal ampli-
tude that varies randomly with time, un�x� is the nor-
malized wave function of the nth mode, with �n as its

propagation constant. Substituting E into Eq. (1),
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and separating into (mutually uncorrelated) modes,
each mode obeys a Helmholtz equation in each me-
dium separately, with the two equations connected
through the boundary conditions at the interface.
That is,

d2un�x�

dx2 + �k0
2�n1

2 + 2n1�n� − �n
2�un�x� = 0, �2a�

in the nonlinear medium, and

d2un�x�

dx2 + �k0
2n2

2 − �n
2�un�x� = 0, �2b�

in the linear medium. n1 and n2 are the linear refrac-
tive indices in media 1,2, �n is the nonlinear index
change, and k0 is the vacuum wavenumber. We are
interested here in TE-polarized waves, for which the
boundary conditions are continuities of un�x� and
dun�x� /dx at the interface. Each mode must fulfill the
same boundary conditions. We seek solutions with
spatial widths much smaller than the dimensions of
the nonlinear medium, such that un�x� and all its de-
rivatives vanish at the other (far-away) interface. For
a long-range nonlocal nonlinearity, this condition is
important because boundaries exert forces even from
afar [20]. Since the nonlinearity responds much
slower than the typical fluctuation of cn�t�, �n de-
pends only on the time-averaged intensity of the
beam, I= ��E�2�=�ndn �un�x��2, where dn= ��cn�2� are the
modal weights (time-averaged populations) [14].

In nonlocal nonlinear media, the response at any
point depends not only on the intensity at that point
but also on the intensity within some nonlocality-
range surrounding that point. Nonlocal optical non-
linearities have been found in various media, e.g., liq-
uid crystals [15], semiconductor amplifiers [21], and
thermal nonlinearities [22–24]. Nonlocal media tend
to “average” effects of localized excitations. In spite of
that, even long-range nonlocal nonlinear media can
support solitons [24–27], which actually exhibit in-
teraction properties [28,29] that are profoundly dif-
ferent than in local nonlinear media. In nonlinear
media with a large nonlocality range, boundaries
play a major role [10,20,24,29]: determining the
shape of solitons (e.g., allowing the formation of ellip-
tic solitons) [24], affecting the trajectories of solitons

[20], and mediating interactions between solitons
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propagating in different samples [29]. Finally, nonlo-
cal nonlinearities support surface-wave solitons,
which are self-trapped in the medium of a higher re-
fractive index, and are attracted to the interface even
when launched far away from it [10].

We proceed with the theory of incoherent surface
waves in nonlocal nonlinear media. For concreteness,
we analyze the case of the thermal nonlinearity of
lead-glass [24], which is of the self-focusing type. The
refractive index change, �n=��T, is proportional to
the temperature change, �T=T−T0, (T0 being the
temperature without light) induced by the optical in-
tensity, where �=dn /dT is the thermal coefficient of
the refractive index. The propagating beam is
slightly absorbed, which heats the glass. Under tem-
poral steady-state conditions, the temperature
change, �T, satisfies the heat equation, which is
translated into a Poisson-type equation for �n:

d2�n�x�/dx2 = − �I�x�, �3�

where �= ���� /�, � is the thermal conductivity and �
is the absorption coefficient. In this medium, surface
solitons occur at the proximity of thermally insulat-
ing boundaries [10]. Hence, we set �T /�x=0 at the
right (insulating) boundary, and T=T0 at the left
boundary, setting a fixed temperature there. These
serve as boundary conditions for Eq. (3). We find in-
coherent surface solitons by solving Eqs. (2) together
with Eq. (3) self-consistently (the numerical scheme
is a combination of the methods of [14,24]). We use
n1=1.8, �=14�10−6 K−1, �=0.01 cm−1, 	0=488 nm,
and �=0.00637 �W K−1 cm−1�, with a sample of width
0.2 cm. The example shown in Fig. 1 depicts an inco-
herent surface soliton comprised of three modes of
weights d1=0.8, d2=0.15, and d3=0.05. Figures 1(a)
and 1(c) show the normalized intensity distribution
of the surface wave, I�x�, with 2.5�105 �W/cm2� and
2.5�107 �W/cm2� maximal intensity, respectively, to-
gether with the normalized �n�x�. For a higher maxi-
mal intensity, the peak of the soliton is closer to the
interface, and its width is smaller. Figure 1(b) shows

Fig. 1. Normalized intensity distribution, I�x�, of an inco-
herent surface soliton comprised of three modes of weights
d1=0.8, d2=0.15, and d3=0.05, and the induced index
change, �n, for n1=1.8, n2=1, at maximal intensity of (a)
2.5�105 and (c) 2.5�107 �W/cm2�. (b) Structures of the
modes of the incoherent soliton shown in (a). (d) Incoherent
surface soliton for n1=1.8, n2=1.79998, at maximal inten-

5 2
sity of 2.5�10 �W/cm �.
the structures of the three modal constituents of the
incoherent soliton shown in Fig. 1(a). Figure 1(d)
shows a surface soliton with 2.5�105 �W/cm2� maxi-
mal intensity, when n1−n2 is comparable to �n.
When the difference between the linear refractive in-
dices, n1−n2, is very large compared to �n, most of
the power of the surface soliton resides inside the
nonlinear medium [Fig. 1(a)]. In contrast, when n1
−n2 is comparable to �n, a sizable part of the soliton
power is located in the linear medium [Fig. 1(d)]. We
simulate the propagation of this surface soliton in the
presence of initial random noise (amplitude and
phase) up to 5% of the soliton intensity and find it
stable over many diffraction lengths. We note that an
incoherent surface soliton solution is uniquely de-
fined by its total power and the power distribution
among its modes. That is, given the material param-
eters, a soliton of a given power, distributed in some
way among its modes, has only one solution, deter-
mining its shape, width, and the distance of its inten-
sity peak from the interface.

Next, we study the propagation of high power
beams when launched away from the surface. When
one launches a coherent beam with the width and in-
tensity needed for a surface soliton, off the soliton
stable point, the beam oscillates instead of propagat-
ing on-axis [10]. Our simulations with incoherent
beams show similar trends. Figure 2 shows an ex-
ample for the soliton of Fig. 1(a). When the surface
soliton is launched at its stable point, it propagates
on-axis, maintaining its near interface trajectory
[Fig. 2(a)]. Figure 2(b) depicts the same incoherent
beam, launched 70 
m away from the stable point.
The beam is initially pushed toward the interface by
the optical force originating from the gradient in
�n�x�. Then the beam undergoes total internal reflec-
tion from the interface and moves back crossing the
surface soliton stable point, after which it is pushed
again toward the interface, bouncing from it again,
etc.

Next, we describe the experiments, which are all
carried in �2+1�D media. We use a quasi-
monochromatic 488 nm laser beam and make it spa-
tially incoherent by passing it through a rotating dif-
fuser. We launch the beam into a lead-glass sample of
dimensions 2 mm�2 mm�83 mm (the latter being
the propagation distance) with temperature bound-
ary conditions T�x ,y= ±d ,z�=T�x=−d ,y ,z�=T0, and
�T�x=d ,y ,z� /�x=0 [Fig. 3(i)]. The time-averaged in-
tensity FWHM of the input beam is 90 
m, and its

Fig. 2. Incoherent soliton of Fig. 1(a) (a) launched on its
stable point and propagating on-axis, and (b) launched
70 
m away from the interface, exhibiting self-bouncing.
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transverse correlation distance is 	30 
m. First, we
launch the incoherent beam close to the interface
[Fig. 3(a)], with its center 40 
m away from the in-
terface. At low power �	100 mW�, the beam broad-
ens, exiting the sample with a 230 
m FWHM [Fig.
3(b)], whereas at 	2.5 W the beam forms an incoher-
ent surface soliton, exiting the sample with the same
width and location as it enters [Fig. 3(c)]. We then
launch the beam with its center 100 
m away from
the interface [Fig. 3(d)]. At low power the beam
broadens as in Fig. 3(b), exiting the sample with its
center shifted by 100 
m from the interface [Fig.
3(e)]. However, at high power �2.5 W�, the beam
forms an incoherent surface soliton and is attracted
to the interface, exiting with the same width as the
input beam, but much closer to the interface [Fig.
3(f)]. The beam of Fig. 3(f) emerges at practically the
same distance from the interface as the surface soli-
ton shown in Fig. 3(c), which means the beam was
displaced by 60 
m from its launch point. The far-
away boundary is pushing the incoherent beam to-
ward the interface. Comparing the low-power behav-
ior of the incoherent beam to that of a fully coherent
beam of the same input width reveals a substantial
difference. A low-power �100 mW� 90 
m FWHM
spatially-coherent beam launched at the proximity of
the interface [Fig. 3(g)] barely broadens within
8.3 cm propagation [Fig. 3(h)], whereas an incoherent
beam of the same width, having a correlation dis-
tance of 30 
m broadens to 230 
m [Figs. 3(b) and
3(e)].

In conclusion, we have demonstrated incoherent

Fig. 3. Experimental photographs. (a) Incoherent input
beam of 90 
m FWHM and 30 
m correlation distance
launched near the interface. (b) At low power
�100 mW� the beam broadens to 230 
m FWHM output. (c)
At 2.5 W the beam forms an incoherent surface soliton, ex-
iting the sample with the same width and location as the
input. (d) 90 
m FWHM incoherent beam launched with its
center 100 
m away from the interface. (e) At low power
�100 mW� the beam broadens to 230 
m FWHM output,
with its center 100 
m away from the interface. (f) At 2.5 W
the beam forms an incoherent surface soliton and is at-
tracted to the interface, exiting the sample with a 90 
m
FWHM, and with its center 40 
m away from the interface.
(g) 90 
m FWHM low power �	100 mW� spatially coherent
beam launched near the interface, which (h) barely broad-
ens within 8.3 cm propagation. (i) Cross section of the
sample and temperature boundary conditions.
surface solitons in nonlocal nonlinear media. The
ideas developed here can be used to find TM-
polarized incoherent surface solitons, �2+1�D inco-
herent surface solitons, and surface solitons residing
primarily in the lower-index medium.
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