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We find topological band structures in photonic time crystals—materials in which the refractive index varies peri-
odically and abruptly in time. When the refractive index changes abruptly, the light experiences time refraction and
time reflection, analogous to refraction and reflection in photonic crystals. The interference between time-refracted
and time-reflected waves gives rise to dispersion bands, which are gapped in the momentum. We show theoretically
that photonic time crystals can be in a topologically nontrivial phase, and calculate the topological invariant associated
with the momentum bands, which is expressed in the phase between the forward- and backward-propagating waves.
When an interface is generated between two time crystals of different topologies, the Zak phase yields a localized
interface state, manifested as a localized temporal peak. © 2018 Optical Society of America under the terms of the OSA
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1. INTRODUCTION

The past decade has seen rapid development of topological phases
of matter in many areas of physics. These phases classify the
structure of electronic bands of materials [1] and are robust to
the presence of disorder or defects. The study of topological
phases led to the discovery of new and exciting materials such
as topological insulators [2]. However, topological phases are
not only a class of electronic condensed matter systems. Rather,
they are a universal wave phenomenon that manifests itself in
optics [3], cold-atoms [4,5], acoustics [6,7], exciton–polaritons
[8,9], and more. Specifically, in optics, nontrivial topological
phases were demonstrated to produce topological edge states
[10], robust unidirectional light propagation [11–13], unidirec-
tional lasing [14], highly efficient single mode lasing [15,16],
and other exotic phenomena [17,18]. An important class of topo-
logical phases in photonics and other fields constitutes one-
dimensional (1D) topological systems. In fact, topological phases
in photonics were first demonstrated in 1D systems [10] and led
to the demonstration of Thouless pumping [19], parity-time
symmetric topological systems [20], and more.

An interesting type of crystal that was not related thus far to
topological phases is the photonic time crystal (PTC) [21–25].
PTCs are temporal analogues of photonic crystals. While photonic
crystals are dielectric materials designed with a refractive index n�r�
that varies periodically in space, one can think of a PTC as a di-
electric material in which the refractive index changes periodically
in time: n�t�. For our purposes, the variation in n�t� is externally
induced and not an emergent phenomenon. A sudden temporal
change in the permittivity ϵ causes time reflections similar to a sud-
den change of ϵ in space, causing spatial reflections [26–28]. For
PTCs, the change in the refractive index should be fast—on the
time scale of a few temporal periods of the light or shorter;

otherwise, if the change is not abrupt, a gap might still open,
but it will be vanishingly small. Time reflections that occur in a
periodic manner lead to interference between forward-propagating
waves and time-reversed waves, giving rise to Floquet–Bloch states
and dispersion bands, which are gapped in the momentum k,
rather than in frequency [23,24]. However, thus far, PTCs were
never found to exhibit any relation to topological phases.

Generally, temporal modulation of the refractive index is
extremely useful for many purposes such as realizing optical
isolators without the magnetic fields, stopping light, and creating
synthetic gauge fields for light [29–32]. Importantly, for observ-
ing these phenomena, even relatively small changes in the refrac-
tive index suffice, as was demonstrated for silicon photonics
[33,34]. Small changes in the refractive index cause small bandg-
aps in momentum, and therefore, in most of these cases, the mo-
mentum gaps are not substantial. However, to observe the
pronounced features of a PTC, the modulation frequency must
be high enough and the amplitude large enough, such that the
momentum gaps are substantial and have the same order of mag-
nitude as the momentum of the light propagating in the PTC
(otherwise, for small momentum gaps, the observed effects are
inconsequential). Thus far, PTCs were demonstrated only at radio
frequencies in electronic transmission lines [35]. However, the
transition to optical frequencies is close, as PTCs are now attract-
ing growing attention due to recent advances in fabricating dy-
namic optical systems and metamaterials, and are expected to
be observed in the near future [36–38]. In fact, systems with per-
mittivity that varies on short time scales—on the order of the
light’s temporal period—were demonstrated in many optical sys-
tems. Nonlinear effects such as the Kerr nonlinearity in epsilon-
near-zero materials [38] and plasma generation [39] can tempo-
rally change the permittivity and refractive index of a material on
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very short time scales and at large amplitudes—order of 1.
Specifically, the promising results in [38] show that time-modu-
lated materials with large modulation amplitudes in the refractive
index are now within fabrication capabilities of modern technol-
ogy, and that epsilon-near-zero materials are good candidates to
create a PTC in the very near future.

Here, we introduce for the first time, to the best of our knowl-
edge, topological phases in PTCs. We describe PTCs displaying a
nontrivial topology, which form by periodically modulating the
refractive index of a homogenous dielectric medium. We show
that PTCs have a topology akin to that of topological insulators.
We prove analytically and demonstrate in finite difference time
domain (FDTD) simulations, that the topological invariant of the
dispersion bands in momentum is related to the relative phase
between the forward- and backward-propagating waves generated
by the PTC. The topology also gives rise to “temporal topological
edge states,” which are the temporal analogue of topological edge
states. A temporal edge state is manifested by a localized peak in
the amplitude around the time of the temporal edge state. This
peak is formed by the interface between two different PTCs, with
exponentially decaying tails in both temporal directions.

2. RESULTS

The system we analyze first is a spatially homogeneous material
with permittivity ϵ�t�, which is modulated in time, such that
ϵ�t� changes periodically, with period T , in a step-like manner.
This results in a binary PTC with two time segments. In the first
time segment, ϵ�t� � ϵ1 for a duration of t1 seconds, followed by a
second time segment in which ϵ�t� � ϵ2 for t2 � T − t1 seconds
[Fig. 1(a)]. For simplicity, the field is polarized in the x direction
and propagates in the z direction. This model was studied in
[23,24], which showed that this system yields a PTC. Here, we
address the topological features of this system and analyze its im-
plications in photonics and topological physics. With every modu-
lation of ϵ�t�, a time reflection occurs, causing waves to partially
reflect to their time-reversed pair, while preserving the momentum
k due to the homogeneity of space. The time-reversed partner
of a wave is a wave with the same momentum but with opposite
temporal frequency. This is analogous to a wave conserving its
energy and scattering backwards in space in a photonic crystal.

To derive the field propagation in the PTC, we start by
describing a linearly polarized wave with momentum k incident
on the PTC. In each time segment, the frequency is proportional
to the momentum: ωα � kc∕nα, where α is the segment number
and is equal to 1or 2, nα � ffiffiffiffiffi

ϵα
p

, k is the vacuum wavenumber of
the wave, and c is the speed of light in vacuum.

In general, D�t� � R
∞
0 f �τ, t�E�t − τ�dτ, where D�t� is the

electric displacement field, and f �τ, t� is the response function
of the material [40], which in our case changes also in time.
For simplicity of the analysis, we use an approximation of instan-
taneous response, meaning that f �τ, t� � ϵ�t�δ�τ� as in [23].
This simple model of instantaneous response provides the basic
physical effects of topological PTCs, which can then be extended
to a more realistic non-instantaneous response.

For a periodically modulated instantaneous ϵ�t�, the electric
displacement field takes the form

D�α,n�
x � �a�α�n eiωα�t�t1

2 −nT � � b�α�n e−iωα�t�t1
2 −nT ��e−ikz , (1)

whereD�α,n�
x is the electric displacement field in time period n and

time segment α, and a�α�n , b�α�n are complex amplitudes (complex
numbers) representing the displacement field amplitudes in each
time segment.

Notice that we choose t � 0 to be in the middle of time seg-
ment 1. This will turn out to be convenient, since it preserves
time reversal symmetry. In the same fashion, the magnetic field
By has a similar form (related through the waves’ impedance). The
electric displacement field Dx and the magnetic field By are con-
tinuous between different time segments [27]. Imposing this con-
tinuity results in the matrix equation�

a�α�n

b�α�n

�
�

�
W �α� −Y �α�

−Z �α� X �α�

�
n
�
a�α�0

b�α�0

�
: (2)

The explicit form of W �α�,X �α�,Y �α�,Z �α� is given in
Supplement 1. We also note that W �1� � X �1� � W �2� � X �2�≡
W � X . Next, we turn to find the band structure, and the
eigenstates of a PTC that is infinite in time. According to the
Floquet theorem for each momentum component k, the displace-
ment field assumes the form Dx � DΩ�t�e−iΩt eikz , where
DΩ�t� � DΩ�t � T �. Imposing the Floquet form on Eq. (2)
yields the Floquet dispersion relation

Ω�k� � 1

T
cos−1�W � X � (3)

and the Floquet states�
a�1�n

b�1�n

�
� e−iΩnt

�
Y �1�

eiΩT − X �1�

�
, (4)

where a�2�n and b�2�n are obtained by imposing the continuity
conditions on a�1�n and b�1�n . We plot the Floquet frequency Ω
as a function of the momentum k in Fig. 1(b), which constitutes
the band structure of the PTC. The values of k for which Ω is real
are the bands [blue lines in Fig. 1(b)], and the bandgaps are the
regions in which Ω is complex [gray regions in Fig. 1(b)].

In many 1D systems, the topological invariant is given by the
Zak phase [41]. By analogy, one can formulate the Zak phase of
each PTC band as

θZakm �
Z π

T

−π
T

dΩ
�
i
Z

T

0

dtϵ�t�D�
m,Ω�t�∂ΩDm,Ω�t�

�
, (5)

where m is the band index, Dm,Ω�t� is the Floquet mode of the
displacement field, and θZakm is the Zak phase. We find that the
Zak phase takes the values of zero or π for each band (see
Supplement 1 for details). As a concrete example, we calculate
the Zak phases of the bands of a PTC with ϵ1 � 3, ϵ2 � 1,
t1 � t2 � 0.5T , T � 2 �fs�, and present them in Fig. 1(b)
near the appropriate bands. The values of ϵ1 and ϵ2 are not

Fig. 1. (a) Binary photonic time crystal (PTC), for ϵ1 � 3 and
ϵ2 � 1. (b) Dispersion bands of the PTC (blue lines) separated by gaps
(gray regions) in momentum (normalized; k0 � 2π∕T c). The values
(0 and π) labeling each band are the Zak phases associated with the band.
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fundamentally important, but their difference ϵ2 − ϵ1 should be
on the order of 1 for the effect to be substantial in short PTCs.

The main question at this point is what features are dictated
by the Zak phase for light propagating in the PTC. These features
are important, since they are topological and therefore should
be robust to defects and disorder. We study these properties ana-
lytically and verify them in simulation by numerically solving
Maxwell’s equations with the FDTD method.

To describe the effect of the topology on the PTC, we first
need to describe in more detail the characteristic behavior of light
inside and outside a bandgap in momentum. To do so, we sim-
ulate the propagation of two different pulses inside the PTC. Both
pulses have a full width at half maximum of 45 fs. While the first
pulse has a center wavelength of 1.4 μm that falls within a band,
the other has a center wavelength of 0.93 μm that falls within the
bandgap. At t � 0, the pulse starts propagting in free space
(ϵ � 1), and at time t � 220 fs, a PTC with the same parameters
as before starts. The system is linear; therefore, we can decompose
the pulse propagation to the propagation of monochromatic plane
waves and study it according to Eqs. (1)–(4).

According to Eqs. (1)–(4), after the PTC starts, each plane-
wave component of the pulse couples to two Floquet modes,
one propagating in the positive z direction (forward propagating),
and the other in the negative z direction (time reversed).
Figure 2(a) shows the displacement field amplitude of a pulse
for which the momentum components reside in a band of the
PTC. Since Ω�k� is real in the bands, the intensity of the pulse
remains constant (on average) during propagation. When the
PTC ends at tend � 340 �fs� after n � 60 periods, the two
Floquet modes split again, each coupling back to a forward
and time-reversed plane wave. As a result, four different pulses
exist after the time crystal ends.

On the other hand, if the momentum components of the pulse
fall within the bandgap,Ω�k� takes a complex value that results in
an exponential increase of energy as time progresses. For example,
the amplitude of the pulse in Fig. 2(b) is amplified by 20,000 due
to the 60 modulation periods constituting the time crystal. We
notice that some pulse broadening also occurs as the pulse
becomes spatially and temporally wider due to the dispersion
of the PTC. The broadening in Fig. 2(b) is by a factor of 2.5,
while in Fig. 2(a), it is negligible.

When the time crystal begins, the pulse becomes localized in
space with exponentially increasing amplitude. Once the time

crystal ends, the pulse couples to plane waves, but this time
the result is two pulses (instead of four for the case of propagation
in the band). The two pulses are seen in Fig. 2(b) after the PTC
ends. The topological properties of the PTC dictate the phase
between these two pulses as we explain next.

It is instructive to compare the effect of the PTC on a pulse to
the effect of a spatial photonic crystal. Consider again a 1D spatial
photonic crystal—a 1D system of equally spaced layers of
alternating refractive indices. When light is incident on this
1D photonic crystal and has frequencies in the bandgap of the
spatial photonic crystal, all the light is reflected [Fig. 3(a)]. In this
case, the incident wave and the reflected wave have the same am-
plitude but different phases. The Zak phase dictates the sign of
the phase between the incident wave Ei and the reflected wave Er
[42]. In this case, the lattice behaves as a perfect mirror (Et � 0),
and the light does not enter the photonic crystal if its frequency
falls within a bandgap. Considering now the temporal equivalent,
we find that in a PTC, the situation is fundamentally different
[Fig. 3(b)]. A wave cannot travel back in time, and therefore
all the light enters the PTC, regardless of its momentum—even
if it falls within the bandgap. This calls for a new interpretation of
the Zak phase for PTCs. It turns out that in a PTC, the Zak phase
dictates the sign of the phase between the transmitted wave and
the reflected wave, when their momentum is inside the bandgap.

We now describe how the Zak phase dictates the phase differ-
ence between the transmitted wave and the reflected wave in a
PTC. Consider an incident plane wave Eieiωt experiencing n
periods of a PTC [Fig. 1(a)]. The plane wave has wavenumber
k inside a bandgap. After the PTC ends, the pulse splits into a
time-refracted wave: At Eieiωt , and a time-reflected wave
ArEie−iωt , as depicted in Fig. 2(b). We find that in this case,
asymptotically, jAr j � jAt j (assuming n is large enough) [43],
but the relative phase At∕Ar � eiϕs is different in each bandgap
(marked by s) and for each k. The sign of ϕs is determined by the
Zak phase according to

sgn�ϕs� � δ�−1�s�l exp

�
i
Xs−1
m�1

θZakm

�
, (6)

where s is the gap number (lowest gap number is 1),
δ � sgn�1 − ϵ1

ϵ2
�, and l is the number of band crossings below

gap s. For the first six gaps in our example, sgn�ϕ1� � sgn�ϕ2� �
sgn�ϕ6� � 1 and sgn�ϕ3� � sgn�ϕ4� � sgn�ϕ5� � −1. To de-
rive Eq. (6), we compare the displacement field Dx divided by the
magnetic field By at t�end with the same quantity at time t−end. This
gives the relation

Fig. 2. FDTD simulations, showing the amplitude of the electric dis-
placement field (color bar in log scale) of a pulse propagating under the
influence of a PTC. The PTC takes place during the time period marked
in white. In (a), the pulse resides in a momentum band, while in (b), it
resides in a momentum bandgap. Consequently, the pulse in (a) under-
goes two splitting events: when it enters the PTC and when it leaves the
PTC, and eventually four pulses emerge from the PTC. On the other
hand, in (b), the pulse undergoes a single splitting into two pulses.

Fig. 3. Reflection and transmission schematics for a monochromatic
plane wave incident upon an ordinary 1D photonic crystal—(a), com-
pared to a PTC in (b). In the photonic crystal, if Ei is in a bandgap, Et is
zero, whereas for a PTC, the light always enters the time crystal and
passes through it, even if the wavenumber falls within a bandgap.
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At � Ar

At − Ar
� nᾱ

nα

Y �1�eiωαt� � �eiΩT − X �1��e−iωαt�

Y �1�eiωαt� − �eiΩT − X �1��e−iωαt�
, (7)

where t� � tend � t1∕2, and α is 1 or 2 according to the last
segment of the PTC, and ᾱ is the index of the PTC segment which
is not last. From Eq. (7), the phase between At and Ar can be re-
trieved. The relative phase between two pulses has significant in-
fluence on the observables of many systems. For example, coherent
control pump–probe experiments and electromagnetically in-
duced transparency depend on this quantity. Furthermore, for
short pulses, the relative phase can have an even greater importance
as the carrier–envelope phase holds information about the distri-
bution and maximal value of the electric field.

To verify the phase signs obtained analytically from topological
considerations (the Zak phase) for the first six gaps, we calculate
(numerically) the relative phases between the Floquet modes in the
FDTD simulation in Fig. 2(b). We find the phase of each fre-
quency component by Fourier transforming the fields, and then
calculating the difference between the frequency component of
the time-refracted and time-reversed Floquet modes. The phase
differences are plotted in Figs. 4(a)–4(f ) for the first six band gaps.
The sign of ϕ calculated from our FDTD simulation exactly
matches the analytic relation found in Eq. (6) for the entire
bandgap. This demonstrates that indeed the relative phase sign be-
tween the time-refracted and time-reversed fields in this PTC is
determined uniquely by the topological properties of the system.

Topological phases govern the propagation of light in a PTC
in additional ways other than the phase just studied. As known
from topological physics, when placing two sub-systems with dif-
ferent topological phases next to each other, edge states appear at
the interface between them [20,44]. The edge states are eigen-
states of the entire system, confined to the region between the
two sub-systems. In this context, we ask the following question:
what is an edge state in time?

To answer this question, we study the dynamics of light in a
system composed of two sequential PTCs, shown in Fig. 5(a).
The first PTC has ϵ1 � 3, ϵ2 � 1 and t1 � t2 � 0.5T , while
the second PTC has ϵ2 � 3, ϵ1 � 1 and t1 � t2 � 0.5T
[Fig. 5(a)]. Thus, the two PTCs have the exact same bandgaps
and yet a different topology, manifested in the different Zak
phases of their bands. Such two PTCs occur immediately one
after the other, as demonstrated in Fig. 5(a), where the interface
is a specific time point tedge � 8T . We find that a topological

edge state forms at the temporal interface between two PTCs.
Such an edge state in time is essentially a temporal exponential
increase in amplitude towards tedge followed by a temporal expo-
nential decrease right after. The peak amplitude of this process is
at tedge. After the light amplitude decreases, it begins to increase
once again. We plot the displacement field’s amplitude of the
pulse in the PTC as a function of time near the temporal edge
state in Fig. 5(b). The temporal topological edge state is similar in
nature to the spatial edge state between two concatenated Su–
Schrieffer–Heeger (SSH) lattices [20,42,44].

It is instructive to compare our results on temporal topological
edge states between two PTCs and spatial topological edge states
between two crystals. In the spatial case, the topological edge
states always exhibit exponential decay on both sides of the inter-
face. Topological edge states of PTCs, on the other hand, exist
between regions that each support exponential increase of the am-
plitude. Thus, the phenomenon observed in PTCs of a peak
decaying in both temporal directions is completely counterintui-
tive. This decrease in amplitude on either side of the topological
temporal edge state between two PTCs means that the external
modulation extracts energy from the system, which can have
many implications.

At this point, we wish to examine a more realistic case in which
the modulation of the refractive index is not step-like, but smooth
[with ϵ�t� still instantaneous with the polarization]. In this con-
text, the main question arising is whether the topological invar-
iants 0 or π still have physical implications after the smoothening
of the step-like modulations previously discussed. In the smooth
case, the electromagnetic wave equation for a PTC has a more
complicated form and should be solved numerically. Naturally,
such smooth modulation is more physical and more general.
Thus, in the case of time-dependent ϵ�t� with instantaneous re-
sponse, the wave equation for the electric field E , derived from
the Maxwell equations, takes the form

∇2E � ϵ�t�μ ∂
2E
∂t2

� 2μ_ϵ�t� ∂E
∂t

� μϵ̈�t�E , (8)

where μ is a constant magnetic permeability.

Fig. 4. (a)–(f ) Phase difference ϕ between the forward- and backward-
propagating Floquet modes of the first six gaps of the PTC, obtained
from FDTD simulations. These results match the calculation based
on the topological invariant—the Zak phase, in Eqs. (5) and (6).

Fig. 5. Temporal topological edge states between two PTCs. (a) Two
PTCs with different Zak phases cascaded at t � 8T . (b) The amplitude
of the displacement field of the pulse propagating in the PTC plotted in
(a). The light’s amplitude increases exponentially in time up to the inter-
face between PTCs at t � 8T . Immediately after the interface, the am-
plitude starts to decrease exponentially, before eventually returning to its
normal bandgap behavior of an exponential increase as the time pro-
gresses. The result is an amplitude peak localized at the time of the inter-
face between PTCs. (c) Time lattice with smooth modulation.
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We find (numerically) that the eigenmodes of Eq. (8)—with ϵ
modulated smoothly in time [Fig. 5(c)]—do conserve the proper-
ties dictated by the integer Zak phases of the step-like model, de-
spite the derivative terms added on the right-hand side of Eq. (8)
(see Supplement 1). Observing Eq. (8) for a periodic (temporally
infinite) smoothly time-modulated ϵ�t�, the equation has time-
translation symmetry by the lattice time period T , and thus has
Floquet eigenmodes. Moreover, Eq. (8) is symmetric with respect
to time inversion ϵ�t� � ϵ�−t�. Due to those two symmetries, the
implications of the Zak phase are not lost by the smoothening
[41]. Consequently, a relatively small smoothening as in
Fig. 5(c) does not alter the phases of the bandgaps in Fig. 4. In
this context, measuring the phase sign numerically between pulses
emitted from the smooth PTC in Fig. 5(c) gives the same results
as for the step-like PTC in Fig. 1(a) (see Supplement 1).

It is important to clarify that the phase relation and the effects
of the Zak phase are not exclusive to pulses, but universal to all
electromagnetic plane waves propagating in the linear PTC. The
FDTD simulations describe the linear propagation of pulses,
which are a superposition of plane waves and therefore describe
the dynamics of all the different plane wave frequencies.

Last but not least, we propose a realization for the topological
PTC with an epsilon-near-zero material based on Al-doped zinc
oxide. Very recently, it was demonstrated that the refractive index
of this material can be set to vary uniformly in time from
near-zero values to values on the order of 1 at optical frequencies
[38,45,46]. As we explained here, observing the temporal topo-
logical effects in PTCs requires a material that can change its re-
fractive index amplitude by order of 1 on a few femto-seconds
time scale. Thus, the system of [38,45,46] is an excellent candi-
date for exploring topological effects in PTCs. We also stress that,
regardless of its interesting properties, measuring the topological
properties of a PTC is also a useful approach for studying PTCs in
experiments. The reason is that topological phenomena are fun-
damentally robust to disorder, and therefore topological lattices
produce exact measurements even when fabricated with low
accuracy, as is typically the case in pioneering experiments.
Furthermore, the topology here is applicable for the entire electro-
magnetic spectrum; thus, it can also be demonstrated even at
radio frequencies in electronic transmission lines [35].

3. CONCLUSION

Before closing, we would like to emphasize the similarities and
differences between the topological PTC presented here and
another class of topological systems arising from temporal modu-
lation: Floquet topological insulators [47], which were demon-
strated in photonics [12]. The topology we present here is
fundamentally different from Floquet topological insulators. In
Floquet topological insulators, the driving field, which is a tem-
poral modulation, is auxiliary designed for opening a topological
gap in the frequency dispersion ω�k� of a crystal, i.e., of a system
that is periodic in space. In contradistinction, for PTCs, the time
is the crystalline dimension itself. Hence, the abrupt temporal var-
iations in PTCs open a topological gap in momentum k and not
in frequency ω. This is a property of systems governed by equa-
tions with a second derivative in time, such as the wave equation
in electromagnetism. Consequently, the ideas proposed here are
relevant to virtually any wave system in nature, where the proper-
ties of the medium can be varied in time.

In conclusion, we studied a topological PTC, proved that it has
distinct topological phases, and demonstrated how they affect the
propagation of light inside the PTC. Understanding the topologi-
cal phenomena associated with PTCs can lead to many interesting
avenues of research. For example, many interesting topological
phenomena appear only in dimensions higher than one. Here,
even though there is only one time dimension, adding a PTC
to spatial 1D lattices (such as the SSH lattice) would lead to
the formation of topological insulators in space–time. Finally,
we note that PTCs also have interesting quantum properties
[48], as they are related to photon pair production from the vac-
uum state and to squeezed light [43]. Undoubtedly, experimental
avenues for realizing PTCs are now rapidly developing, and ex-
periments with PTCs are expected in the near future. Unraveling
the topological aspects of PTCs, along with their classical and
quantum properties would greatly help in understanding the
fundamental nature of time, light, and periodic phenomena.

Note added in proof: we note a related manuscript on topo-
logical time crystals that appeared on the arXiv while our paper
was under review [49].
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