Localisation of light in disordered lattices
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A short review of the basic concepts underlying localisation of light
through multiple scattering in disordered media is provided, in conjunc-
tion with the ideas related to the universal features occurring during
transport of waves and Anderson localisation. Progress in the area is
described, including the recent experimental observation of localisation
in photonic lattices upon which random perturbations are superimposed,
which has constituted the first observation of Anderson localisation in
any perturbed periodic system. Subsequently, some of the new intri-
guing concepts in the field of localisation of light are discussed,
among them the combination of nonlinearity and disorder, and their
effects on waves transport. Finally, being somewhat speculative,
future directions in the area and their potential impact on the basic
understanding of the universal phenomena associated with transport
of waves are suggested.

In our first steps of learning solid-state physics, we are being taught
that many solid materials, such as metals or semiconductors, are peri-
odic arrays of atoms, with a crystalline structure repeating itself
periodically [1]. The wave-functions of the electrons in these struc-
tures are the well-known Bloch functions, which are extended all
over the lattice. The energies the electrons can possess are divided
into ‘allowed’ bands separated by ‘forbidden’ gaps. The relation
between the energy band-structure and the momentum (so-called dis-
persion curve) of the electron in the crystal determines its transport
properties. In reality, however, the picture is more complex — disorder
always exists, and no real material is perfectly periodic. Classically,
random impurities in the crystalline structure scatter the electron and
give rise to a ‘random walk’ motion of the electron, as if they were
classical billiard balls. This is the mechanism behind diffusion and
Ohm’s law, where the drift velocity of the electron is proportional
to the field applied to the crystal.

In 1958, Philip Anderson revolutionised the whole understanding in
the field, predicting that interference effects among multiple scattering
events may alter the eigenmodes of a disordered lattice, from extended
states into exponentially-localised states [2]. Consequently, when an
electron is initially placed on one atom, its wave-function will no
longer diffuse to cover the whole crystal, but will rather remain localised
around its initial position. In other words, the material will cease to
conduct charge and will become an insulator. Anderson’s prediction
was been awarded with the Nobel prize in 1977, and today the phenom-
enon of Anderson localisation is a basic concept in solid-state physics.
However, in spite of that, Anderson localisation has never been unequi-
vocally observed in atomic lattices. This is because Anderson localis-
ation occurs only if the potential (periodicity 4 fluctuations) is
stationary in time. In atomic crystals, there are important deviations
from the Anderson model owing to electron—electron interactions and
due to phonons — vibrations of the crystalline structure — that are
excited at finite temperatures. These interactions modify the behaviour
of the electrons, causing the potential experienced by the electrons to
vary in time, to the extent that Anderson localisation probably cannot
be isolated in atomic lattices. In fact, the closest any experiment was
getting to this ‘holy grail’ was to demonstrate the arrest, caused by dis-
order, of transport via hopping of charges between randomly-distributed
impurities in a crystal [3].

In 1984, Sajeev John recognised that the idea of localisation goes
far beyond solid-state physics. It is actually general to any wave
system with disorder, and applies specifically also to electromagnetic
waves [4]. One year later, Phillip Anderson himself continued this line
of thought and published another seminal paper, attempting to write
down the theory of white paint [5]. Realising there is a relation
between transport of charges in crystals containing disorder and the
scattering of light in random media is actually far from being straight-
forward, because charge-carriers are necessarily fermions whereas
photons are bosons. Nonetheless, linking the two concepts has
raised some basic questions about phenomena ubiquitous in everyday
life, such as scattering of light from clouds, milk or grains of sugar.
These media do not absorb visible light, yet clouds, milk and sugar
are all opaque: light does not penetrate very far through them,
because of multiple scattering.

Using electromagnetic waves to study the generic question of waves
scattering in disordered potentials contributed a great deal to isolate

the universal phenomenon of localisation from the other effects. More
specifically, coherent light propagating in a medium with static scatterers
remains coherent throughout propagation, not suffering from ‘dephas-
ing’ (unlike electrons, which can lose phase coherence due to inelastic
scattering). Moreover, light is comprised of photons, which are neutral
bosons, and therefore do not interact with each other in a linear
medium. As such, the issue of wave localisation by random disorder
can be fully isolated and understood with EM waves. Indeed, shortly
after Anderson related white paint to localisation, several papers
appeared proposing and demonstrating coherent backscattering
(enhanced reflection due to interference effects), the so-called ‘weak
localisation” [6—9], which is largely considered a precursor to
Anderson localisation (‘strong localisation’).

Roughly a decade later, several experiments observed and studied
strong localisation effects in random optical media — powders or suspen-
sions of dielectric material [10—12]. These experiments studied the
transmission properties of the highly scattering media, where localis-
ation is manifested as an exponential decay of the transmitted intensity
with the thickness of the sample. The challenge in such experiments is to
obtain a sample with high enough scattering, but with extremely low
absorption, since absorption will also lead to exponential decrease of
transmission. It is therefore difficult to discriminate between the two
effects, and special means were necessary [12]. The structure of the
media in all of these experiments was completely random, lacking the
underlying periodic potential of the Anderson model. The observation
of localisation in disordered crystals, that is, periodic structures with dis-
order superimposed upon them, as Anderson originally predicted, was
still a goal to accomplish [13]. Localisation in periodic structures funda-
mentally differs from localisation in completely random media, because
transport phenomena in crystals display a variety of effects with no
counterpart in homogeneous media. Examples include negative effec-
tive mass (anomalous dispersion), tunnelling between bands (Zener tun-
nelling), and the formation of gap solitons, to name a few. Moreover,
photonic crystals, which are now designed for various optical devices
[14, 15], would inevitably possess some degree of disorder, and there-
fore the influence of randomness on the transport of light is relevant
also from the point of view of applications.

As described above, the traditional view on localisation of light was to
observe the reduction in the intensity of the light transmitted through the
disordered media. However, an alternative approach was suggested in
1989 [16]. Under the paraxial approximation, the propagation of a
monochromatic light beam can be modelled by the archetypical
Schrodinger equation:
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Here z is the propagation direction, x and y the transverse dimensions,
k= wng/c is the carrier wave-number, w the frequency of the EM
wave and ¢ the vacuum speed of light. The index of refraction is
described by the bulk (linear) refractive index no with a weak modulation
An around it. A(x, y, z) is the evolving envelope of the wave, such that
the electric field component of the optical wave is just E = A(x, y, z)
expli(kz — wt)]. The similarity to the Schrodinger equation of
quantum mechanics means that the propagation of light can be viewed
as a propagation-dependent evolution of a two-dimensional wave-
packet, in the transverse plane x—y, as the beam is propagating primarily
in the z direction. Hence, the evolution of the beam behaves just like the
wave-packet of a quantum particle (i.e. a single electron) in a two-
dimensional potential, but with the propagation direction z replacing
time, as illustrated in Fig. 1a. The most simple and intuitive example
is that of a diffracting beam. At a particular plane, say, at the plane
z =10, the beam is focused and narrow, but after that plane (z > 0),
the beam expands and its width increases linearly with the propagation
distance (Fig. la, top). The idea suggested originally in [16] relies on
this analogy: if we somehow construct a medium with an index of refrac-
tion that varies randomly in x and y, but uniform along the propagation
direction z, the diffraction of the beam will be eliminated, and it will no
longer be able to expand, just like an electron in a disordered potential,
which remains pinned around its original location. In this situation the
light will be localised, but rather than being localised in the propagation
direction z (as in the transmission experiments [10—12]), it will be loca-
lised in the transverse plane, as shown at the bottom of Fig. 1a. Hence
the name ‘transverse localisation’.
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Fig. 1 Transverse localisation of light, and experimental results

a Transverse localisation of light: a probe beam is propagating in photonic lattice
of hexagonal symmetry and a controlled level of disorder, where the index of
refraction is invariant along propagation direction. Without disorder, the beam
exhibits ballistic transport: its width is increasing linearly with propagation dis-
tance (top). Under influence of disorder the beam is localised in transverse plane,
and maintains its width throughout propagation (bottom)

b—d Experimental results, showing (ensemble-averaged) intensity distribution at
the output face of lattice. Results show gradual transition from ballistic transport
(b), where the diffraction pattern acquires the hexagonal symmetry of the lattice, to
diffusion (c) in presence of disorder (designated by a Gaussian shape of the
intensity profile, plotted in logarithmic scale) and, at stronger disorder, to trans-
verse localisation with exponentially-decaying intensity profile (d) (in a logar-
ithmic scale as well)

Our recent paper [17] has utilised the transverse localisation scheme
in order to construct an experimental realisation of Anderson’s original
model, and demonstrate, for the first time, Anderson localisation in dis-
ordered lattices [17]. We use the optical induction technique to induce a
two-dimensional optical lattice [18—20]. Then, relying on this method,
we induced propagation-invariant disorder superimposed upon the
lattice. That is, we introduced random fluctuations in the refractive
index in the x—y plane, which were invariant in the propagation direc-
tion z, superimposed upon an otherwise-periodic photonic lattice. The
propagation-invariance of the disorder plays the same role as the
‘frozen disorder’ in Anderson’s model. Otherwise, allowing the disorder
to vary noticeably during propagation prohibits the localisation phenom-
enon. The optical induction technique facilitates precise, real-time
control over the level of the disorder and its statistics. Using this
system to perform statistical (ensemble-average/expectation value)
measurements, we were able to demonstrate the crossover from diffusive
transport of light to Anderson localisation, as the disorder level is
increased.

Our experiments are shown schematically in Fig. la. We launched a
focused probe beam into the disordered lattice, and let it propagate and
evolve inside the structure. In our system, in contrast to solid-state
physics where only global quantities can be measured (e.g. conduc-
tance), here we have the advantage that the actual wavepacket can be
monitored directly, by imaging the intensity cross-section of the probe
beam exiting the lattice with a CCD camera. This provides a direct
means to study the transport properties of the disordered lattice. The
results are shown in Figs. 1b—d. In the absence of disorder (Fig. 10),
the beam diffracts in the periodic structure by ballistic transport, mani-
fested in the hexagonal symmetry of the intensity pattern. When disorder
is introduced, this symmetry is lost, and the intensity tunnels randomly
among the lattice sites. We repeat the measurement 100 times, inducing
a different realisation of the disordered lattice (with the same strength of
disorder), and recording the output intensity structure of the probe beam
in each iteration. Fig. 1¢ shows the ensemble-averaged intensity cross-
section with moderate disorder (15%). Here, the transport is diffusive,
as is evident by the Gaussian intensity profile of the intensity (whose
profile, in logarithmic scale, is given by the white curve). When we

increase the level of disorder, the output intensity profile narrows
down (Fig. 1d), as the beam acquires exponentially-decaying tails
(since its logarithm now decays linearly with the distance from the
beam’s centre). This exponential decay means that the (transverse) trans-
port of light stops: after a short propagation distance, along which the
beam expands diffusively, the (ensemble-averaged) beam diameter
reaches the localisation regime and its diffraction broadening is arrested.
The exponentially-decaying tails of the ensemble-averaged beam are a
direct indication of Anderson localisation (‘strong localisation”) [17].

A most significant question related to Anderson localisation, which is
intensively studied these days, is the influence of nonlinearities on the
localisation process. In essence, the nonlinearity can couple the localised
modes of the disordered potential in a nontrivial manner, resulting in
effects that are much more complex than the linear ones (of interference
between multiple reflections from scattering events). Such nonlinear
interactions may appear in various forms in different systems —
Coulomb or spin-exchange interactions among the electrons in solids,
dipole—dipole interaction between cold atoms in Bose-Einstein conden-
sates, to name a few. In optics, nonlinear response of the disordered
medium gives rise to indirect interaction between photons, by an inten-
sity-dependent contribution to index of refraction. One question that
immediately comes to mind is what happens to the localisation
process itself, under weak or strong nonlinear conditions. In our study
[17], we used our system as a well-controlled tool to study this funda-
mental issue. The simplest way to introduce nonlinearity into our
system is by increasing the intensity of the probe beam, such that it
creates a nonlinear index change on top of the disordered photonic
lattice. The experimental results are shown in Fig. 2. We measure the
ensemble-averaged width of the beam at the output of the lattice, as a
function of disorder level (Fig. 2a) with a nonlinearity of the self-focus-
ing type (marked by crosses), and compare with the results of linear
propagation (dots). Our experiments show that, under self-focusing
(positive, attractive) nonlinearity the localisation is enhanced. Not
only does the ensemble-averaged beam narrow down, but also the
characteristic exponential decay of localisation appears at a lower level
of disorder, for which the linear transport is still diffusive [17]. This is
revealed by examining the average intensity profile, shown in Fig. 2b
(on a logarithmic scale) for the linear case, and with various strengths
of nonlinearity. Thus, self-focusing nonlinearity promotes the localis-
ation process, at least at finite propagation distances and when the
strength of the nonlinearity is not too high (i.e. the nonlinear index
change is smaller than the linear index change defining the disordered
lattice). We note a more recent work [21] on a 1D disordered array of
coupled waveguides, which also has transverse localisation effects.
That work demonstrates the existence of several localised modes indivi-
dually, by scanning a probe beam across the array. In that work, non-
linear effects were also shown to promote localisation [21]. Similar
results were actually pioneered in [22] for some specific realisation of
disorder.
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Fig. 2 Experimental results for nonlinear propagation in disordered lattices

a Output width against disorder strength with self-focusing nonlinearity (crosses),
compared with results of linear propagation (dots)

b Ensemble-averaged intensity profiles (in logarithmic scale) at the output of
lattice, showing transition from diffusion in linear propagation (upper curve) to
localisation with exponential decay in nonlinear propagation (second curve from
the top curve), demonstrating that self-focusing nonlinearity promotes localisation
(a scales nonlinearity strength)

However, when we think of the transport in periodic structures and
their associated band-structure, recalling that dispersion can be either
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normal or anomalous (same concept as the positive or negative effective
mass of the electron in a crystal), one may expect that localisation effects
would behave differently in these two regimes, when nonlinearity com-
bines with disorder. In the anomalous dispersion regime, close to the
Bragg surface (the edge of the first Brillouin zone), a wavepacket
tends to narrow under a negative (self-defocusing, repulsive) nonlinear-
ity, whereas a positive nonlinearity causes broadening of the wave-
packet. For such a wavepacket in the negative effective mass regime,
one would expect that negative nonlinearity would enhance the localis-
ation process in the presence of weak disorder. This is indeed the case (at
least for finite propagation distances); however, as the disorder is made
stronger, the lattice potential becomes so deformed that the concept of
effective mass (anomalous dispersion) no longer holds. This raises intri-
guing questions on the interplay between the periodic structure, disorder
and nonlinearity. One such question is as follows. Launch a narrow
wavepacket from the anomalous dispersion into the lattice, set a positive
nonlinearity of some value smaller than the potential depth (say, by a
factor of ten), and increase the level of disorder gradually. At weak dis-
order, the combined action of positive nonlinearity and anomalous dis-
persion act to broaden the wavepacket. But how would a positive
nonlinearity act at high levels of disorder, when the disorder is strong
enough to make the potential completely random? Preliminary studies
[23] indicate that, at finite observation distances, sometimes the non-
linearity acts to broaden the wavepacket (when the nonlinear index
change is still much smaller than that of the disorder), while a high
enough positive nonlinearity would act in just the opposite way, narrow-
ing the wavepacket down. How sharp is the transition from the broaden-
ing tendency to a narrowing-down tendency of a wavepacket in the
presence of a positive nonlinearity and an increasing level of disorder?
Could it be abrupt? Could it be discontinuous, indicating a phase tran-
sition? Then, thinking further for very long propagation distances,
what would happen? Some papers claim that, after long enough dis-
tances (‘infinite times’ in the Schrodinger equation), the end result of
nonlinear transport combined with disorder is always the same — con-
verging to the outcome of linear Anderson localisation. Some other
papers claim exactly the opposite. What happens in the transverse local-
isation scheme? Would the linear and nonlinear behaviours converge, or
would this happen only under experimentally-unrealistic propagation
distances, implying that, in practice, nonlinearity does affect transport
in disordered lattices, even at large distances? These and related ques-
tions are now within experimental reach.

A different aspect of nonlinear disordered systems is the behaviour of
solitons in disordered potentials. Solitons are self-trapped entities, which
form in a nonlinear medium when a wavepacket induces a potential well
through the nonlinearity and then captures itself'in it, propagating without
changing its shape. Solitons are very robust against scattering, and behave
like classical particles, for instance, when interacting with each other
[24—26]. On the other hand, Anderson localisation in random media
relies on multiple scattering and the interference effects of waves.
When these solitons will propagate in a nonlinear medium with
random scatterers embedded within it, which one of the soliton aspects
will prevail, the particle-like nature or the wave nature? Can a soliton
form and survive in the presence of disorder at all? Several recent
papers study this issue theoretically, and show some of the rich variety
of phenomena which solitons in a random potential exhibit, such as diffu-
sion of solitons and soliton percolation [27], and the arrest of soliton
transport [28]. Our experimental techniques can provide an optimal plat-
form to observe and study these phenomena, among others.

Localisation of light waves has attracted considerable research efforts
in the past decade, but it is not the only direction pursued nowadays by
researchers studying localisation phenomena. Localisation of waves
owing to disorder can appear, in principle, in any wave systems in
nature. In recent years there has been considerable effort to observe local-
isation of matter waves — cold atoms sharing a macroscopic wavefunc-
tion, known as Bose-Einstein condensate (BEC) [29—33]. The methods
we have presented here are directly relevant to matter-waves systems,
since the disordered potential acting on the BEC can also be created opti-
cally, using speckled light beam [29, 30]. In this situation, the spatial
expansion of the atom cloud, as it evolves in time, will be arrested by dis-
order [32, 33]. In this case, the importance of doing localisation exper-
iments in BEC goes beyond merely repeating optics experiments with
matter-waves: the BEC system can be made three-dimensional, hence it
offers an experimentally-viable means to observe the phase-transition
associated with Anderson localisation in 3D.
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To summarise, our recent observation of Anderson localisation in dis-
ordered photonic lattices opens a whole variety of experimental possibi-
lities and provides a new path to study many questions related to
localisation and nonlinear effects in disordered media. The realisation
of transverse localisation using a real-time optical induction technique
provides a well-controlled tool to study localisation. In particular,
many new ideas have now become experimentally accessible, including
effects arising from the underlying periodicity with its band-structure,
the influence of nonlinearity, and more. Transverse localisation effects
may also show up in the traditional transmission configuration [34].
We have discussed some of these ideas here, in the context of optics
and matter-waves. However, as always happens in science when a
new experimental technique is invented, most probably, the best ideas
are yet to be suggested, and they will reveal new information on the uni-
versal phenomena associated with the transport of waves in random
media.
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