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Abstract
We present Floquet fractal topological insulators: photonic topological insulators in a fractal-dimensional lattice
consisting of helical waveguides. The helical modulation induces an artificial gauge field and leads to a trivial-to-
topological phase transition. The quasi-energy spectrum shows the existence of topological edge states
corresponding to real-space Chern number 1. We study the propagation of light along the outer edges of the fractal
lattice and find that wavepackets move along the edges without penetrating into the bulk or backscattering even in
the presence of disorder. In a similar vein, we find that the inner edges of the fractal lattice also exhibit robust transport
when the fractal is of sufficiently high generation. Finally, we find topological edge states that span the circumference
of a hybrid half-fractal, half-honeycomb lattice, passing from the edge of the honeycomb lattice to the edge of the
fractal structure virtually without scattering, despite the transition from two dimensions to a fractal dimension. Our
system offers a realizable experimental platform to study topological fractals and provides new directions for exploring
topological physics.

Introduction
Topological insulators are a new phase of matter char-

acterized by an insulating bulk and perfectly conductive
edges1,2. They have been at the forefront of condensed
matter physics for the past decade and more recently
inspired the emergence of topological phases in many
classical-wave systems3–5, such as microwaves6–8, photo-
nics3,9–16, acoustics4, and more. Photonics specifically has
become the cutting-edge platform for exploring all kinds
of topological phases ranging from the quantum spin Hall
effect12, Floquet topological insulators13, topological
crystalline insulator16, and valley Hall effect17,18; all the
way to topological systems that lack periodicity, such as
topological quasicrystals19 and even topological Anderson
insulators, in which the topology is induced by disorder20.
Thus far, all studies of topological insulators have
explored systems in integer dimensions (physically, 2D or
3D) with a well-defined bulk and edges. However, the
physical dimensions do not always define the dimensions

in which a system evolves: some structures have a non-
integer (fractal) dimension, despite being in a 2D or 3D
realm. The existence of systems with fractal dimensions
raises a series of fascinating questions in the context of
topological physics. For example, is it possible to realize
topological edge states in fractal dimensions? Moreover,
fractal structures tend to include holes, so can topological
edge states be found around every hole in the system or
only in the external boundary? Intuitively, one might
think that there are no topological edge states because our
fractal lattices often contain no bulk at all, hence one
cannot rely on the bulk-edge correspondence21,22 to
predict topological edge states in fractal lattices. This
raises a deeper question: is there bulk-edge correspon-
dence when the fractal structure is actually made up of
holes within the bulk?
Here, we investigate the photonic Floquet topological

phase in a periodically driven fractal lattice. This lattice
relies on a fractal photonic crystal [the Sierpinski gasket
(SG)] consisting of evanescently coupled helical wave-
guides, which can be realized by femtosecond-laser-
writing technology23. We calculate the topological
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Floquet spectrum and show the existence of topological
edge states corresponding to real-space Chern number
124,25, which can be controlled by periodic driving. We
explore the dynamics of the edge states and their
robustness in simulations in the fractal SG lattice and find
that wavepackets made up of topological edge states
propagate along the outer edge without penetration into
the bulk and without backscattering even in the presence
of disorder and sharp corners. Likewise, the topological
edge states associated with inner edges in the fractal lat-
tice exhibit robust transport whenever the inner edge
includes a large enough area. These results imply that
fractal structures can act as topological insulators, despite
the lack of periodicity and the structures being made up
mostly of holes. Subsequently, we study transport in a
hybrid lattice combining the fractal lattice with a honey-
comb lattice and find that topological edge states can pass
from the honeycomb lattice into the edge of the fractal
lattice and vice versa, where they exhibit topologically
protected transport. This observation further demonstrate
that the edge states in the fractal lattice directly corre-
spond to the same Chern number as that of a honeycomb
lattice driven by the same periodic modulation. Finally, it
is possible to obtain similar results with other fractal
platforms: the Sierpinski carpet under an aperiodic
arrangement, and we conjecture that the 3D realizations
of both the SG and the Sierpinski carpet also give rise to
topological edge states and, likewise, the Cantor cubes
and Cantor dust. Hence, our results suggest a wealth of
new kinds of topological systems and new applications,
such as using topological robustness combined with the
enhanced sensitivity of fractal systems for sensing and, in
non-Hermitian settings, topological insulator lasers26–28

in fractal dimensions.

Results
Our starting point is the SG with a Hausdorff dimension

df ¼ ln 3ð Þ=ln 2ð Þ ¼ 1:585. Consider a photonic lattice of
evanescently coupled helical waveguides, similar to ref. 13.
Figure 1 shows the iterative generations of the SG. As can
be seen, the first generation G(1) of the SG has nine blue
circles, which indicate the positions of the helical wave-
guides. Generation G(2) consists of three copies of G(1),
sharing three vertices. Accordingly, the G(2) waveguide
lattice has 24 waveguides organized as the second gen-
eration of the SG. Similarly, G(n) has three copies of
G(n− 1), sharing three corner sites. Hereafter, we focus
on fractal lattices of generations G(4) and G(5), and we
conjecture that the conclusions we draw from this study
hold for the SG lattice in any generation. Examining Fig. 1
reveals that all sites in the SG fractal lattice are on the
boundaries, and there is not even a single site that does
not reside on a boundary—external or internal. Finally, as
in ref. 13, this lattice consists of helical waveguides, which

is equivalent to a periodically driven potential that
introduces an artificial gauge field A.
The equation governing the diffraction of light in this

fractal photonic lattice under the tight-binding approx-
imation13 can be written as

i∂zψn ¼ c0
X

<m>

eiA zð Þ�rm;nψm ð1Þ
where z is the optical axis, ψn is the amplitude of the
electric field in the nth waveguide, c0 is the coupling
strength, rm;n is the displacement vector pointing
from waveguide m to waveguide n, A zð Þ ¼
A0 sin Ωzð Þ;� cos Ωzð Þ; 0½ � is the artificial vector potential
induced by the helicity of the waveguides with amplitude
A0 ¼ kRΩ, in which k is the wavenumber of the light in
the medium, R is the radius of the helix, Ω is the
longitudinal frequency of the helix corresponding to
periodicity L ¼ 2π=Ω, and m indicates that the summa-
tion is taken over all the nearest waveguides to waveguide
n. The light evolution in the system is described by the
paraxial wave equation, which is mathematically equiva-
lent to the Schrödinger equation, with the z-axis playing
the role of time. Equation (1) is derived by applying the
tight-binding approximation to the paraxial wave
equation.
The eigen-values and eigen-states can be obtained by

diagonalizing the unitary evolution operator for one per-
iod29. The results of the quasi-energy spectrum β (which
in a photonic lattice are the deviation of the propagation
constant from the wavenumber in the medium13) in the
fractal SG systems are shown in Fig. 2a, with A zð Þ ¼ 0
corresponding to the straight waveguides, and in Fig. 2b,
with A zð Þ≠ 0 corresponding to the helical waveguides.
The spectrum for our G(4) fractal lattice is organized into
five bunches (“bands”) separated by gaps (gray shaded

G(1)

G(4)G(3)G(2)

Fig. 1 Iterative generations of the Sierpinski gasket (SG). The first
generation G(1) of the SG has nine blue sites. G(n) has three copies of
G(n−1), sharing three corner sites. The fractal lattice of helical
waveguides is generation G(4) with a total of 204 sites. Each blue site
marks the position of a helical waveguide. The helicity of the
waveguides introduces an artificial vector potential
A zð Þ ¼ A0 sin Ωzð Þ;� cos Ωzð Þ; 0½ �. For presentation simplicity, we
draw only the three-dimensional schematic of a G(1) lattice of helical
waveguides
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regions in Fig. 2a, b). The spectrum of the non-topological
system (Fig. 2a) shows a large central gap, with a flat
“band” in the mid-gap. These states are immobile and
degenerate (they all have the same energy), as expected
from a non-topological system. On the other hand, for the
driven system (the helical waveguides), as shown in Fig.
2b, the edge states from the central flat band evolve into
nondegenerate unidirectional edge states. Figure 2c shows
the field intensities of the actual wavefunctions of these
eigen-states, specifically states 93 and 95 (out of 204
eigen-states), with quasi-energies of −0.040 and −0.018,
respectively. These states are localized at the exterior
(state number 95) and the interior (state number 93)
edges. As we show below, these states behave as topolo-
gical edge states, exhibiting Chern number 1 and topo-
logically protected transport. Note that in other bunches
with quasi-energies below −0.2 or above 0.2, the eigen-
states are bulk states.

To verify that the edge states we have found [the non-
degenerate unidirectional states in the rectangle of Fig. 2b,
two of which are shown in Fig. 2c] are indeed topological,
we need to characterize our system through its Chern
number. Since fractal lattices are nonperiodic, we calcu-
late the real-space Chern number24,25. Heuristically, the
real-space Chern number “measures” the chirality of
states at a specific quasi-energy, and in periodic systems, it
yields the same integer number as the “standard” Chern
number (defined on the momentum space)24,25. The
definition of the real-space Chern number is

C ¼ 12πi
X

j2A

X

k2B

X

l2C
PjkPklPlj � PjlPlkPkj
� �

ð2Þ
where j; k; l are the lattice site indices within three
different neighboring regions A–C [as drawn in the inset
of Fig. 3b, arranged anti-clockwise], Pjk ¼ hjjPjki and the
projector operator P projects onto a given state of a
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Fig. 2 Eigen-states of the fractal lattice. a Energy spectrum with A zð Þ ¼ 0 (straight waveguides). The spectrum of this non-topological system
displays a large central gap (large gray region), with a flat band in the mid-gap made up of immobile degenerate states. b Quasi-energy spectrum
with A zð Þ≠0 and A0 ¼ kRΩ. The inset shows an enlarged view of the center box. The shaded regions mark quasi-gaps: regions within which there are
no eigen-states. In this topological fractal system, the edge states from either side of the flat band evolve into nondegenerate unidirectional edge
states. c Field intensity patterns of two eigen-states localized at the external and internal edges of the fractal lattice (states 93 and 95, gray and red
dots, respective√ly). The color bar indicates the intensity (normalized to the peak intensity in each state). The parameters used are the ambient
refractive index n0 ¼ 1:45, coupling strength c0 ¼ 1:9 cm�1, wavelength λ ¼ 0:633 µm, helix radius R ¼ 10 µm, longitudinal frequency of the helix

Ω ¼ 2π cm�1, and lattice constant a ¼ 14
ffiffiffi
3

p
µm
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specific quasi-energy (a state with quasi-energy playing
the role of the Fermi level). The results are shown in Fig.
3a, b. We calculate the real-space Chern number for our
fractal lattice and, for a direct comparison, also for a
honeycomb lattice, with both being driven by the same
periodic modulation (manifested here as the helicity of the
waveguides). The lower panels in Fig. 3 show the
methodology of the calculation: the hexagons are divided
into three distinct regions (A–C), each enclosing many
helical waveguides, for both the fractal and honeycomb
lattices. As expected, the helicity induces a topological
bandgap in the honeycomb lattice [Fig. 3a] corresponding
to real-space Chern number 1, which coincides with the
outcome of the natural momentum-space calculation of
the Chern number (which can be used here because the
honeycomb lattice is periodic). For the fractal lattice (Fig.
3b), the result of the real-space calculation is interesting,
as there are many quasi-energy values having nonzero
real-space Chern numbers. The most important quasi-
energy range is from −0.05 to 0.05, which is within the
topological bandgap of the helical honeycomb lattice
where the real-space Chern number is 1. As shown in Fig.
3b, in the helical fractal lattice, the quasi-energies in the
range between −0.05 and 0.05 correspond to real space
Chern number 1, hence supporting the observation that

edge states in this range (e.g., state numbers 95 and 93)
are indeed topological. We find that the gaps between
regions of eigen-values around −0.5, −0.2, 0.2 and 0.5,
shaded in gray in Fig. 2b, separate different bunches of
“bulk states” (states residing away from the edges) with a
real-space Chern number of 0, which means that these
gaps are topologically trivial.
Having found unidirectional edge states with the real-

space Chern number 1, we study the evolution of the edge
states in evolution simulations in the presence of defects
and disorder. Specifically, to verify that edge state number
95 is indeed topological, we demonstrate its ability to
display topologically protected transport, the hallmark of
topological physics. We launch a wavepacket at the edge
of the fractal lattice and simulate its propagation (Fig.
4a–e). The initial wavepacket is a superposition of eigen
edge states such that it has a finite width (see Fig. 4a).
Figure 4b–e shows the light intensity at different propa-
gation distances Z= 10, 20, 30, 40 cm. Clearly, the
wavepacket moves along the edge of the fractal lattice and
passes the corner without scattering. During propagation,
the wavepacket remains confined to the edge, not pene-
trating into the bulk and backscattering. Next, we test the
robustness to disorder. The simulation in Fig. 4f–j shows
that the wavepacket can pass a defect (indicated by the
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Fig. 3 The real-space Chern number as a function of the quasi-energy for the honeycomb (a) and the fractal (b) lattices with the same
nonzero artificial gauge field. The lower panels present the honeycomb and the fractal lattices, which are both triangular-shaped. When
calculating the real-space Chern number, the hexagons are divided into three regions with different shades of gray, each enclosing many
waveguides. The center inset shows an enlarged view of the quasi-energy range of the fractal lattice from −0.1 to 0.1. The parameters of the lattices
are the same as in Fig. 2
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blue dot in the fractal lattice)—a site with on-site disorder
of strength 0:1c0. We find that the propagation of wave-
packets of edge states in the fractal system is very robust
against random on-site disorder of strength up to 0:2c0.
The only visible difference between the initial and final
wavepackets is the diffraction broadening caused by dis-
persion (because the edge states comprising the wave-
packet evolve at slightly different rates).
The topologically protected transport of edge states in

the fractal lattice is not unique to the outer edge. Sup-
plementary Movie #1 shows a similar simulation for an
inner edge in the fractal lattice (the perimeter of a hole).
The excited edge state number 93 exhibits robust evolu-
tion, in the same vein as for the outer edge of the fractal
lattice. Since higher-generation fractals always include
more inner edges as the generation increases, we find (in
simulations) that they exhibit robust propagation on the
inner edges—as long as the edge includes an area that is
larger than G(3)—to serve as the “bulk” region for the
respective inner edge.
Altogether, we have shown that the fractal lattice of

helical waveguides has a nondegenerate unidirectional
edge state residing in a gap (Fig. 2), that several edge states
have a real-space Chern number of 1 (Fig. 3), and that
wavepackets made up of these edge states (in both the
outer and inner edges) display robust transport by going
around the corner and passing defects without back-
scattering or scattering into the bulk. Hence, we proved
that the fractal lattice acts as a topological insulator,
although there is no bulk whatsoever, and that one
cannot rely on bulk-edge correspondence.
At this point, it is very important to emphasize that

there are key differences between the fractal lattice and a

helical honeycomb lattice with randomly missed sites. As
we show in the Supplementary Information, Section B, a
honeycomb lattice with randomly missed sites is not a
topological insulator: its real-space Chern number is
always in the proximity of zero, and its “edge states” do
not exhibit unidirectional robust transport. It is clear that
the additional symmetries of self-similarity on multiple
scales, which are at the heart of fractality, are crucial for
the existence of topological features in driven fractal
lattices.
Finally, we study a hybrid lattice combining both the

fractal and honeycomb lattices stitched together, as shown
in Fig. 5. We launch a wavepacket comprised of topolo-
gical edge states on the honeycomb side and simulate its
propagation into the fractal side of the lattice. Had our
lattice been strictly honeycomb, this wavepacket would
propagate without scattering into the bulk and without
backscattering even in the presence of disorder (or
defects)—as long as the amplitude of the disorder (defect)
does not close the topological gap. However, our lattice
here is a hybrid: half-honeycomb, half-fractal. Hence, this
numerical experiment will serve to show whether (or not)
the edge states we have found support topologically
protected transfer from honeycomb to fractal lattices
modulated by the same helicity. The launched wavepacket
shown in Fig. 5a is constructed from a superposition of
edge states of the honeycomb lattice. Figure 5b–d shows
the evolution, displaying the light intensity distributions at
several propagation distances Z= 5, 10, 15 cm. The
wavepacket moves along the edge of the honeycomb lat-
tice, passes the corner without scattering, enters the
fractal lattice and continues moving along the edge of the
fractal lattice. Throughout propagation in the hybrid
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Fig. 4 Tight-binding simulations of an edge wavepacket propagating in a fractal lattice. a–e Evolution of topological edge states in the fractal
SG(4) lattice. a Intensity distribution of the initial field constructed from a truncated topological edge state in the fractal lattice. b–e Intensity
distribution at propagation distances Z= 0, 10, 20, 30, 40cm. f–j Evolution in the fractal lattice containing an on-site disorder of 0:1c0, the position of
which is marked by the blue dot. The wavepacket displays topologically protected edge transport around the corners and is unaffected by the
disorder. The color bar indicates the field intensity. The parameters for the numerical simulation are the same as in Fig. 2
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lattice, the wavepacket remains confined to the edge, does
not penetrate into the bulk and does not exhibit back-
scattering. Moreover, the simulation in Fig. 5e–h shows
that the wavepacket is able to pass a defect in the fractal
lattice (its position is given by the blue dot)—a site with
on-site disorder of strength 0:1c0. Supplementary Movies
#2 and 3 show long-term propagation in this hybrid lat-
tice, with the wavepacket encircling the lattice multiple
times. Supplementary Movie #4 shows the transport with
the wavepacket initially launched at the fractal lattice.
Finally, Fig. S3 shows the propagation of a wavepacket in a
hybrid lattice where the two components possess different
nonzero real space Chern numbers. In this non-matched
semi-fractal lattice, the wave partially moves along the
edge and partially penetrates into the “bulk” of the fractal
lattice, which indicates that this system has no topological
protection. That is, for a hybrid semi-fractal system to be
topological, its constituents should have the same real-
space Chern number.

Discussion
As stated earlier, our findings here are in fact a pre-

lude to upcoming experiments in a photonic platform,
which will provide experimental proof that fractal

lattices can indeed behave as topological insulators. It is
therefore essential to carry out wave dynamics simula-
tions with the actual experimental parameters and
examine the evolution. As shown in Supplementary
Information Fig. S4, we simulate the wave dynamics of
the tight-binding example of Fig. 5. Our wave dynamics
simulations show good agreement with the tight-
binding simulations, suggesting that what we propose
here is readily experimentally accessible with the cur-
rent technology.
In summary, we proposed photonic Floquet topologi-

cal insulators in a fractal lattice and demonstrated robust
transport along the outer and inner edges of the fractal
landscape. We underpinned the difference between dri-
ven (helical) fractal lattices and lattices with randomly
missed sites and showed that fractal symmetries are
crucial for the existence of topological features. Finally,
we showed that topological edge states can pass from the
edge of the honeycomb lattice to the outer edge of the
fractal structure (of the same chirality) virtually without
scattering, despite the transition from two-dimensions to
a fractal dimension. The parameters used in this work
are all readily accessible for experiments with photonic
lattices fabricated using direct laser writing13,23. These
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Fig. 5 Tight-binding simulations of an edge wavepacket propagating in a hybrid lattice consisting of fractal and honeycomb lattices. The
initial wavepacket (a, e) is constructed from a truncated edge state of the honeycomb lattice. a–d Propagation from the honeycomb region into the
fractal region, displayed at propagation distances Z=0, 5, 10, 15cm. f–h Propagation into the fractal region containing a defect (blue dot) in the form
of on-site disorder of 0:1c0. The wavepacket exhibits propagation along the edges and around the corners and bypassing disorder. The color bar
indicates the field intensity. The parameters for the numerical simulations are the same as in Fig. 2
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experiments could be the first experimental realization
of topological fractal insulators30–32.
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