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We present the first experimental study of spatial four-wave mixing in photonic lattices, demonstrating
universal aspects of nonlinear processes in periodic media, such as engineered phase matching, Bloch-
wave folding, and continuous control over the band at which the interaction products emerge.
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Nonlinear optics plays a significant role in many areas of
science and technology. One of its most important mani-
festations is the process of four waves mixing (FWM): the
interaction of four coherent optical fields through third-
order susceptibility [1,2]. Over the years, FWM has been
used in many important applications, ranging from energy
level spectroscopy [3], real-time holography and correc-
tion of distortions [4], generation of coherent sources in
UV and IR regions [5], and more. Going beyond optical
waves, FWM was also observed with plasma density waves
[6] and with matter waves in Bose-Einstein condensates
[7]. In all of these processes, FWM is significant when the
interaction is phase matched [8]. Otherwise, when the
interaction is not phase matched, the FWM effects do not
accumulate and their efficiency is very small.

Generally, FWM can be described as nonlinear mixing
between the modes of the underlying linear system. In this
sense, FWM in homogeneous media occurs between plane
waves at different frequencies and/or with different k vec-
tors. Thus, FWM in a periodic system takes place among
the Floquet-Bloch (FB) waves. Fundamentally, the spatial
structures of the FB waves, as well as their propagation
constants (eigenvalues), are different from the uniform
distribution and simple dispersion relation characterizing
plane waves. Moreover, the FB waves are organized into
bands, which are separated by gaps in which no propagat-
ing modes exist. Consequently, FWM in nonlinear periodic
structures [e.g., 1D waveguide arrays [9,10] and 2D pho-
tonic lattices [11] ] offers new possibilities for phase-
matched FWM interactions, while displaying new phe-
nomena that cannot be observed in homogeneous media.

Here, we show that, by combining one of the main
nonlinear optics themes (four-wave mixing) and the fun-
damentals of waves propagation in periodic structures (the
Floquet-Bloch theory) we can predict and experimentally
demonstrate new phenomena that have no equivalent in
homogeneous systems. We study phase-matched spatial
FWM interactions in photonic lattices, and demonstrate
universal aspects associated with FWM in lattices, such as
FB wave folding of the interaction products, ‘‘engineered’’
phase matching, and ‘‘band control’’ over the FWM inter-
action facilitating continuous tuning determining in which
band and at which momentum the new waves emerge. Our
experimental study is carried out in nonlinear photonic

lattices, yet its consequences are universal, applicable to
any nonlinear periodic system.

Efficient FWM occurs when phase matching is satisfied
[8]. However, there are many FWM configurations that are
inherently not phase matchable in homogeneous systems.
Consider the generic example of semidegenerate FWM
between two plane waves at frequency!1 and a third plane
wave at !2, resulting in a new wave at !4 � 2!1 �!2.
This interaction cannot be phase matched in a homoge-
neous (bulk) medium when the waves are collinear and
have the same polarization, because n�!4� � 2n�!1� �
n�!2� if !1 � !2. Here, we are interested in the spatial
version of this semidegenerate FWM, where the waves are
at the same frequency and polarization, but with different
propagation angles [12].

Consider two plane waves at wavelength � and wave
vectors �k1 and �k2, propagating at angles �1;2 characterized
by their transverse wave vectors k1x � k0 sin�1 and k2x �
k0 sin�2, with k0 � 2�n=�. In a third-order nonlinear sys-
tem, these waves interact and generate new waves propa-
gating at angles ��a�4 and ��b�4 associated with k�a�4x �2k2x�

k1x and k�b�4x � 2k1x � k2x, provided that phase matching is
satisfied, i.e., �k�a�z �2k2z�k1z�k

�a�
4z �0 and �k�b�z �

2k1z � k2z � k
�b�
4z � 0. In homogeneous media, each trans-

verse momentum kx is associated with a single eigenmode
of the system: a plane waves represented by Aei�kxx�kzz�.
Under the paraxial approximation, the dispersion (diffrac-
tion) relation (kz versus kx) is given by kz � k0 � k

2
x=2k0.

Consequently, in such a configuration of spatial FWM,
perfect phase matching (�k�a�z � 0 or �k�b�z � 0) can never
take place if all interacting waves have the same frequency
and polarization [differing only in propagation angles; see
Fig. 1(a)].

Consider now the equivalent semidegenerate spatial
FWM interaction in a lattice. Transport properties in the
lattice are determined by the propagation constants of the
FB waves, ��kx�, which are defined by the lattice period-
icity and potential depth [13]. These lattice parameters can
be engineered to enable perfect phase matching between
FB waves from different bands [Fig. 1(b)], giving rise to
efficient generation of new waves. Furthermore, according
to Bloch Theorem, every FB wave with transverse momen-
tum outside the first Brillouin zone (jkxj>�=D, D being
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the lattice period) is ‘‘folded’’ back into the first BZ by an
integer number of reciprocal lattice vectors KL � 2�=D.
Consequently, nonlinear mixing of four FB waves, all from
Band 1 (three input waves and one new wave), can be
perfectly phase matched. An example is shown in Fig. 1(c),
where the input waves are at k1x, k2x, and k2x, the new wave
at 2k2x � k1x � 2�=D, and �kz � 2�2 � �1 � �4 � 0,
i.e., the process is perfectly phase matched [14].

Our experiments are carried out in an optically induced
photonic lattice in a nonlinearly anisotropic photorefrac-
tive SBN crystal [10,15]. We use a pair of plane waves to
excite the two FB waves that initiate the FWM process, and
monitor this interaction in momentum space by performing
an optical Fourier transform [16]. Typical results demon-
strating Bloch-wave folding through lattice FWM are
shown in Fig. 2. The input waves are at angles correspond-
ing to kx � 0:1�=D and kx � 0:7�=D [17]. In the absence
of the lattice one of the newly generated waves lies at an
angle larger than �=D [kx � 1:3�=D; circled beam in
Fig. 2(a)], and the other at kx � �0:5�=D. These waves
reflect a FWM process with imperfect phase matching. The

lattice alters the diffraction relations (hence the phase
matching) considerably, where the change in the propaga-
tion constant� increases with kx [Fig. 1(b)]. Consequently,
the imperfect phase matching of the wave at kx � 1:3�=D
is spoiled completely, leading to a total disappearance of
that wave, while giving rise to a new wave appearing
between ��=D and �=D [at kx � �0:7�=D, circled
beam in Fig. 2(b)]. That is, the FWM product has been
folded back into the first BZ by one reciprocal lattice
vector. At the same time, � of the wave at kx �
�0:5�=D is less affected by the presence of the lattice.
Hence, the phase mismatch, albeit further increased, does
not cause total disappearance of the wave at kx �
�0:5�=D. It is now essential to verify that the (circled)
beam emerging at kx � �0:7�=D is indeed a nonlinear
product of lattice FWM, and not just the linear Bragg-
diffraction of a wave at kx � 1:3�=D that would have been
the FWM product in the absence of a lattice. To test this,
we perform a control experiment in the same lattice with-
out the nonlinear interaction [Fig. 2(c)]: we launch a plane
wave at kx � 1:3�=D, and find that its Bragg reflection (at
kx � �0:7�=D) is at a low diffraction efficiency (5%),
with the incident wave at kx � 1:3�=D left almost non-
depleted. Thus, the circled beam in Fig. 2(b) is a truly
nonlinear product of lattice four-wave mixing, which has
no equivalent in homogeneous media.

Things get even more interesting for a 1D lattice in a 3D
space, where the system is periodic in one transverse
direction (x), and uniform both in the second transverse
direction (y) and in the propagation direction (z)
[Fig. 3(a)]. Here, the dispersion curve (kz versus kx and
ky) consists of bands and gaps in the direction of period-
icity kx, but is parabolic along the continuous dimension ky
[Fig. 3(b)]. Such systems inherently lack a complete gap,
because the dispersion relation in y is continuous. Hence,
linear and nonlinear coupling between bands can be more
easily achieved. In particular, spatial FWM initiated by
three waves with fixed FB wave vectors (e.g., one at kx1

FIG. 2 (color online). Observation of Bloch-wave folding via
FWM in a lattice. The edges of the first Brillouin zone are
marked by the yellow lines. (a) In the absence of a lattice, one of
the FWM products lies at an angle larger than �=D (kx �
1:3�=D; circled beam). (b) With the lattice ‘‘on,’’ that FWM
product folds back by a reciprocal lattice vector into the first
band and appears between ��=D and �=D (kx � �0:7�=D;
circled beam). (c) A plane wave launched at the same angle as
the newly generate wave (at kx � 1:3�=D), results in a (linear)
Bragg-reflected wave at kx � �0:7�=D, at very low diffraction
efficiency.

FIG. 1 (color online). Spatial FWM processes represented in
the momentum space (kx, kz). Efficient FWM that satisfies the
phase matching condition is presented as a straight line connect-
ing k1, k2, and k4. (a) Under the diffraction relations in homoge-
neous media, perfect phase matching is not possible. (b) The
presence of a lattice enables perfect phase matching between
input waves from Band 1 and Band 2, and a new wave emerging
at Band 3. (c) Perfect phase matching between three FB waves
from Band 1. The newly generated wave resides outside the 1st
BZ, yet its propagation constant (kz) belongs to Band 1. Conse-
quently, the FWM interaction product ‘‘folds’’ back to the first
BZ by one reciprocal lattice vector, and displays Band-1 charac-
teristics (i.e., propagating at an angle smaller then kx � �=D).
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from Band 1, and two at kx2 from Band 2), can be manipu-
lated by varying the angle between the input waves in the
continuous direction y (thus controlling ky). In what fol-
lows, we describe how this setting allows for selecting the
band in which the FWM interaction product emerges.

We begin by defining the k vectors of the interacting
waves. We let the propagation angle of the first wave be in
the x-z plane only, with �k1 � �k1x; 0; k1z�, while the second
wave is launched with some small angle in y, having �k2 �

�k2x; k2y; k2z�. The semidegenerate FWM gives rise to a
new wave with �k4 � �k4x; k4y; k4z�. Transverse momentum
conservation implies that the new wave will emerge at
k4x � 2k2x � k1x � 2m�=D, where m is an integer, and
with k4y � 2k2y. Since k4y � 2k2y, the new wave emerges
at an angle in ywhich is (paraxially) twice the launch angle
in y of the second wave. Conservation of momentum along
z (phase matching) necessitates �kz � 2k2z � k1z � k4z �
0. However, the propagation constant of the second wave
now has two contributions, one arising from the lattice
dispersion in x, and the other from the paraxial propagation
in y: k2z��2�k

2
2y=2k0. That is, the rate at which the

second FB wave is accumulating phase during propagation
is equal to the sum of the propagation constant in the lat-
tice �2 (which depends on k2x and is associated with a
specific band) and the paraxial addition �k2

2y=2k0. Like-
wise, the propagation constant of the (new) fourth wave is
k4z ��4� k2

4y=2k0 ��4��2k2y�
2=2k0 ��4� 4k2

2y=2k0.
Consequently, the phase matching condition is now
�kz � 2k2z � k1z � k4z � 2�2 � �1 � �4 � 2k2

2y=2k0 �

4k2
2y=2k0 � 0. Hence, the new wave is propagating with

�4 � 2�2 � �1 � k2
2y=k0, highlighting the fact that one

can select the band in which the new wave will appear
(manifested in �4) by continuously tuning the angle in y of
the second wave (determined by k2y). Evidently, having a
1D lattice in a 3D space introduces an additional degree of
freedom, where the momentum mismatch caused by lattice
dispersion (from periodicity in x) can be balanced by the
dispersion arising from the homogeneous direction y. This
additional degree of freedom enables perfect phase match-
ing between FB waves from different bands, even when the
longitudinal momentum difference, �� � 2�2 � �1 �

�4, is very large. Moreover, since the angle in y is fully
tunable, it facilitates complete tunability over the FWM
interaction, and the ability to choose the band in which the
interaction product will emerge, for practically any choice
of input FB waves (and bands) initiating the interaction.

We now demonstrate this idea experimentally (Fig. 4).
We excite two FB waves by launching two plane waves at
the appropriate angles [17]; the Band-1 FB wave is excited
at k1x � 0:37�=D, while the Band-2 FB wave with k2x �
1:45�=D (Fig. 4, middle columns). Throughout this ex-
periment, we maintain k1x and k2x fixed (thus keeping the
transverse momenta and the band number of the two input
FB waves fixed), and tune the angle of the Band- 2 FB
wave in the y direction continuously. Consider first the
simplest case, where k2y � 0 (or very small), for which the
system acts in a way similar to a pure 1D lattice (with no
dynamics in the y dimension). In this case, the FWM
interaction leads to a new FB wave with k4x�2k2x�k1x
from Band 3, with perfect phase matching 2k2z � k1z �

k4z � 2��2�2 � �
�1�
1 � �

�3�
4 � 0, as sketched in Fig. 1(b) for

a pure 1D lattice. The experimental demonstration of such
an interaction is shown in Fig. 4(a). The Band-2 FB wave is
tilted by a small angle k2y � 0:3�=D. Hence, the phase
matching condition is satisfied for a Band-3 wave, and the
newly generated wave emerges at k3x � 2:53�=D [circled
beam in Fig. 4(a), which resides in the third band], and
k3y � 0:6�=D.

FIG. 4 (color online). Band control of the FWM product. The
edges of the first Brillouin zone are marked by the yellow lines.
The FWM products are marked by white circles. (a) For a small
tilt angle in y, phase matching is satisfied for a Band-3 FB wave,
hence the FWM product resides in the third band. (b) For a larger
tilt angle in y, phase matching occurs for a Band-2 FB wave.
(c) An even larger angular shift results in a FWM product
residing in Band 1.

FIG. 3 (color online). (a) 1D lattice in a 3D bulk material; the
index of refraction is periodic in x and uniform in y and z.
(b) Band structure of a 1D lattice in 3D space. The three lower
bands (higher propagation constants) are presented.

PRL 97, 073906 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
18 AUGUST 2006

073906-3



Next, we increase k2y to be �=D, while keeping k1x and
k2x the same as in the previous experiment. The FWM
interaction is now able to generate a new FB wave whose
transverse momentum still is k4x � 2k2x � k1x (up to an
integer number of reciprocal lattice vectors). This wave
emerges at a y angle corresponding to k4y � 2k2y, and the
phase matching condition is now �4�2�2��1�k

2
2y=k0.

Consequently, the new wave necessarily has a higher
propagation constant than the k2y � 0 case. For a proper
range of k2y values, the new wave resides in Band 2. This is
demonstrated in Fig. 4(b), with the new wave appearing at
k3x � 1:53�=D, which corresponds to the Band 2, and
with k4y � 2�=D [circled beam in Fig. 4(b)].

Finally, we demonstrate how a FWM product of input
waves from Band 1 and Band 2 can emerge in Band 1
[Fig. 4(c)]. To do that, we further increase the y angle of the
Band-2 FB wave to ky � 1:6�=D, while keeping k1x and
k2x the same as in the previous experiments. The larger
angular shift results in a larger contribution to phase
matching, �4 � 2�2 � �1 � k2

2y=k0, and leads to a new
wave with a large �4 that resides in Band 1. Consequently,
the FWM product appears at k3x � 0:53�=D (Band 1),
with k4y � 3:2�=D [circled beam in Fig. 4(c)].

Before closing, we compare the basic ideas presented
above and temporal frequency mixing processes in peri-
odic optical structures, where it is known that the period-
icity is able to enhance the phase matching [18]. In such
systems, the refractive index is periodic along the propa-
gation direction (i.e., has a grating vector along z, Kz) or
along the transverse direction x (having a grating vector
Kx). The wave-mixing process occurs between temporal
frequencies !, hence the dispersion relation, kz�!�, is
modified by the presence of the grating, which alters phase
matching. However, for temporal frequency conversion
processes the unique features associated with the period-
icity (band structure, Bloch modes, etc.) are not manifested
in the dispersion curve. Hence, temporal frequency mixing
in photonic lattices fundamentally cannot give rise to
Bloch-wave folding, control over the band at which the
FWM products emerge, etc. In contradistinction to our
spatial system, where the mixing is between spatial fre-
quencies, kx, where x is the same direction as the direction
of the periodicity, hence the dispersion curve kz�kx� exhib-
its bands and gaps, etc, This is what enables the new phe-
nomena reported here, having no equivalent in nonlinear
mixing between temporal frequencies in periodic systems.

In conclusion, we explored various phenomena associ-
ated with spatial four-wave mixing in photonic lattices,
such as Bloch-wave folding, and continuous control over
the band at which the interaction products emerge. To our
knowledge, this is the first experimental study on spatial
FWM in photonic lattices and crystals. The physics studied
here is universal to all nonlinear periodic systems in nature.
Indeed, recent works on cold atoms have predicted [19]
and experimentally demonstrated [20] third-order paramet-

ric interactions between matter waves in optical lattices.
The experimental work with Bose-Einstein condensates
[20] was dedicated solely to interactions among Band-1
FB waves. The new concepts presented here, such as
interactions between FB waves from different bands, and
the utilization of a homogeneous dimension to control the
FWM interaction product (‘‘band control’’), introduce new
possibilities that are realizable with cold atoms and with
other nonlinear periodic systems.
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