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Abstract: We present shape-preserving self-accelerating beams of 
Maxwell's equations with optical nonlinearities. Such beams are exact 
solutions to Maxwell's equations with Kerr or saturable nonlinearity. The 
nonlinearity contributes to self-trapping and causes backscattering. Those 
effects, together with diffraction effects, work to maintain shape-preserving 
acceleration of the beam on a circular trajectory. The backscattered beam is 
found to be a key issue in the dynamics of such highly non-paraxial 
nonlinear beams. To study that, we develop two new techniques: projection 
operator separating the forward and backward waves, and reverse 
simulation. Finally, we discuss the possibility that such beams would reflect 
themselves through the nonlinear effect, to complete a 'U' shaped trajectory. 
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Introduction 

The research on accelerating beams has been growing rapidly since it was introduced into the 
domain of optics, by Demetri Christodoulides, in 2007 [1,2]. The best known accelerating 
beam is the paraxial Airy beam, which propagates along a parabolic trajectory while 
preserving its amplitude structure indefinitely. The effect is caused by interference: the waves 
emitted from all points on the Airy profile maintain a propagation-invariant structure, which 
shifts laterally along a parabola. This beautiful phenomenon has led to many intriguing ideas 
such as guiding particles along a curve [3], light-induced curved plasma channels [4], and to 
recent studies on shape-preserving accelerating beams in nonlinear optics [5–12]. The idea of 
nonlinear accelerating beams goes back to Giannini and Joseph [13] who found temporal self-
accelerating solitons in Kerr media. However, that pioneering idea has been largely forgotten. 
Instead, scientists attempted to launch Airy beams into nonlinear media, and have found, in 
experiments and in simulations, that the beams do not propagate as an accelerating shape-
preserving entity [9–11]. Except for cases where the nonlinear effects on the beam were weak 
[4], the beams deform and even breakup [9–11]. Thus, the prevailing opinion around 2010 
considered strong nonlinearity as an obstacle for having accelerating beams. In spite of this 
general opinion, we have shown [5] that a specific design of the beam profile can make it 
accelerate in a shape-preserving manner while propagating in the nonlinear Kerr [5,6] 
nonlocal [7], and quadratic [5,8] media. Moreover, a recent study [12] has shown, by 
analyzing the spectrum, how an initial linear Airy beam launched into the nonlinear medium 
is evolving into our nonlinear solution [5,6]. In fact [12], proves that our nonlinear 
accelerating solution is an attractor for the nonlinear dynamics. All of these studies, however, 
were in the paraxial domain. 

In fact, until recently, all studies on accelerating beams were on paraxial beams, namely, 
they have all dealt with solutions of the paraxial wave equation, where they are analogous to 
the accelerating wave-packets that are exact solutions of the Schrödinger equation [14]. 
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Therefore, the propagation of such Airy beams had to stay paraxial, i.e., the trajectory was 
fundamentally limited to small (paraxial) angles. This restriction is a serious limitation, 
because the paraxial accelerating beam is moving on a curve which bends ever faster, and is 
eventually bound to break its own domain of existence. Indeed, using Airy beams beyond the 
paraxial domain leads to fast breakup – whenever the fine structure (oscillations) on the Airy 
waveform become on the scale of a few wavelength or smaller [15–17]. Interestingly, though, 
a different method to find accelerating wavepackets has done better beyond paraxiality: the 
caustics method. Using the caustics method one can design beams that accelerate along any 
convex trajectory [18]. A recent study [19] has used the caustics method to design beams that 
could bend to large non-paraxial angles, but such method inherently cannot really find shape-
preserving solutions. Hence, the caustics-based non-paraxial accelerating beams in [19] did 
not display propagation invariance. Altogether, until recently it was believed that accelerating 
wavepackets are a unique phenomenon associated with Schrödinger-type equations, rather 
than being a general feature of waves. In spite of this prevailing opinion, several months ago 
we presented [20] non-paraxial shape-preserving accelerating beams that are solutions to the 
full Maxwell equations for time-harmonic fields. Finding these solutions for the Helmholtz 
equation has made them general and applicable for a very large class of wave phenomena in 
nature: ranging from acoustics and ultrasonics to waves on two dimensional membranes, and 
more. In the past few months, these beams were observed experimentally by both Dudley's 
group [21] and our group [22]. Among other things, we have found that non-paraxial 
accelerating beams can be designed to have features on the scale of a single wavelength. This 
stretches the spatial spectrum of the beam to the maximum possible, without crossing the line 
to the evanescent regime. But even so, the fundamental limit remains: the features of the 
beams cannot be smaller than a single wavelength without being composed of evanescent 
waves. Otherwise, the evanescent part would inevitably decay, causing the beam to change its 
shape dramatically. This raise an intriguing question: are we restricted by the same limitation 
in nonlinear optics? Is it possible to design a nonlinear accelerating beam with sub-
wavelength features that would not decay? Another interesting question is related to the 
maximum possible bending angle: when the beam is launched from single planar aperture, 
bending up to 90° is the theoretical bound on linear beams [20–22]. What is the limit of 
bending of nonlinear self-accelerating beams? Can we design a self-trapped beam that would 
turn itself backward? 

Here we present the first nonlinear self-trapped accelerating beams of the full time 
harmonic Maxwell equations [23]. These beams accelerate along a circular trajectory in a 
shape-preserving manner. We show that such nonlinear non-paraxial accelerating beams 
involve coupling between forward- and backward-propagating beams, giving rise to unique 
effects: Specifically, part of the beam is reflected due to the nonlinear change of the 
permittivity. However, the reflections are exactly compensated by the backward moving part 
of the wavepacket. We study the behavior of the beam in the absence of the backward part, 
showing that in the presence of a strong nonlinearity the trajectory of the shape-preserving 
beam is altered from being exactly circular acceleration. Moreover, at a very high 
nonlinearity, such nonlinear coupling between the forward and the backscattered waves leads 
to regime of instability, where unexpected highly nonlinear, possibly chaotic, dynamics arises. 
In addition, accelerating shape-preserving propagation occurs even when the beam is 
constructed of subwavelength features, such that a significant part of its power resides in the 
evanescent regime. In this context, this work proves that the nonlinearity takes a unique role 
in the propagation, preventing the evanescent spectrum from decaying. 

Derivation of the solution 

We begin from Maxwell's equations with nonlinearity of the form n
2
(E) = n0

2
(1 + ε(|E|)) for a 

general saturable or Kerr-like nonlinearity that depends only on the intensity I = |E|
2
. In 

general, the nonlinear permittivity ε is a tensor [24] that also depends on the electric field E, 
but we analyze here the case of a TE-polarized beam which does not mix the polarization. For 
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a y-polarized time-harmonic field propagating in the x-z plane, Ē = EY(x,z,t)ŷ, Maxwell's 
equation yield the nonlinear Helmholtz equation: 

 ( )2 2

0 0
0.

xx zz
E E k E k I Eε+ + + =  (1) 

Equation (1) displays full symmetry between the x and z coordinates. Hence it is logical to 
seek a shape-preserving beam whose trajectory resides on a circle. We therefore transform to 
polar coordinates r,θ by taking z = r sin(θ), x = r cos(θ), and seek shape-preserving solutions 
of the form E = U(r)e

iαθ
. Here, α is some real number indicating the phase velocity of the 

beam in the azimuthal direction, which is the direction of propagation. The radial function 
U(r) must satisfy: 

 ( )2 2

2 2

2 21
0 0 0.d d

r drdr r
U U U k U k U Uα ε+ − + + =  (2) 

A special case of this equation (specific nonlinearity and no acceleration; α = 0) is solved in 
[25], giving the nonlinear Bessel beam with zero angular momentum. In contrast to that, we 
are interested in high values of α (large beam bending). To find accelerating (α>0) solutions 
of Eq. (2), we notice that for some sufficiently small r = r0 value (typically α/k0), the 
amplitude is small enough such that the nonlinear term is negligible. Hence, we use the 
analytic Bessel solution of the linear equation to set the boundary conditions: U(r0) = Jα(r0k0), 
U'(r0) = J'α(r0k0), and with them we solve the eigenfunction Eq. (2) numerically. This method 
successfully finds solutions for the Kerr nonlinearity in both focusing and de-focusing cases, 
and also works for saturable nonlinearities. Other types of nonlinearity would also yield 
solutions, but in certain cases of strong nonlinearities will have a threshold for the existence 
of an accelerating solution. For example, above a certain value of defocusing Kerr, no 
solution exists (a similar effect is found in the paraxial regime; see [5]). Since we work at 
non-paraxial angles, diffraction effects are very strong; hence in order to display considerable 
nonlinear effects, the nonlinearities should be strong. This logic of having nonlinear and 
diffractive effects comparable is well known from solitons [26], where for a simple Kerr 
soliton the width is inversely proportional to its height. Consider for example the existence 
curve of the Kerr solitons, where the family of solutions forms a hyperbola in the height-
width plane. This means that there is a tradeoff between high non-paraxial angles of bending 
and high nonlinear effects. 

This last issue is very important, namely, making sure there are physical parameters that 
support a nonlinear Maxwell accelerating beam. This is not so simple because, as we 
explained above, taking higher nonparaxial bending makes the nonlinear effects smaller in 
comparison, and vice versa. Hence, higher beam bending inevitably involves larger 
nonlinearities. To explain the tradeoff, consider an accelerating beam of high acceleration. As 
known from the paraxial [1,2] and the non-paraxial [20] regimes, this requires narrow lobes, 
which therefore experience faster diffraction broadening. This implies that in order to observe 
significant nonlinear effects – the nonlinear index change must be very strong. On the other 
hand, for a beam with wider lobes diffraction effects are weaker, hence weaker nonlinearities 
will affect the propagation dynamics. To give a qualitative explanation, we first find a relation 
between the width of the lobes to the bending of the beam, for the linear case: compare the 
acceleration of the linear non-paraxial beam, k/α ([20]), to the acceleration of an Airy beam, 

(2d
3
k

2
)
−1

, where d is the scale of the Airy beam and is typically the width of the main lobe. 
From such comparison we get that α = 2(dk)

3
 = 16π

3
(d/λ)3

~500 × (the number of wavelengths 
in the main lobe)

3
. To proceed, we obtain that needed number by considering the nonlinear 

effect on a single lobe. That is, from intuitive soliton considerations (the existence curve) 

[26], for a nonlinear index change of ~10
−4

, the typical width of a beam which would be 
significantly affected by the nonlinearity is around 20 wavelengths. Substituting this estimate 
forces us to take α to be at least 4 × 10

6
. From α, it is easy to find the needed transverse width 

of the beam: to achieve significant bending, the initial aperture should be at least half the 
radius of the circular trajectory ([20]), 0.5α/k, which is more than 4 meters, for the above 

#170554 - $15.00 USD Received 15 Jun 2012; revised 16 Jul 2012; accepted 16 Jul 2012; published 1 Aug 2012
(C) 2012 OSA 13 August 2012 / Vol. 20,  No. 17 / OPTICS EXPRESS  18830



parameters in the visible wavelength regime. The important consequence of this calculation is 
that one needs a strong nonlinearity to observe the nonlinear self-accelerating Maxwell beam. 
In particular, for the Kerr nonlinearity, the dimensionless nonlinear refractive index change is 

n2I = 2(dk)
−2

. Hence we can write α directly using the refractive index change: α = 

2
(5/2)

(n2I)
(−3/2)

. A strong nonlinearity of n2I~10
−2

, which is nevertheless accessible in organic 
materials, yields α ~5,500, which would require an initial beam width of ~1cm to observe 
significant non-paraxial nonlinear bending. 

 

Fig. 1. Profile of the electric field (a) and amplitude of the Fourier transform (b) of a nonlinear 
(linear) accelerating beam in blue (red dashed). The edges of the evanescent regime are marked 
by a black dashed rectangle in (b), emphasizing in the enlarged window that the peak of the 
Fourier amplitude is at kx>k0. These beams have angular momentum of α = 60 for the nonlinear 
(blue) and α = 45 for the red (linear). The nonlinear change in the permittivity is εmean = 0.05, 
on the background of εmax = 1.3; with λ = 1µm. 

Figures 1(a) and 1(b) show the beam profile and the corresponding plane-wave spectrum 
of a nonlinear accelerating beam, compared with those of the linear accelerating (Airy) beam. 
Both beams are truncated at the same finite aperture with its edges outside of Fig. 1(a). The 
aperture creates the ripples and the decaying tail found in Fig. 1(b). In all cases, the result is a 
beam which is shape-preserving along any circular curve (as is shown in Fig. 2(a) which is the 
solution of Eq. (2) transformed back to the x-z plane). One might be tempted to assume that 
this beam can propagate in circles endlessly, anti-clockwise, with its phase velocity α. 
However, the boundary conditions here are still at plane z = 0: the incident beam is launched 
as E(x,z = 0) and is propagating in the forward + z direction only. Therefore, the solution of 
(2) should be used only as the initial condition for x>0 in the z = 0 plane, where α>0 yields a 
beam bending anti-clockwise, or for x<0 in the z = 0 plane where α<0 generates a clockwise-
bending beam. This selection of initial conditions breaks the full symmetry of the polar 
coordinates, and limits the acceleration of the beam to one quarter of the circle, after which 
the trajectory should (according to the solution of Eq. (2)) bend back toward -z. However, 
only a backward propagating beam can actually go back along the second quarter of the 
circle, and such a beam does not agree with the physical boundary conditions [20]. We add 
the black arrows in Fig. 2(a) to clarify this issue: the beam in Fig. 2(a) is composed of both 
forward and backward propagating parts, making it a physical solution only if one allows two 
boundaries, below and above, initiating two beams that propagate forward and backward 
respectively. Interestingly, nonlinearity creates an exception; since a backscattered wave 
coming from the nonlinear change in the refractive index can be back reflected. Hence, waves 
that propagate back exist even when boundary conditions are set such that only forward 
propagating waves are launched. Consequently, the exact solution of Eq. (2) is not the actual 
physical solution for a beam launched at z = 0, but instead it approximates the desired beam 
with increasing accuracy for larger α. This peculiarity is discussed in more details in [20,27], 
although an important difference should be noted: in linear media, the forward and backward 
propagating waves are completely decoupled, hence launching a forward propagating beam in 
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homogeneous linear media will never cause any part of the beam to propagate back. On the 
other hand, adding nonlinearity to the same medium causes the forward and backward 
propagating waves to interact through the nonlinearity, hence they cannot be separated. In any 
case, to understand the actual physical dynamics we need to simulate the nonparaxial 
nonlinear dynamics of our solution. Such a simulation is challenging even with simple 
Gaussian-like beams, and has received much attention from past researchers [28–33]. 
Unfortunately, none of the previous techniques worked for our accelerating beams, which is 
why we had to develop two specific methods described below. 

Decoupling the forward and backward waves 

The coupling of the forward and backward waves is crucial for finding the correct physical 
solution. Had the system been linear, we could have used the projection in Fourier plane 

(x→kx) which takes the form of ( )
1
22 2 1

02 2

i
x zk k

−
− − ∂ + to exactly eliminates the backward 

propagating waves and gets the solution which satisfies the physical boundary conditions (i.e. 
beam is launched at z = 0). However, in a nonlinear wave system, the task of separating the 
wavepakcet into the forward and backward propagating parts is more complicated, but 
possible; see Fig. 2(c,d) for the forward and backward beams, calculated by the method 
explained in this section. We suggest a general technique for this separation, that can actually 
be utilized for any wave system which is second-order in the propagation parameter z. For 
each plane of constant z0, we substitute the field into the nonlinear term to define a linear 

operator M = ∂x
2
 + k0

2
 + k0

2ε(I); Eq. (1) is now Ezz = -ME. Using the eigenvalues λi and the 
eigenfunctions ui = ui(x) of M, one can express any solution (close enough to the plane z = z0) 
as a sum of the forward and backward propagating parts (first and second sums respectively) 

 ( ) ( ) ( )0
, .i ii z i z

i i i i

i i

E x z z c u x e c u x e
λ λ−+ −≈ = +∑ ∑  (3) 

Note that all the terms of the sums are not evanescent, since M is a positive definite operator, 
hence all its eigenvalues are positive. This property of M also causes the square root of the 

operator √M to be well defined ((√M)
2
 = M). One can prove that this yields a projection 

operator of the form ( ) 1
1

2 2

i
z

M
−

− ∂ +  that eliminates the backward propagating waves and 

leaves just the exact forward beam. Note that this projection must be evaluated for each plane 
z = z0 separately, since our beam changes in different planes and vary the induced refractive 
index. Numerically, the calculation is done by algorithms for the square root of matrixes. 

Unfortunately, however, splitting the solution of Eq. (2) only at z = 0 into the forward and 
the backward parts is not sufficient for identifying the physical solution arising from a beam 
launched at plane z = 0 and propagating in the forward ( + z) direction only. This is because 
the problem is nonlinear, hence even after the division; one cannot eliminate the backward 
waves, since they are part of the physical solution. Mathematically, this means that the correct 
boundary condition (e.g., at z = 0) has an unknown back-propagating part. Physically, any 
incoming accelerating beam is expected to backscatter part of it, since it has a wide k-space 
spectrum. This creates a wave that propagates back which includes contributions from waves 
back-reflected from many planes, and might even reflect part of it forward again. In any case, 
the backward part of the beam at z = 0 cannot be set to zero. Rather, the backward 
propagating part at z = 0 depends on the incoming beam in a complicated manner. This issue 
will be revisited below, and as we show there, one can resolve it numerically via “reverse 
simulation”. 
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Fig. 2. (a) The full self-accelerating self-trapped beam composed of both the forward and 
backward wavepackets, shows perfect shape-preserving bending of the nonlinear beam. (b) 
The self-accelerating nonlinear beam for physical boundary conditions at z = 0, showing an 
approximately shape-preserving bending. (c) The forward propagating part. (d) The backward 
propagating part. The arrows indicate the direction of propagation. Both panels have α = 160 
and εmax = 0.1. All scales are in microns; λ = 1µm. 

Coupled mode theory 

Before proceeding to the full numerical solution, we suggest a simplified scenario. Assume 
that two beams are launched at opposite azimuthal directions. The first is launched counter-
clockwise from θ = 0 and the second is launched clockwise from some other angle θ1<90°. An 
exact solution of (2), such as Fig. 2(a), would be achieved only under three terms: First, if the 
forward propagating part of the beam (Fig. 2(c)) is chosen as the boundary at θ = 0. Second, 
the clockwise propagating part of the beam is chosen as the boundary condition at θ1 (due to 
azimuthal symmetry we can use the values of the backward part of Fig. 2(d) on any θ). Third, 
the two beams must be mutually coherent. We should highlight the fascinating underlying 
physical insight in this: the backscattered beam of the counterclockwise part destructively 
interferes with part of the clockwise propagating beam, and vise versa. All in all, the two 
nonlinear wavepackets (Fig. 2(c,d)) add up into the exact solutions presented in Fig. 2(a). 
Consequently, the nonlinear coupling of the backward (or backscattered) and to the forward 
waves is vital in understanding of the full nonlinear dynamics. Yet, simulating the nonlinear 
dynamics is essential for checking the stability of the solution which is by no means 
guaranteed, and the numerical simulation is the strongest method to verify stability. However, 
simulating this coupled dynamics of the two beams is very complicated. Such simulation can 
be carried out in an iterative manner similar to that of [34], which studied the coupled 
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nonlinear interaction between solitons propagating in opposite direction. Instead, we prefer to 
make use here of another approach, reverse simulation, which numerically simulates the 
propagation arising from a single beam launched at z = 0, with no pre-assumptions. 

The reverse simulation 

At an infinite distance z from the launch plane z = 0, we expect the beam to have only a 
forward propagating part, since no backward propagating beam would be back reflected from 
infinity, where the nonlinear index change is negligible so no reflections would occur. This 
means that at some large enough z1 the desired solution should consist of only a forward 
propagating part. Our simulation utilize this fact: First, we take the solution of Eq. (2) (Fig. 
2(a)) at z = z1 and use the nonlinear projection of it onto the forward propagating wavepacket 
(Fig. 2(c)). Second, we propagate this beam in reverse until z = 0, by combining an explicit 
Runge-Kutta method with nonlinear beam propagation terms. In practice, of course we cannot 
take an infinite z value, but still our numerical simulation yields precise accelerating beams 
(Fig. 2(b) presents the beam calculated by our reverse simulation method). Note that the 
solution is close to the full (forward + backward) solution of Eq. (2) (Fig. 2(a)). The reason is 
that large α give a strongly anti-clockwise beam which has almost all the power in the forward 
part. Therefore, the initial beam can be chosen directly from the result of Fig. 2(a) with almost 
no change. The beam bends to an angle of 45°, while maintaining an almost shape-preserving 
profile. However, note that backscattering does play an important role – the trajectory is no 
longer an exact circle, and is instead stretched due to the absence of the balancing backward 
wave. The comparison to the exact circle is marked by the black dashed ark. For clarification, 
we emphasize that the beam of Fig. 2(b) is the physical solution of a beam launched at z = 0, 
while the beam of Fig. 2(a) requires two counter propagating beams, and is otherwise only a 
mathematical solution of Eq. (2). 

The upper boundary of Fig. 2(c) is our upper boundary condition z1 for the reverse 
simulation. Note that, since we removed the backward propagating beams at z = z1 instead of 
removing it at infinite z, what we obtain is an approximate solution, which is actually the 
exact solution of the related problem of a finite-size nonlinear medium. This medium can be 
thought as being coated by some anti-reflecting layer which prevents reflections from the 
surface. Anyway, this “finite size medium approach” can be taken as large z-values as we 
need, and it is found to be a good (asymptotically exact) approximation for the true 
propagation dynamics inside an infinite nonlinear material. 

Our method of nonlinear reverse propagation naturally assumes that the propagation 
dynamics of the nonlinear Helmholtz equation is reversible in z. Is it also correct in the 

nonlinear case? At first glance, it appears that the Eq. (2) is symmetric to the exchange z↔-z 
so we expect it to be reversible. However, the answer is actually that the simulation is 
reversible only if also the noise is unchanged. That is, in order for the nonlinear dynamics to 
be completely reversible, all the boundary conditions must be the same for the forward and 
the backward propagation. This means that one should use the exact field amplitude at the 
output plane (including the weak noise, amplitude and phase). In practice, this means that our 
numerical method of reverse simulation could lead to errors in the presence of very strong 
nonlinearities, which might causes the dynamics to be unstable. That is, under very strong 
nonlinearities small values of noise could play a major role, hence the reverse simulation 
might be extremely sensitive to numerical errors. However, in practice, we find that as long as 
the maximum nonlinear index change is smaller than ~1, the reverse simulation method works 
well. 

Boomerang beam? 

Figure 1(b) displays the Fourier transform of the beams of Fig. 1(a). The dashed line indicates 
the edge of the evanescent regime, highlighting that a considerable part of the spatial 
spectrum of the nonlinear beam is evanescent when the nonlinearity is absent. As such, this 
accelerating nonlinear beam heavily relies on the nonlinearity to propagate without decaying, 
otherwise an essential part of its spectrum would decay and the accelerating propagation 
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would stop. This finding is manifested by the thin sub-wavelength lobes shown in Fig. 1(a), 
where even the main lobe is about half a wavelength wide. As a consequence, when the beam 
completes near 90° bending, it breaks up, causing the nonlinear effect to drop quickly, 
causing most of the beam to decay. For stronger nonlinearities, we expect an even more 
abrupt decay, causing a larger portion of the power to backscatter. This breaks a fundamental 
rule of linear optics: linear propagation prohibits the backward radiation to be created from an 
incident beam in a homogenous medium; the essential reason is simple: forward propagating 
waves cannot change to become backward propagating waves, so nothing that was launched 
forward can turn backwards. Indeed, linear wave dynamics do not couple the forward and 
backward waves. And yet, this rule breaks down in the presence of nonlinear effects, because 
nonlinearity couples all waves, in particular – in this case it couples the forward and the 
backward propagating waves. Nonlinear optics allows the nonlinear beam to reflect itself (or 
part of it) – which is expressed in an effective bend of more than 90°. This beautiful 
phenomenon is at its best in the nonlinear dynamics of our accelerating beams, since the back-
reflection changes from zero - along the propagation, to its maximum - right after the 
nonlinearity drops. This dynamics suggests the exciting possibility of making a beam that 
would somehow fully reflect on itself. Such a notion is known in nonlinear optics in the 
context of phase conjugation; however, here the beams are accelerating (bending), hence the 
trajectory of such a beam would more resemble a boomerang. Such an envisioned beam will 
have a 'U' trajectory: it will start propagating along one branch of the 'U' and then bend to 
propagate back along the other branch of the 'U'. It seems that such a beam is indeed in 
principle physically possible. However, very high nonlinearities are required to cause enough 
power to backscatter so that an actual “boomerang soliton” would form. Further study of this 
phenomenon is left for future research. 

Conclusions 

We presented shape-preserving nonlinear self-accelerating beams of Maxwell's equations, and 
analyzed their physical features. 
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