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Curved-space topological phases in photonic lattices
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We introduce topological phases in curved-space photonic lattices. In such systems, the interplay between the
curvature of space and the topology of the system, as manifested in the topology of the band structure, gives
rise to a wealth of new phenomena. We demonstrate the topological curved-space concepts in an experimentally
realizable setting of a waveguiding layer covering the surface of a three-dimensional body, and show that the
curvature of space can induce topological edge states, topological phase transitions, Thouless pumping, and
localization effects. We also describe the analogy between our system and topological phases in dynamical
curved space-time settings known from general relativity.
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Topological insulators constitute a growing field of research
in condensed matter [1–4] as well as in other fields of
science. They are particularly interesting since they support
transport that is protected against disorder due to the material’s
topological nature. Extending the topological ideas beyond
condensed matter started with the prediction of topological
phenomena with electromagnetic waves [5,6] and experiments
with microwaves in gyro-optic media [7]. Research on topo-
logical phenomena in photonics began with the experiments
on topological edge states in a binary lattice [8] and on
Thouless pumping in quasiperiodic lattices [9]. The next stage
was the search for photonic topological insulators [10–12],
that have topologically protected unidirectional transport of
photons. Photonic topological insulators were demonstrated
in 2013 in two different systems [13,14]. Since then, topo-
logical photonics has been flourishing with many new ideas
[15–18] and conceptual applications for devices based on
topology [10,19,20]. More recently, topological phenomena
have also been observed with cold atoms [21,22], acoustic
waves [23,24], and mechanical waves [25]. Interestingly,
recent pioneering work has demonstrated a photonic system
emulating a two-dimensional (2D) gas on a cone with Landau
levels [26], which is essentially a curved-space setting [27,28].
Clearly, exploring topological phases in curved-space systems,
known from general relativity (GR), can add new fundamental
features to the area of topological physics. Moreover, although
experiments involving gravitational space-time curvature are
rarely accessible in the laboratory [29], it is possible to
construct systems realizing curved-space settings in optics
[30–44], Bose-Einstein condensates [45–47], and acoustics
[48–50], providing platforms for demonstrating GR phenom-
ena [47], triggering new insights.

Here, we present topological phases in curved-space pho-
tonic lattices. We study lattices in the presence of a curved
spatial metric, specifically in cases where the topological
phases are determined by the metric. Our study is carried
out in the context of photonics, but the concepts involved are
universal, having manifestations in many areas of physics. We
study the effects in an experimentally viable physical setting,
a thin 2D waveguiding layer covering the surface of a three-
dimensional (3D) body [51–53], where the light effectively
propagates in 2D curved space. We show that, by engineering

the curvature of the surface (analogous to changing the
spatial metric underlying the photonic propagation), we induce
topological phases, topological phase transitions, Thouless
pumping, and localization effects.

Consider a laser beam propagating in a thin waveguiding
layer covering the surface area of a curved 3D body [51,52],
as sketched in Fig. 1(a). For simplicity, the surface is
azimuthally symmetric about the Cartesian axis z. This surface
of revolution (SOR) is described by the 2 × 2 metric g given
by ds2 = r(z)2dθ2 + dz2 = R(z)2dx2 + dz2 = gxx(z)dx2 +
gzzdz2, where r(z) is the polar radius, θ is the azimuthal angle,
dx = r(z = 0)dθ is the azimuthal angle scaled to units of
length, R(z) is dimensionless, and gzz, gxx are the diagonal
components of g that depend only on z. For such 2D SORs,
the polar radius r(z) is used as a means to control the curvature
of space.

We are interested in photonic topological phenomena that
result from the curved metric of space. Since many topological
systems rely on periodic potentials, we introduce a lattice
structure to the metric, gxx(z) = ∑

n f (z − zn), where f (z)
describes a locally confined contraction or expansion of
space, and zn are the locations of these local distortions of
space. This means that space is contracting in a repeating
form [Fig. 1(a)]. Lattices based on metric curvature were
demonstrated experimentally in photonic systems [54]. Here,
we construct the metric component gxx to have the structure
of a lattice with a topologically nontrivial band structure, and
show that topological edge states can appear and disappear
depending on the curvature of space.

Consider surfaces with a small intrinsic and extrinsic
curvature [with r(z) large compared to the optical wavelength,
such as the hollow cylinder sketched in Fig. 1(a)], of radius r(z)
and thickness h, with a periodic lattice fabricated on it. Here,
the azimuthal symmetry of the surface allows the decoupling
of Maxwell’s equations [51–53] according to ψ(x,z,h) =
φ(x,z)�(h), where ψ is a linearly polarized electric field.
Under these assumptions (see the Supplemental Material [55]),
a coherent beam propagating paraxially in the x direction
[normal to the axis of revolution z; Fig. 1(a)], obeys

2ikx

∂u(x,z)

∂x
= −gxx(z)

gzz

∂2u(x,z)

∂z2
− Veffu(x,z), (1)
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FIG. 1. (a) A cylindrical waveguiding layer with an imprinted
curved SSH lattice. The yellow arrow indicates the direction of light
propagation. (b) Energy spectrum of the curved-space SSH as a
function of the ratio of distances ud/vd ; both ud and vd depend
only on the metric. (c) Eigenmodes of the curved space SSH lattice.
The color map represents the light intensity: Light propagating in a
topological edge mode (upper) and in a nontopological mode when
the system is topologically trivial (lower).

where φ(x,z) = g
1/4
zz g

−1/4
xx u(x,z) exp[ikxx],

Veff = − 3
16gzz

(g
′
xx )

2

g2
xx

+ 1
4gzz

g
′′
xx

gxx
, and kx is the (approximate)

propagation constant (x component of the wave number).
Equation (1) is analogous to the one-dimensional (1D)
Schrödinger equation, where x plays the role of time. The
space metric g(z) introduces two important effects: First, it
creates an effective potential that depends on the derivatives
of the curvature. Second, and more importantly, it makes the
“mass” term [first term on the right-hand side of Eq. (1)]
dependent on the local curvature. Since Eq. (1) is effectively
a linear 1D Schrödinger equation, its eigenvectors and
eigenvalues can be calculated numerically.

Next, we describe how light can propagate in topological
edge states that form strictly due to the space curvature. We
examine the Su-Schrieffer-Heeger (SSH) binary lattice model
[56,57], which is the simplest model exhibiting topologically
protected edge states [58]. The SSH has two coupling constants
u and v, and two phases: topological, when the lattice ends on a
site with the smaller coupling constant and an edge state exists,
and trivial, when the lattice ends on a site with the larger
coupling constant and no edge state exists. The topological
invariant characterizing each phase is found by integrating
the Zak phase of the infinite bulk over the Brillouin zone
[58,59]. Although the SSH model is relatively simple, it has a
topological phase that is related directly to the edge states of 2D
systems such as graphene ribbons [60]. To construct an analog
to the SSH model in curved space, we use the scheme depicted
in Fig. 1(a), with gxx(z) = G0 + ∑

n G(z − zn), where n is the
site index,

zn − zn−1 =
{

ud, n even,

vd, n odd,

ud and vd are distances between neighboring sites, G0 is a
constant basic curvature of the surface, and

G(z) =
{

A
[
1 + cos

(
z
w

)]
, −π < z

w < π,

0, else,

where A and w are fixed amplitude and width [61]. The
structure has small enough derivatives (|∂zgxx | � |qgxx |)
such that Veff is negligible [62]. We compute the eigenenergies
of Eq. (1), and find that this curved-space setting indeed
supports topological edge states and a continuum of bulk
states [Figs. 1(b) and 1(c)]. Specifically in Fig. 1(b), the
horizontal axis (along which a topological phase transition
occurs) is completely determined by the curvature. This shows
how the curvature of space, alone, can support a topological
phase in a real physical system.

Next, we examine the effects of a temporally varying
space curvature on lattices with topological phases. Some
of the most interesting GR phenomena arise when the space
curvature is time dependent. As with many GR effects, it is
very challenging to measure these effects, but one can find
analogous systems for which a coordinate plays the role of
time and the curvature depends on that coordinate. Indeed,
having dynamics in time plays a major role in topological
systems, because systems that are driven by some external
time-dependent force can exhibit a topological phase transition
[63,64]. Here, we find that if a lattice has a space curvature
that varies in time, it is possible to observe topological phase
transitions driven solely by changing the metric in time. We
will now show a scheme where the light is propagating in
the z direction on a SOR, with the curvature changing as
a function of the “time coordinate” z. By tailoring these
curvature variations we can cause dramatic effects on a lattice
with topological phases. We now describe a SSH lattice in
which the uniform contraction or expansion of space can cause
topological phase transitions, and explain how this is different
from the flat-space SSH lattice.

Consider paraxial propagation in the z direction on a
SOR, similar to Ref. [51], and add a small perturbative
potential �n(x,z) (which satisfies:|2k2

0n0�n(x,z)| � k2
0n2

0) in
the form of a lattice potential [array of waveguides, Figs. 2(a)
and 2(b)]. Then, using the paraxial approximation and

the ansatz φ(z,x) = 1
gxx

1/4 u(z,x)eiqze−i/2q ∫z′
0 Veff (z′)dz′

, where

Veff(z) = 1
16 [ 3

g2 g
′2
xx − 1

4gxx
g

′′
xx], we obtain the Schrödinger-like

equation for light propagating in a curved-space setting with a
lattice potential,

i
∂

∂z
u(z,x) = − 1

2qgxx(z)

∂2

∂x2
u(z,x) − k2

0�n(z,x)

n0q
u(z,x).

(2)

This equation is analogous to the 1D Schrödinger equation,
where z plays the role of time, and the space metric g(z) is
causing the expansion or compression of the x axis (scaled by
the azimuthal angle). The two terms on the right-hand side of
Eq. (2) represent the kinetic energy and the lattice potential.
Note that Eqs. (1) and (2), although seemingly similar,
represent two very different cases: Equation (1) represents
propagation perpendicular to the symmetry axis of the SOR,
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FIG. 2. Lattices in dynamical curved space. (a), (b) Lattices of
evanescently coupled waveguides (blue) on a light guiding cone (a)
and on a periodic sinusoidal surface of revolution (b). (c) The flat-
space potential obtained from (b) after mapping it to a flat plane,
keeping the relative distances between waveguides the same (the
outer waveguides in the lattice go through a longer optical path and
stronger oscillations in amplitude than the waveguides in the middle
of the lattice).

while Eq. (2) describes evolution in the direction parallel to
the symmetry axis of the SOR.

Let us first explain the basic difference between a curved-
space lattice and a similar lattice in flat space. The propagation
of light in a curved-space lattice can be treated, to first
order in curvature, as a system in flat space subjected to
artificial gauge fields. For example, for the SOR system,
transforming the x coordinate in Eq. (2) to the “flat” coordinate
x ′ = √

gxxx, neglecting high orders of g
′
xx(z) and using

u′ = u(x,z)e− 1
2 ∫ [

√
gxx (z)]z√
gxx (z)

dz (that changes only the amplitude as
a function of z, but since z plays the role of time it can be
renormalized for every z), gives

i
∂

∂z
u′(z,x ′) = − 1

2q

(
∂

∂x ′ + iq
[
√

gxx(z)]z√
gxx(z)

x ′
)2

u′(z,x ′)

− k2
0�n(z,x ′)

n0q
u′(z,x ′). (3)

When neglecting high orders of g′
xx(z), Eq. (3) is equivalent

to Eq. (2). However, the effect of the curvature appears in
Eq. (3) as a gauge field instead of as a mass term [Eq. (2)].
This mapping means that, to first order of the curvature
derivative, a lattice in curved space is equivalent to the same
lattice in flat space [Figs. 2(b) and 2(c)] but subjected to an
additional metric-dependent gauge field that is linear in x ′. The
consequence of this gauge field is that phase accumulation
in z for all the waveguides is the same, under a uniform
compression or expansion of space. For example, contracting
the transverse coordinate x as the coordinate z is increasing
means shortening the separation between waveguides. This,
in a 2D flat space, results in that the light in different
waveguides accumulates different phases as it evolves in z.
In contrast, in a SOR all accumulated phases are the same for
all the waveguides, when shortening the separation between
waveguides. Thus, waveguiding on a SOR is different than
in flat space, in a fundamental way (beyond just affecting
the distance between waveguides), and this is reflected in
this gauge field, which acts as an effective electric field in
Eq. (3). Also, if we compare Fig. 2(b) to Fig. 2(c) in the

FIG. 3. Topological phase transition induced by the curvature of
space. (a) SSH lattice with a topological phase which is invariant to
the expansion of space in x. The blue lines are waveguides embedded
in the guiding SOR. (b) SSH lattice with a topological phase that
depends on the expansion of space in x. The waveguides are placed
in the inner and the outer side of the shell. If u sin θ < v, the uniaxial
expansion induces a topological phase transition. (c) Realization of a
SSH lattice on a SOR that is effectively the lattice of (b) on a small
segment (in z) near the phase transformation. When �z is small, the
separation between waveguides changes approximately linearly with
z. The yellow lines are the potential wells and the blue surface is the
SOR. (d) Adiabatic propagation of light in the potential of (c) during
a phase transition from topological (edge states exist) to trivial (no
edge states). (e) Adiabatic propagation in an oscillatory SOR. The
light alternates between bulk states and edge states as the topological
phase changes due to periodic changes in the metric.

first-order analysis, the outer waveguides of the lattice depicted
in Fig. 2(c) radiate much more (at a rate increasing with the
size of the lattice) than the outer waveguides of the lattice in
Fig. 2(b), due to the structure of the SOR.

Next, we show how to induce a topological phase transition
by uniformly shrinking the space that underlies the SSH
lattice. The SSH lattice on a SOR is plotted in Fig. 3(a).
Changing the radius of the surface, which is equivalent to
a uniform expansion of space in the x direction, does not
change the topological phase of the SSH lattice, since the
ratio u/v remains constant. However, it is possible to design
a SSH lattice that does not preserve the ratio of the coupling
coefficients even under uniaxial expansion, as illustrated in
Figs. 3(b) and 3(c). Such a lattice enables relating the uniform
expansion of space in the x direction to the topological phase
of the lattice. This can be realized by a cylindrical dielectric
shell whose thickness is small compared to its radius h � R.
For such SSH lattices, the ratio u/v changes upon changing
the radius of the shell [Fig. 3(c)]. If u sin θ < v for the angle
θ plotted in Fig. 3(b), then a topological phase transition
can occur upon expansion or contraction of the SOR. This
condition (u sin θ < v) divides these lattices into two classes.
One class, for which u sin θ > v, has nontrivial topology
that preserves the topological phase for any expansion or
contraction (and any θ ). The other class, for which u sin θ < v,
has trivial topology that does not conserve the topological
phase upon expansion or contraction.

The propagation of light in a SSH lattice in curved space
that expands (e.g., an expanding cone) exhibits a topological
phase transition [Fig. 3(d)]. In all waveguides the light is
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FIG. 4. Thouless pumping induced by curved space. (a) The
coupling coefficients ratio u/v (red line) and the staggered potential
w (black line) in the lossy Rice-Mele pump as a function of z.
(b) Propagation in an oscillating sinusoidal SOR with a staggered
potential obtained by changing the width of the waveguides as a
function of curvature according to the black line in (a). Most of the
power is pumped from one side to the other periodically, with the
same period as the curvature variation.

accumulating phase at the same rate [Eq. (3)], such that the
light remains in the initial state during a contraction that
preserves small g′

xx(z). The geometry of the SOR preserves
translational symmetry under contraction, unlike contraction
in a flat plane for which the lattice experiences an effective
gauge (electric) field that destroys the translational symmetry.
Since translational symmetry is preserved in a SOR, along
with all other symmetries of the SSH, the curved-space SSH
experiences a topological phase transition. In such a phase
transition, the localized edge state transforms adiabatically
into a bulk state, which is an extended state [65]. Of course,
the evolution of the curvature of space does not have to be
monotonic: It can be periodic or even random, as long as it
evolves adiabatically in Eq. (2), so as to ensure that the states
transform adiabatically with negligible couplings between
the different modes of the system. For example, Fig. 3(e)
shows the adiabatic propagation in the lattice of Fig. 2(b)
on a periodic curved SOR with gxx(z) = [1 + sin(	γ z)]2. As
shown in Fig. 3(e), the light bounces between the bulk and the
edges periodically, due to a topological phase transition that
occurs periodically and adiabatically. This relation between
metric variations and topological invariants enables also to
control at which edge the light will be, i.e., trigger Thouless
pumping of power from one edge to the other. The pumping
(Fig. 4) is done by making the on-site energy of the waveguides
dependent on the metric, according to the Rice-Mele scheme
[Fig. 4(a)] [66]. The rate in at which the pumping occurs is
the metric’s period of oscillations. The pumping results in the
transfer of power from one edge to the other at exactly the
same periodicity as the metric [Fig. 4(b)].

Finally, we demonstrate how the dynamics of the metric
can change drastically the behavior of light in a system
exhibiting a band structure with nontrivial topology. In what
we show next, varying the curvature of space nonadiabatically
in a quasidisordered lattice with a topological band structure
breaks the localization of light in the system [65]. For this
purpose, we use the Andre-Aubry-Harper (AAH) model [67],
which is a quasiperiodic lattice described by

Hψn = t(ψn+1 + ψn−1) + 2p cos (2πbn + φ)ψn, (4)

where ψn is the amplitude at site n, t is the hopping coefficient,
and p is the on-site energy coefficient. Setting b to be irrational

k
1 m IP
R 

0.39 0.31

0.14

FIG. 5. (a) Delocalization in a contracting Andre-Aubry-Harper
lattice (AAH). Propagation in an AAH lattice on a cone, going from
the region t < p, where all the modes are localized, to the t > p

region, where all the modes are extended. Light injected into a single
waveguide remains localized until the duality point at t = p, after
which the beam expands. (b) Energy spectrum of the AAH lattice
as a function of the radius of the SOR. The arrow signifies that the
cone crosses the duality point marked by the dashed line. (c) Inverse
participation ratio of the model in (a) as a function of the radius.

makes the lattice quasiperiodic. This model has edge states
(when truncated), and displays a topological band structure,
and a duality point at t = p [67]. The duality results from
the fact that Fourier transforming Eq. (4) with φ = 0 does not
change its functional form, only causing t and p to switch
places. Thus, since the differences in on-site energies localize
all the states when t < p, the duality implies that when t > p,
all the states are localized in Fourier space, hence they are
extended states in real space.

Consider a truncated lattice with waveguides that are
equally spaced on a cone (except the edges) and have on-site
energies (tuned by controlling the width of the waveguides)
according to the AAH model [Eq. (4)]. The curvature changes

1

FIG. 6. Dynamic curvature-induced delocalization in an AAH
lattice. (a) Propagation of an eigenstate in the AAH lattice under
oscillating curvature in the t < p regime. The light remains localized
and behaves as if the system is adiabatic. (b) The same frequency
and amplitude of the metric as in (a) but with average radius around
the t = p point. The light delocalizes in a nonadiabatic way. (c) Part
of the energy spectrum as a function of the SOR radius; the arrows
signify the oscillations of the models (a) and (b), the dashed line is the
duality point, and only the green band’s states couple in the settings
of (a) and (b). (d) Projection of the beam at zfinal on the eigenstates of
the system (vertical axis) for each eigenstate (horizontal axis), after
propagation in an oscillating SOR in the localized regime (t < p), for
various frequencies 	γ (second horizontal axis). There is a resonance
at the metric frequency 	γ = 20[ 1

m
].
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the ratio between t and p. Starting with Eq. (2) and some
algebra, it is possible to show that the AAH model maintains
its functional form [Eq. (4)] for small changes in g, by using
a tight-binding approach. This setting enables one to explore
the dynamics of the system around the duality point. When the
SOR is wide (t < p), all states are localized. In contrast, when
the SOR is narrow (t > p), all the states are extended states.
The transition during propagation [Figs. 5(a)–5(c)] occurs at
t = p and it is adiabatic if the contraction and expansion are
slow enough [65]. To quantify how localized or extended the
propagating wave is, we use the inverse participation ratio,
defined by

∑
i |ψ |2/∑

i |ψ |4 [68], where i goes over the lattice
sites and ψ is the propagating field [Fig. 5(c)].

Placing the AAH lattice on the sinusoidal curved SOR
of Fig. 2(b) allows one to study the effects of curved-
space dynamics on the propagation, and its connection to
the topological band structure. The oscillations of space (at
frequency 	γ ) couple two states A and B if 	γ matches their
kz difference (kz,A − kz,B ≈ 	γ ) and if they have a nonzero
spatial overlap integral. This gives rise to unique delocalization
effects within the AAH model due to the curvature of space.
When the radius of the SOR does not cross the duality point
(t = p) during the oscillations [Fig. 6(a)], the states behave
as if the oscillations are “adiabatic,” and do not couple to
any other state, staying localized. However, when the SOR
begins to cross the duality point [Fig. 6(b)] while keeping the
frequency of oscillations constant, the system behaves in a
“nonadiabatic” way and an initially localized state delocalizes

more and more in every cycle, until light spreads over the
entire lattice, thus exhibiting a “nonadiabatic” behavior. This
behavior can be explained in the following way: The evolving
state can only couple within a certain band (in the topological
band structure) since in our case 	γ is smaller than the gap
in kz [Fig. 6(c)]. But when t < p, the states in that band are
not close to each other spatially, so their overlap integral is
negligible. On the other hand, when the oscillations go through
t = p, the overlap integral grows rapidly and all the states in
the band couple to each other, so the states delocalize and stay
delocalized even when the radius widens again, corresponding
to t < p. The only way the states can delocalize, when t < p

during the entire propagation, is through resonances between
different bands [Fig. 6(d)].

To conclude this Rapid Communication about topological
phases in curved-space lattices, we note that these ideas can be
implemented in experiments, with light propagating in lattices
imprinted on a thin waveguiding layer covering a 3D body,
as the structures fabricated by the NanoScribe in Ref. [69].
The analysis can be extended to nonlinear effects where the
intensity affects the topological phenomena directly.
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