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Incoherent optical spatial solitons are self-trapped beams with a multimodal structure that varies randomly in time. They form when
their diffraction-broadening, which is governed by their spatial correlations, is balanced by nonlinear interaction between the waves
and the medium, resulting in the stationary propagation of the time-averaged intensity structure of the beam. The experimental
observation of incoherent solitons has opened up exciting new avenues in soliton science. However, all incoherent spatial solitons
observed to date have been supported by nonlinearities with a slow response time, t, that is much longer than the characteristic
fluctuation time of the beam, tc� t. Here, we demonstrate incoherent solitons in effectively instantaneous nonlocal nonlinear
media where t� tc. These solitons exhibit fundamentally new features (for example, propagation at random trajectories), and
can be created in various optically nonlinear media, as well as in other fields where the nonlinearity is nonlocal and very fast.

Incoherent beams are multimode entities whose structures vary
randomly in time. They are characterized by their correlation
function, which governs their diffraction properties. Such a beam
can self-trap, forming an incoherent spatial soliton, when its
fluctuating structure induces a non-fragmented waveguide that
guides the beam within it, robustly balancing its diffraction-
broadening1. Such a mechanism was demonstrated in 1996 with
solitons made of quasi-monochromatic partially spatially
incoherent light2. Shortly thereafter, self-trapping of a beam
emitted from an incandescent bulb was observed: a ‘white-light
soliton’3. These experiments opened new directions in soliton
science4–14. However, all incoherent optical spatial solitons
observed up to this work were supported by non-instantaneous
nonlinearities, whose response time t is much slower than the
fluctuation time of the light, tc� t. In this fashion, the slow
response of the medium averages over the rapidly fluctuating
fragmented structure of the beam, inducing a smooth non-
fragmented waveguide2–12,15–19. Here, we follow a recent
prediction20 and demonstrate experimentally incoherent solitons
in effectively instantaneous nonlocal nonlinear media where t� tc.
In such a self-trapping mechanism, the induced waveguide is
non-fragmented due to the spatial-averaging tendency of the
nonlocal nonlinearity (in contrast to ‘conventional’ incoherent
solitons where self-trapping involves time-averaging in spatially
local nonlinear media). These effectively instantaneous
incoherent solitons exhibit new features, and can be obtained in
various optically nonlinear media21, as well as in other fields
where the nonlinearity is nonlocal yet very fast.

An optically nonlinear medium is considered nonlocal when
the nonlinear effect at a given location is a function of the field
at some nonlocality range surrounding that location. Nonlocality
plays an important role in many areas of nonlinear physics.
Nonlocality typically arises from an underlying transport
mechanism (heat22–25, atoms in a gas26, charge carriers 19,21, for

example), or from long-range forces (for example, electrostatic
interactions in liquid crystals28,29) and many-body interactions as
with matter waves in Bose–Einstein condensates (BECs)30,31 and
plasma waves14,32,33. In nonlinear optics, nonlocality has been
found in photorefractives27, thermal nonlinear media22–25, atomic
vapours26, liquid crystals28,29 and semiconductor amplifiers21.
Interestingly, in spite of the natural spatial-widening tendency of
nonlocality, even highly nonlocal nonlinearities can support
solitons in their simplest (bell-shaped) realization26,28,29,34–36 or as
multipole solitons37–39. When the nonlocality range greatly
exceeds the width of the beam, the induced index change has a
bell-shaped-structure, which depends only on the beam power40,
and is largely insensitive to the intensity pattern20.

CONCEPT

Spatially incoherent light can be modelled as a sequence of coherent
multimode (speckled) beams, each occurring within a short time
window tc, and then switched abruptly to another window with a
different modal distribution (speckled pattern), repeatedly41. The
interaction between an incoherent beam and a nonlinear
medium is considered instantaneous when the time response of
the medium, t, is much shorter than the fluctuation time of the
wave, tc. In such a case, the nonlinear medium responds to the
speckled pattern in each time window, within which the beam is
fully coherent. In a highly nonlocal nonlinearity, the coherent
speckled beam induces, at every moment in time, a smooth
(non-fragmented) waveguide, which is uniform in the direction
of propagation. If the modes of the induced waveguide span the
same space as the modes constructing the light, it is possible to
find conditions for which all realizations of the incoherent beam
(all speckled patterns whose time/ensemble average makes up the
incoherent beam) are self-trapped within the waveguide that the
beam induces20. When this happens, each of the instantaneous
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self-trapped multimode realizations (beams) does not broaden.
However, each of these instantaneous self-trapped beams carries
transverse momentum arising from the (random) interference
among its modal constituents20. When the system conserves
transverse momentum, the initial transverse momentum
determines the trajectory of the beam. Consequently, these
instantaneous self-trapped beams are propagating in random
directions. The ensemble average over multiple realizations of
such self-trapped (yet randomly deflected) beams displays
nonlinear broadening (statistical nonlinear diffraction)20. In the
limit of a large number of modes, the nonlinear diffraction of
this ensemble-averaged beam becomes negligible and an
incoherent soliton forms.

EXPERIMENTS

EXPERIMENTAL TECHNIQUES

We first demonstrate multimode solitons and statistical nonlinear
diffraction with a simple example of a bimodal beam,
highlighting the role of the relative phase between its modes. We
then experiment with a highly incoherent beam generated by a
diffuser and show how statistical nonlinear diffraction becomes
negligible, yielding an incoherent soliton. All our experiments are
carried out in lead-glass displaying a thermal nonlinearity of the
self-focusing type22. The samples have square, 2 � 2 mm cross-
sections, and 83 mm long in the propagation direction. The four
transverse boundaries of the samples are thermally connected to
a heat sink and maintained at room temperature.

Realizing instantaneous interactions in our thermal
nonlinear medium is not straightforward. The thermal
nonlinearity is slow (t � 0.1 s) compared with the fluctuation
time of natural incoherent light. Thus, we artificially construct
an incoherent beam, by dividing the fluctuating field into a
sequence of temporal windows of duration tc within which the
multimode (speckled) beam structure is kept fixed, but with a
random relation between the patterns in different windows.
Within each time window, which is set to be much longer than
the response time of the nonlinearity, the relative phases
among the spatial modes are fixed. We monitor the
propagation of this multimode beam after the nonlinear index
change, Dn, has reached temporal steady state. Under these
conditions, in each measurement we observe self-trapping of a
coherent multimode beam. This is physically identical to
having a multimode beam self-trapped in an instantaneous
nonlinearity, and monitoring the beam at a given snapshot in
time. Carrying out multiple experiments with different
(random) realizations of the multimode beam and taking the
ensemble average corresponds to monitoring the long-timescale
behaviour of an incoherent beam. The ensemble average over
many realizations of the speckled beam is in fact an artificially
constructed partially spatially incoherent beam. When this
ensemble-average beam exhibits (under appropriate conditions)
stationary propagation, it is an incoherent soliton.

SCALAR MULTIMODE SOLITIONS

Before proceeding, we note that, thus far, scalar (single-field)
multimode solitons have never been observed in any
homogeneous nonlinear media, with either a local or a nonlocal
response. By multimode solitons we mean solitons that populate
at least two different modes of their jointly induced potential
(which forms a waveguide). The challenge with demonstrating
multimode solitons is to overcome the beating between the
modes, which, in a local nonlinearity, prevents the formation of a
stationary waveguide. The simplest means to eliminate modal
beating is by launching the two modes at different polarizations

(Manakov-type solitons). Another approach is to eliminate the
contribution of the modal beating to the induced potential by
launching every mode in a different field (thus creating a
composite or vector soliton), with the fields varying much faster
than the response time of the nonlinearity42. The same
mechanism is what enables incoherent solitons in non-
instantaneous nonlinear media2. However, all of these are vector
solitons (solitons comprising more than one field, hence
described by several coupled wave equations) and not scalar
solitons (described by a single wave equation). Because of modal
beating, the observation of scalar multimode solitons has so far
been elusive. Specifically in nonlocal nonlinearities, all
multimode solitons that were demonstrated were either
composed of multiple fields (vector solitons) or constituted a
single guided mode only (for example, the scalar multipole
solitons37–39, which form when the beam occupies a single higher
mode of its self-induced waveguide). However, as shown in ref.
20 and explained above, the nonlocal nature of the nonlinearity
can keep the induced waveguide stationary even though modal
beating does occur, because the induced waveguide depends only
on the total power, which is a conserved quantity. The following
experiments are the first to demonstrate scalar multimode
solitons, taking advantage of the unique features of
nonlocal nonlinearities.

EXPERIMENTS WITH BIMODAL BEAMS

The first experiment was carried out with a bimodal beam made up
of modes 0 and 1 of their jointly induced potential, with the
relative phase between them varying randomly from one time-
window to the next. We used a laser beam of 488 nm
wavelength, split it with a beamsplitter, and constructed a
symmetric TEM00 gaussian mode in one beam, and an
antisymmetric TEM10 mode in the other, subsequently
recombining the beams with their centres coinciding. The
relative phase between the beams was manipulated by reflecting
the TEM00 beam off a mirror positioned on a step motor.
Feeding the step motor with a random function such that it
introduces an optical phase shift of at least 2p yields a random-
phase bimodal beam. We launched this beam into the sample at
normal incidence. The following experiments were repeated 50
times, with 50 random realizations of the relative phase. Typical
results are shown in Fig. 1. Figure 1a and b depicts two
particular realizations of the input bimodal beam, corresponding
to a relative phase of �p/2 and �3p/2 between the modes,
respectively. The composite input beam was 50 � 70 mm full-
width at half-maximum (FWHM). At low intensity, the input
beam experienced diffraction-broadening by a factor of �2.7
(Fig. 1c and d). At high intensity, each composite beam
occurring within a short time window self-trapped after the
thermal nonlinearity reached a temporal steady state (Fig. 1e,f ).
Notice that the different relative phases cause different
trajectories for the self-trapped bimodal beam (Fig. 1e,f ). Finally,
we examined the ensemble average over 50 random realizations
of the relative phase. The ensemble-average input beam has a
‘figure of 8’ structure (Fig. 1g), which is a two-dimensional (2D)
generalization of the double-humped 1D structure20. At low
intensity, the ensemble-average beam broadened considerably
(Fig. 1h). At high intensity, the ensemble-average beam
narrowed down but exhibited statistical nonlinear diffraction
(Fig. 1i). Comparing Fig. 1h and Fig. 1i reveals that the maxima
of the low and high power output beams coincide, although at
high power the humps are narrow as a consequence of the
self-trapping.

We proceeded with a bimodal beam composed of the non-
consecutive modes 0 and 2. To generate mode 2, we introduced two
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evenly spaced,p-phase jumps across the beam. Figure 2 shows typical
results obtained with an input beam of �70� 120 mm FWHM. The
results are similar to those of Fig. 1, with one important difference:
because the modes are non-consecutive, their superposition does
not possess transverse momentum. Consequently, a bimodal
beam composed of non-consecutive modes is always propagating
on-axis for any relative phase between its constituents. This is
especially important when the beams are of high power (Fig. 2e
and f ): the trajectory of the self-trapped beam is always on-axis,
irrespective of the relative phase (in contrast to Fig. 1e and f,
which exhibited off-axis propagation). Consequently, when an
ensemble average is taken over multiple random realizations of
the relative phase, no statistical nonlinear diffraction occurs,
and this ensemble-average self-trapped beam is a bimodal
incoherent soliton.

EXPERIMENTS WITH HIGHLY MULTIMODAL BEAMS

We used a rotating diffuser to generate spatially incoherent light.
The fluctuation time, tc, of the spatially incoherent light is
determined by the rotation rate of the diffuser. Such a light
source is the monochromatic realization of a thermal source43.
We passed a broad laser beam through the diffuser, which was
kept stationary during each temporal window, giving rise to a
highly speckled beam. Passing the beam through the diffuser at
different positions makes the population and phase of each of its
modes vary randomly from one temporal window to the next.
This multimode beam was imaged (demagnified) onto the input
face of the sample. We monitored the input and output intensity
structure at each of the individual time windows, after the thermal
nonlinearity had reached steady state. Finally, we computed the
ensemble-average intensity by averaging over all realizations.
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Figure 2 Self-trapping of bimodal beams composed of non-consecutive modes. Same arrangements as in Fig. 1, but for self-trapped bimodal beams composed

of the non-consecutive modes 0 and 2. The trajectory of the instantaneous self-trapped beam is always on-axis, so the ensemble-average beam forms an incoherent

soliton, without statistical nonlinear diffraction (i). The dimensions of these plots are 550 mm�370 mm.
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Figure 1 Self-trapping of bimodal beams composed of consecutive modes. Experimental (upper row), and theoretical (lower row) results showing self-trapped

bimodal beams composed of the consecutive 0 and 1 modes. a–f, Two particular realizations of the relative phase between the modes. The bimodal input beams (a,b)

linearly diffract at low power (c,d). At high power each beam self-traps with a trajectory that depends on the initial relative phase (e,f). The ensemble-average input

beam (g) linearly diffracts at low power (h), whereas at high power it displays statistical nonlinear diffraction (i). The dimensions of these plots are 550 mm�370 mm.
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To facilitate a quantitative comparison between the input and
the output beams, for both the instantaneous case and the
ensemble-averaged case, we had to evaluate their width and
average speckle size (the latter determining the transverse
correlation distance upon the incoherent beams, which is
dependent on the modal population). Consider first the self-
trapped multimode beam within a particular time window i.
This is a speckled beam, so one cannot define its width as the
FWHM. Instead, we define the effective width of such a beam as
di ¼ [(

Ð Ð
Ii dx dy)2/(

Ð Ð
Ii
2 dx dy]1/2. For a self-trapped multimode

beam, the effective width should be stationary during
propagation, although the actual intensity structure varies with
propagation due to modal beating. In addition to the effective
width, we define wi, the average speckle-size of each self-trapped
multimode beam, as the inverse of the FWHM of the spatial
power spectrum (Fourier transform) of the beam. The
comparison between input and output instantaneously self-
trapped beams should be made through their effective width and
average speckle size. Similarly, for the ensemble-averaged beams
we defined the mean effective width kdl ¼1/N

P
i¼1
N di and mean

speckle size kwl ¼1/N
P

i¼1
N wi. To prove an incoherent soliton, it

is essential to compare the mean-effective width kdl with the
width of the ensemble-average intensity structure d̄ ¼ d(kIl), and
find the standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdl2 � �d

2
:

q

In this sense, s! 0 indicates that the statistical nonlinear
diffraction is negligible and we have an incoherent soliton.

Our experiments with highly multimode beams are presented
in Fig. 3. Figure 3a shows one typical realization of the highly
speckled input beam with d � 175 mm and w ¼ 35 mm. At low
power, the beam diffracts and the output beam is broad
(Fig. 3b), with d � 570 mm and w ¼ 91 mm. At high power,
the speckled beam self-traps (Fig. 3c), with d � 190 mm and
w ¼ 37 mm. The fine details of each self-trapped output beam are
different from those of its corresponding input beam due to
modal beating. However, the trajectory of each beam is on-axis,
because the contribution of the interference between consecutive
modes to the structure of the beam is small. We therefore expect

that the statistical nonlinear diffraction of the ensemble-average
beam to be negligible. Indeed, Fig. 3d–f show that the ensemble-
average beam conserves its effective width and its correlation
distance (average speckle size), with s! 0. That is, not only did
the instantaneous speckled beams self-trap within each time
window, but the ensemble-average, highly multimode beam
displays stationary propagation, forming an incoherent soliton.

It is now instructive to discuss the parameters defining the
average speckle size (transverse correlation distance) of such an
incoherent soliton. The average speckle size depends on two
parameters: the beam power (defining the depth and width of
the induced waveguide) and the specific statistic of the input
beam (defining the modal population within the incoherent
soliton). The statistics of the input beam is fixed for a given light
source; the average speckle size of the incoherent soliton will
consequently depend solely on the beam power, as we always use
the same source. We can therefore construct an ‘existence curve’
for the incoherent soliton, relating its average speckle size and its
power. Experimentally, we generate incoherent solitons at various
power levels, use the same diffuser setting, but scale the
demagnification such that the ratio between the effective width of
each input beam and its speckle size, d/w, is fixed for every
power level. The results are shown in Fig. 4. The theoretical curve
is calculated for a gaussian modal distribution, as described in
the Methods. Clearly, the experiments conform nicely to the theory.

DISCUSSION

We note that the induced waveguide in our system, Dn(x, y), is
approximately parabolic (wherever the beam intensity is not
vanishingly small). As such, the modes cl,m(x, y) are approximately
Gauss–Hermite modes (as experimentally proven in ref. 39). So,
statistical nonlinear diffraction in x results from interference
between modes (l, m) and (l+1, m) only, and statistical nonlinear
diffraction in y results from interference between modes (l, m) and
(l, m+1) (ref. 20). Consequently, the beam does not exhibit any
noticeable deflection when many modes are populated within it,
because the contribution of consecutive modes to the total
transverse momentum is very small. These effects are highlighted
in Figs 1 and 2 where the bimodal beam composed of modes 0
and 1 has the most apparent deflection, whereas the beam made
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Figure 3 Incoherent solitons in effectively instantaneous nonlocal, nonlinear media. a–c, One typical realization of the highly multimode beam: input (a), output

after linear diffraction at low power (b), and self-trapped output at high power (c). d– f, Self-trapping of the ensemble-average beam (taken over 50 random

realizations): input (d), output after linear diffraction at low power (e), output forming an incoherent soliton at high power (f). The panel on the top right, and the

enlargement below it, show that the calculated refractive-index change Dn in our medium (blue line) coincides with a parabolic shape (red line), in all regions of

non-negligible optical intensity, I (black line). The dimensions of these plots are 1,140 mm�900 mm.
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up of modes 0 and 2 does not exhibit deflection at all. Most
importantly, Fig. 3 shows that the random deflection is negligible
when many modes are present (this is likely to be the case for any
highly nonlocal nonlinearity through which a symmetric bell-
shaped potential is induced). That is, not only did the
instantaneous speckled beams self-trap within each time window,
but the ensemble-average highly multimode beam displays
stationary propagation, forming an incoherent soliton.

Let us now discuss the intuitive meaning of the existence curve
of Fig. 4. As the total power of the soliton beam increases, the width
of the induced potential narrows and the potential becomes deeper,
yet it always remains almost ideally parabolic (in the regions where
the intensity is non-negligible). This means that the guided modes
always retain the same structure (Gauss–Hermite-like). However,
the modes of the deeper potential are narrower (more localized),
and so are their interference patterns (the speckles). In other
words, as the soliton becomes narrower, so do the speckles
within it, which makes the diffraction effects stronger, forcing an
asymptotically narrowing existence curve.

To conclude, we have demonstrated experimentally incoherent
solitons in effectively instantaneous nonlocal, nonlinear media. We
proved a new concept, that nonlocal nonlinearity can support
incoherent solitons even when the response time of the
nonlinearity is much faster than the fluctuation time20. Our
experiments demonstrate that highly fragmented coherent beams
can be self-trapped. We foresee such experiments in materials
where the nonlinearity is highly nonlocal yet very fast (of the
order of picoseconds). Our experiments suggest the possibility of
imaging through highly nonlocal, nonlinear media of the self-
focusing type. Imaging through nonlinear media has always been
a challenge44, because the optical field evolves dynamically, in an
intractable and irreversible fashion. For example, in Kerr media,
which are represented by the (integrable) cubic nonlinear
Schroendinger equation, the input field is projected onto a set of
solitons and a continuum of radiation waves45. The solitons evolve
dynamically but their propagation is tractable through inverse
scattering. However, the radiation waves, being extended states,
carry information away to ‘infinity’ (physically, to the boundaries
of the nonlinear sample, where radiation waves are lost). This

makes the problem irreversible due to loss of information. In
contradistinction to nonlinear Kerr media and to all local optical
nonlinearities, in a highly nonlocal, nonlinear medium, radiation
waves (extended states) are absent46, and as demonstrated here, all
initially localized waves remain localized throughout propagation.
Hence, the information content of the dynamically evolving
optical field is conserved throughout propagation, and the
problem of recovering that information is now reversible. Last but
not least, we note that recent ideas with polar Bose–Einstein
condensates and cold molecules predict a highly nonlocal,
nonlinear response30, which suggests the exciting possibility of
implementing the ideas presented here with matter waves47.

METHODS

THEORY

A linearly polarized, partially spatially incoherent beam can be described by its
slowly varying amplitude C(x, y, z, t). When such a beam is self-trapped in a
nonlinear medium (or guided in a waveguide), it is constructed from the eigen-
modes of the system, which are determined by the potential (fixed, as in a
waveguide, or induced by the nonlinearity), and the boundary conditions. As
such, C(x, y, z, t) can be written as a superposition of its modal constituents cn,

Cðx; y; z; tÞ ¼
X

n

ffiffiffiffiffiffiffiffiffiffiffi
PnðtÞ

p
cnðx; y; zÞ expðiwnðtÞÞ: ð1Þ

The fluctuations in the modal power Pn(t) and the modal phases wn(t), which are
what make the beam spatially incoherent, indicate many random realizations of
the multimode beam appearing in each short time window (t� tc), within
which P and w are constants. Thus, within each such time window, the modes cn

interfere, and C is a coherent speckled beam. On the other hand, from one short
time window to the next, P and w change abruptly, switching from one speckled
realization to another, in a random fashion. To stay within paraxiality, the
characteristic speckle-size (approximately the transverse correlation distance) is
much larger than the wavelength. Accordingly, within each short time frame, cn

evolves according to

ð@2
x þ @2

y Þcn þ 2ik@zcn þ 2 k2ðDn=n0Þcn ¼ 0 ð2Þ

where k ¼ vn0/c, v is the frequency, n0 is the background refractive index, c is
the speed of light in vacuum, and Dn is the induced index change (jDnj � n0).
We used the highly nonlocal thermal nonlinearity of lead-glass, where Dn is
proportional to the temperature change24. In every time window of duration tc,
the beam experiences small absorption, thereby generating heat, which diffuses
with time constant t. If the duration of the time window is much larger than the
response time (t� tc), we neglect transients, and consider only Dn at the steady
state, which satisfies the (time-independent) poisson equation48,49 within that
time window

r2
Dnðx; y; z; tÞ ¼ �~k Cðx; y; z; tÞj j2 for ti , t , ðti þ tcÞ ð3Þ

where k̃ is a constant of the medium22. The nonlocality range in such nonlinearity
is the actual size of the sample, which is much broader than the width of the
beam22,23. Consequently, to within a good approximation (which will be tested
below), Dn depends on the total power of the beam P ¼

P
npn, and not on its

speckled structure. Moreover, the guided modes of Dn are approximately Gauss–
Hermite polynomials39. As these modes span all possible solutions of the paraxial
wave equation, any realization of the incoherent beam can be guided under
proper conditions.

We now find the modal structure of the waveguide induced by the speckled
beam within a given time window. To do that, we first neglect the modal beating
and use

Cðx; y; zÞj j2 ¼
X ffiffiffiffiffiffiffiffiffiffiffi

PnðtÞ
p

cnðx; y; z; tÞ expðiwnðtÞÞ
���

���
2

¼
X

PnðtÞ cnðx; y; zÞj j2 ð4Þ

Under this assumption, we seek self-trapped solutions where jCj2 and Dn are
z-independent. To do that, we substitute the expression of equation (4) in
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Figure 4 Existence curve of incoherent solitons in instantaneous nonlocal

media. The figure shows the average speckle size of the incoherent soliton as a

function of the total power of the beam for a given (quasi-thermal) light source

setting the modal population. Each of the photographs displays one typical

realization of a self-trapped speckled beam (comprising the incoherent beam)

at a given power level. As the power increases, the self-trapped speckled

beam narrows.
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equation (3), and solve equation (2) coupled to equation (3), self-
consistently20,50. That is, we find the modes cn(x, y, z) ¼ cn(x, y)exp(2ibnz) of
the waveguide induced by jCj2. [We note that the modes we find deviate slightly
from Gauss–Hermite modes, because Dn is never fully parabolic; nevertheless,
the set of modes serves as an orthogonal basis for the solutions of the nonlinear
wave equation).

Having found the set of modes fcn(x, y)g along with their propagation
constants fbng, we can now simulate the propagation of a speckled beam
containing a random superposition of modes, as represented by equation (1). We
first recall our initial assumption that modal beating does not play any role in the
structure of Dn. If this assumption is indeed correct, then launching the coherent
speckled beam C(x, y, z ¼ 0), within any particular time window (any realization
of modal power distribution and modal phases), would yield self-trapped
propagation, as long as the total power is unchanged. To prove this point, we
simulate the propagation of 50 different realizations of C(x, y, z ¼ 0), composed
of the first 50 modes of Dn. Numerically, we use the standard split-step beam
propagation method to solve equation (2), and use equation (3) to find the index
change Dn from one propagation step to the next. We emphasize that, because
the beam is fully coherent within the time window, the modes comprising it
interfere and display modal beating. Nevertheless, all realizations of the coherent
speckled beam are self-trapped, irrespective of the modal phases and modal
power. That is, the intensity structure of the speckled beam, jCj2, is self-trapped:
not exhibiting any diffraction broadening, in spite of the fact that the modes
interfere with each other, resulting in an intensity structure that oscillates during
propagation. The different realizations of the speckled beam do make one
important difference in determining the induced waveguide: they determine the
trajectory of Dn. In other words, the relative phases and power distribution
among all the modes comprising C determine the initial transverse momentum
carried by the beam20. Because the system conserves transverse momentum
(when the beam is very far away from the sample boundaries49), every realization
yields a different trajectory of the instantaneous self-trapped speckled beam.

After establishing the features of the speckled self-trapped beams within
each short (instantaneous) time window, we examine the long-timescale
propagation. Looking at the incoherent beam at such t� tc is fully equivalent to
taking an ensemble average over many possible realizations of these self-trapped
randomly deflected beams. Because of the modal beating highlighted by Fig. 1,
the ensemble-average propagation of the beam composed of consecutive modes
0 and 1 is not stationary, but rather exhibits statistical nonlinear diffraction.
However, in the 50-mode beam of Fig. 3, the ratio of consecutive pairs to
inconsecutive pairs is very small, hence its statistical nonlinear diffraction is
negligible. When this happens, the ensemble average over all instantaneous self-
trapped beams is stationary throughout propagation, forming an
incoherent soliton.

Finally, we study the existence curve of these solitons (Fig. 4) by measuring
the relation between the total power of the beam and the average speckle size of
the soliton. Numerically, for each different power level, we find the set of modes
fcn(x, y)g as described above. Recall that to construct the existence curve it is
essential to have the same modal distribution (albeit at different widths) at all
power levels. To conform with light emitted from a rotating diffuser (quasi-
thermal source), we constructed the incoherent beam from a gaussian
distribution of the first 50 modes kPnl ¼ P exp(2n/D)/

P
n¼0
n¼49exp(2n/D) with

D ¼ 25. The numerical results are compared to the experiment in Fig. 4.

Received 4 February 2008; accepted 16 April 2008; published 25 May 2008.
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