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1. Generality of recurrent structures in complex networks 

As we discuss in the paper, our results are relevant to a large class of complex 

networks, operating by virtue of a variety of interaction rules. That is, we find that many 

families of interaction rules lead to stable recurrent structures. We provide below several 

examples, and discuss which kind of interaction rules will not yield recurrent structures. 

 

The interaction rule of the Manakov solitons is a special case of interaction expressed 

in an interesting formula: it is a bilinear transformation in one variable and a nontrivial 

nonlinear transformation in the other variable. To compare the Manakov case with some 

other formulae, we start by writing it here again (as in Fig.1a): 
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That is, the output state y  is found from an input state x  through a bilinear transformation 

( )xg

aT , given the other input state is a , under node parameter g . Equivalently, ( )ah

xT  

denotes the bilinear transformation of an input state a into an output state b , when the 

other input state is x , and the node parameter is h . In our networks, all nodes have the 

same parameters g  and h .   

 

Below are several examples of interactions and their dynamics in a network of 10,000 

nodes. In cases A-D below, the Markovian method can be used to obtain a self-

consistency integral equation which is converging to the same dynamical recurrent 

structure as the full-scale simulation. The method is presented in the paper (see Eq. 2) and 

in section 2 of the supplementary material. 

 

(A). A modified Manakov transformation which is bilinear in both inputs: 
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The initial conditions are chosen from two probability distributions that are shifted from 

one another by a real number. The dynamics evolves into a ring-shaped structure that is 



not isotropic but is whirling around the point ( )1,0− . See figures below. Several other 

simulations reveal that different initial conditions evolve into other recurrent structures. 
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(B). A modified Manakov transformation which is nonlinear in both inputs, and 

depends on the modulus of the states: 
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The initial conditions are chosen from the same distributions as in (A). The dynamics 

evolves into a triangular-shaped recurrent structure that is shrinking to the 

point ( )1.1513,0.0756 . See figures below. Several other simulations reveal that different 

initial conditions evolve into other recurrent structures that are always shrinking into 

other basins of attractions. Note that this particular result – of a structure shrinking into a 

point - does not contradict the general concept that the networks evolve into recurrent 

dynamical structures, because a fix-point dynamic is just a special case of a recurrent 

shape. 
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(C). A formula that depends on the phases of the states, confining all states to an 

intersection of semi-circles in the complex plane: 
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The initial conditions are chosen from similar distributions to (A). The dynamics evolves 

in a restricted ring around the point ( )1.1513,0.0756 , where the recurrent structure is 

generated within the ring. See figures below. Several other simulations reveal that 

different initial conditions evolve into the same self-similar structure, where different 

choice of g  give different restricting semi-circles. 
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(D). Interaction rule constituting of simple division: 

xy
a

ab
x

=
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The initial conditions are chosen from the same distributions as (A). The dynamics is 

converging to the origin and diverging to infinity in the same time (the same states can 

move from one basin to the other in each interaction). Since infinity is a part of the 

extended complex plane, one can say that the dynamic converges into a double fix-point: 

the origin and the complex infinity. See figures below. It is easy to see that the structure 

shrinks, but there are other states that are diverging outside of the plot scope. Several 

other simulations reveal that different initial conditions evolve into the same double fix-

point basin of attraction. 
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(E). A trivial remark, which is nevertheless important, refers to the convergence in the 

cases of "non-mixing" interaction rules. By "non-mixing" we mean formulae in which 

each of the output states depends on only one of the input states. For example, for any 

arbitrary f  the interaction rule: 

Im

Re

Im

Re

Im

Re

Im

Re

Im

Re

Im

Re



( )

( )

y f x

b f a

=

=
 

is "non-mixing". Such a formula may lead to non-converging dynamics, since the 

topology does not affect the dynamics. Instead, each state evolves according to the series: 

( ) ( )( ) ( )( )( ), , , ,...x f x f f x f f f x . In such a case, we are back within the boundaries of 

the standard dynamical processes theory, where it is well known that different f  and 

different initializations can exhibit a variety of dynamics: from fix-point through limit 

cycles to strange attractors and chaos. How will such interaction act in a network? Any 

initial state will evolve according to its own trajectory following its own autonomous 

dynamic. No recurrent structure will emerge. 

 

(F). Another special family of interaction rules includes all formulae where mixing 

does occur but does not affect the whole state, i.e., where some conservation law does 

exist, but it involves each single state separately, rather than the dynamics in the whole 

system. A typical example is: 

2 2

2 2

x
y

x a

a
b

a x

=
+

=
+

 

in which, one can easily see that ( ) ( )arg argy x= , and therefore the complex phase of 

each state will never change. The outcome of dynamics in a network with this interaction 

rule is important to understand since it stands right in the middle between the "non-

mixing" family and the "converging to recurrent structures" family. For the above 

example, the dynamic is confined to lines intersecting the origin, since the phases cannot 



change. However, on each of those lines, a one dimensional recurrent structure will 

emerge. See figures below.  
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Following these examples, one can make a general statement: an arbitrary interaction 

rule will always have two kinds of effects on the input states in a complex network: a 

mixing effect which leads to a recurrent structure, and a non-mixing effect that evolves 

independently, irrespective of the other states in the network. Since the interacting states 

are multidimensional (2 dimensions in the case of complex numbers), we expect a 

mixture of those two dynamic evolutions. In general, the interaction rule will separate the 

state into several sub-dimensions where each will evolve according to one of the two 

possibilities for the evolution dynamics – mixing or non-mixing. 
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Finally, following the examples given above, and many other cases we have tested, 

we believe the results to be valid for networks of wider families of topologies, i.e. 

topologies where not all nodes are restricted to have 2 inputs / 2 outputs. For example, a 

network in which more than two particles can collide in each node will most likely also 

exhibit recurrent dynamics, since the topology will be complex as well. Topology relying 

on nodes with higher degree of connectivity will strengthen the argument of 

independence between consecutive interactions, needed for the validity of the Markovian 

method. More specifically, in such networks the values in sequential time steps are even 

more likely to be independent. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. The Markovian method for complex networks – proof and example 

 

In this section, we prove the self-consistency equation presented in the paper (Eq. 2). 

This equation is derived specifically for the Manakov interaction rule. However, similar 

derivation works for other interaction rules as well. We call it the Markovian method 

since it is based on the same assumption as the "Markov chain" characterizing random 

processes. We also give a comparison between the networks dynamics calculated via 

direct simulation and the evaluated probability density of states. 

 

We calculate the probability density for the output state y  as a function of the 

densities of the input states ,x a . We denote , , ,X A Y BP P P P  for the probability densities of 

, , ,x a y b . The letter D  indicates some arbitrary domain in the complex plane. Since 

( )g

ay T x=  is a bilinear transform in x , it is invertible (in x ) and we can write 
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where the last substitution of the variable ( ),g inv

ax T λ→ is needed to get the integral 

borders back onto the domain D . 



For complex functions, one can prove that 
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Since this is correct for any domain D , the density of y  is: 
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For the Manakov transformation  ( )
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∫ . 

A similar expression can be derived for ( )BP b . 

Note that this process is a nonlinear convolution of the probabilities of ,x a . It can be 

done in a similar fashion for any other interaction rule (although obviously, a 

transformation which is invertible in at least one of its variable, is preferred). 

 

In order to get the self-consistency formula (Eq. 2 from the paper) we still have one 

step to go. We treat all the inputs states of the network as random variables of the same 

probability. This argument is reasonable since the network topology is completely 

random, hence any particular position of any specific node is irrelevant. We now add the 



notation of the discrete time n , expecting the probability density of the states to change 

after each time step due to interactions. This yields 
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∫

The final result is a set of two discrete-time integral equations:  
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The solutions for these equations are expected to converge to the same recurrent structure 

exhibited by the same network under a full numerical simulation.  The particular case of 

symmetric initial conditions (
0 0

Left Right
P P= ) and symmetric interactions ( g h= ), yields the 

reduced equation: 
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∫  

We call it the self-consistency equation, since we can look for the solution of 
1n nP P+ =  

which will be the recurrent structure. 

 

This method has much in common with tools used in Markov chain processes, which 

are widely used for linear processes. The underlying assumption here is the statistical 

independence of the present state on the previous state, without any memory. So although 



our transformation is nonlinear and the probabilities are not discrete, we refer to this 

method as the "Markovian method" throughout the paper and the supplementary material. 

 

To illustrate the importance of the above equation, we apply it for the symmetric case 

and compare its results with those of a simulated network of 20,000 nodes. The figure 

bellow shows the states of the network in the complex plane (on the right column), with 

the density of the Markovian method (on the left and middle columns). The same 

dynamics is found in both cases. Hence, the recurrent dynamics of the network can be 

found by solving the equation self-consistently, instead of simulating the evolution 

dynamics of the entire network. 
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3. Background information on Manakov solitons 

Manakov solitons were studied extensively, and closed-form solutions were found 

even for interacting Manakov solitons ([8]). By defining an appropriate state, which is a 

complex number, one can write an explicit transformation for this state before and after 

interaction. We call it "the interaction rule" and it is written here (as in Fig. a1) with two 

other representations. Further reading on Manakov solitons can be found in [M. H. 

Jakubowski, Ph.D. thesis, Princeton University, 1998] 
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Where we define ( ) ( )
2,11,22,12,1, kkkkhg ++= , with 

2,1k   being the complex 

parameters that are invariant during the collisions (and are hence unchanged for the entire 

network), for the left and right solitons, respectively. The real and imaginary parts of 2,1k  

represent the power and the velocity of the soliton (respectively), hence collisions of two 

Manakov solitons of equal power result in hg = . Mathematically,  
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4. Deriving the closed-form solution of the butterfly network 

Here we explain how to derive the conservation law of the butterfly network. The 

topology of the butterfly network is shown in Fig. 1 in the paper. The conservation law is 

a circle on which all possible states are restricted to reside. This circle is not changing 

throughout the entire network dynamic; hence the only degree of freedom is the phase of 

a state on the circle. 

Any three points on a plane uniquely define a circle, unless they are on a line. 

Therefore, in the complex plane, a generalized circle is usually defined to be a circle or a 

line. A useful formula to obtain the center of the circle as a function of the three 

(complex) points: 
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z z z
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CircleCenter
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Defining the trajectories of the initial states 
0 0,x a  to be 

0 1 2 3 0 1 2 3, , , ... , , , ...x x x x a a a a  

and remembering they all depend only on
0 0, , ,x a g h , we now find the center of the circle 

created from 
0 0 1, ,x a x  using the above formula. This requires some nontrivial algebra, 

and is best done by using Mathematica to do symbolic calculations, which yields 

( ) ( )
( ) ( )

0 0 0 0 0 0

0 0 0 0

1 1

1 1

a x a x a x
CircleCenter

x a a x

+ + +
=

+ + +
 

Note that the obtained center does not depend on g , hence symmetry leads to the fact that 

1a  is also restricted to the same circle. To go further, we define 



( )
( ) ( )
( ) ( )

1 1
,

1 1

a xa x ax
C a x

xa ax

+ + +
=

+ + +
. 

Consider solitons of equal power, which gives hg = . This implies complete symmetry in 

the interaction rules. Furthermore, it allows us to prove ( ) ( )1 1 0 0, ,C a x C a x=  using some 

more algebra (that can best be done symbolically using Mathematica), and the definition 

of ( )
1

1g i
W

−
∆= + . This last result is actually very strong, because it holds for any initial 

states 0 0,a x . Thus, an equivalent statement is ( ) ( )1 1, ,i i i iC a x C a x+ + =  proving that the 

circle center is a constant of the dynamic. The proof is completed by using induction with 

the above statement as the inductive step and ( )0 0,C a x  as the base case. 

( )
( ) ( )
( ) ( )

1 1
,

1 1

i i i i i i

i i

i i i i

a x a x a x
C a x const

x a a x

+ + +
= =

+ + +
 

The circle radius can be calculated by any of 
i iR a C x C= − = − .  

A natural question to ask next refers to the phases of the states on the circle. We do not 

have a closed-form expression for the phases as of yet, but we do know that the two 

phases of ,i ia x  are related by an invertible function. They can be related by extracting 

one of them from ( ),i iC a x . Consequently, after stating the initial conditions 0 0,x a  for 

the butterfly network, only one (real) degree of freedom remains. Hence, just one 

complex phase characterizes the entire butterfly network. 

 

For unequal soliton power ( g h≠ ), two distinct circles are restricting the left and right 

states separately. Their close form analytical expressions and conservation laws will be 

presented elsewhere.  



5. The role of noise in the dynamics of the Solitonet 

Noise may play an important role in the dynamics of complex systems. It is therefore 

natural to ask about the role of noise in Solitonets. The answer has two parts, one having 

to do with the role of noise in the actual waves (i.e., launching non-ideal solitons), and 

the other with adding noise to the complex states defining the Manakov solitons.  

 

(A). Adding noise to the actual waves comprising the solitons. The Solitonets 

discussed in the paper are not only networks constructed from nodes connected through 

some mathematical interaction rules, but they actually represent physical entities: two-

component self-localized waves described by integrable equations. Having noise in the 

system where such waves are propagating is therefore natural. However, Manakov 

solitons are known to be stable ([8]). More specifically, the noise will excite other modes 

of the system, of which some are radiation modes that will propagate away from the 

interaction region (out of the system). All parts of the noise that do not disappear, in the 

long run will change the state of the soliton (see part 2). 

  

(B). Adding noise to the complex states of the networks. Here, noise will have a 

minor effect on the stochastic structure. Such noise will be generally averaged out 

(although not necessarily in a linear way), before affecting the final structure. More 

importantly, the dependence on the recurrent state on the initial conditions is only 

through the stochastic density of the initial conditions (as discussed earlier), so adding 

noise can anyway affect the recurrent state only if the noise broadens the variance of the 

entire initial density. And even then it will just be equivalent to "clean" initial conditions 

with an increased variance. Altogether, noise is expected to have only minor effects on 

the recurrent state of a network.  


