
60 | Nature | Vol 583 | 2 July 2020

Article

Observation of branched flow of light

Anatoly Patsyk1,4, Uri Sivan1,2, Mordechai Segev1,2 ✉ & Miguel A. Bandres3,4 ✉

When waves propagate through a weak disordered potential with correlation length 
larger than the wavelength, they form channels (branches) of enhanced intensity that 
keep dividing as the waves propagate1. This fundamental wave phenomenon is known 
as branched flow. It was first observed for electrons1–6 and for microwave cavities7,8, 
and it is generally expected for waves with vastly different wavelengths, for example, 
branched flow has been suggested as a focusing mechanism for ocean waves9–11, and 
was suggested to occur also in sound waves12 and ultrarelativistic electrons in 
graphene13. Branched flow may act as a trigger for the formation of extreme nonlinear 
events14–17 and as a channel through which energy is transmitted in a scattering 
medium18. Here we present the experimental observation of the branched flow of 
light. We show that, as light propagates inside a thin soap membrane, smooth 
thickness variations in the film act as a correlated disordered potential, focusing the 
light into filaments that display the features of branched flow: scaling of the distance 
to the first branching point and the probability distribution of the intensity. We find 
that, counterintuitively, despite the random variations in the medium and the linear 
nature of the effect, the filaments remain collimated throughout their paths. Bringing 
branched flow to the field of optics, with its full arsenal of tools, opens the door to the 
investigation of a plethora of new ideas such as branched flow in nonlinear media, in 
curved space or in active systems with gain. Furthermore, the labile nature of soap 
films leads to a regime in which the branched flow of light interacts and affects the 
underlying disorder through radiation pressure and gradient force.

Waves propagating through a weak disordered potential with correla-
tion length larger than the wavelength produce surprisingly long nar-
row filaments (branches)1. Instead of producing completely random 
speckle patterns, the slowly varying disordered potential gives rise 
to focused filaments that divide to form a pattern resembling the 
branches of a tree. This phenomenon is called branched flow. The 
underlying mechanism has been traced to deflection of rays by weak 
correlated variations in the potential, leading to caustics19,20. Formally, 
these caustics reflect foldings of the Lagrangian manifold in phase 
space21, corresponding to the concentration of rays and high field 
intensity along specific lines in two dimensions or over surfaces in 
three dimensions. Although the nature of branched flow is linear, the 
high field intensity may trigger additional phenomena such as nonlin-
ear waves (such as breather and nonlinear rogue waves)15–17. Branched 
flow is now understood to be a ubiquitous wave phenomenon, but has 
never been observed in optics.

Here we present the experimental observation of optical branched 
flow. Our experiments are carried out in thin liquid soap films (Fig. 1a, 
b), where the weak random correlated potential arises from naturally 
occurring variations in film thickness22. We show, in experiments, that 
the statistical distribution of branch intensities has a heavy tail, and that 
the distance from the launch point to the first branching point satisfies 
a scaling law that depends solely on the optical potential strength and 
its correlation length23.

The experimental setting for observing branched flow in liquid soap 
films is shown in Fig. 1a. A soap membrane consists of a thin layer of 
liquid stabilized by two layers of surfactant molecules (Fig. 1b and Sup-
plementary Fig. 1). The total thickness may vary between around 5 nm 
(‘black film’) and several micrometres, with large, naturally occurring, 
intra-membrane thickness variations caused by the non-uniform den-
sity of surfactant molecules. These smooth thickness variations lead 
to variations in the effective index of refraction for light propagating 
within the membrane (Fig. 1c and Supplementary Fig. 3). For thick 
membranes, these variations in refraction index are small but when the 
thickness approaches one to two wavelengths, the variations become 
substantial and deflect light effectively.

To measure the thickness variations in the soap films directly, we 
construct an interference microscope in which we illuminate the thin 
soap film with RGB illumination (a light source with with three narrow 
(~25 nm) wavelength bands around red, green and blue). We observe the 
colourful maps shown in Fig. 1d–f, in which the colours are true colours, 
exactly as the light is reflected from the thin soap film. The colours indi-
cate the local thickness of the film (see colour map in Fig. 1c). We numer-
ically reconstruct the thickness map (see Supplementary Information), 
as shown in Fig. 1g–i, and find a beautiful two-dimensional landscape 
of hills and valleys—a disordered but correlated thickness landscape 
that typically varies in the 50–550-nm range. Fig. 1g–i shows examples 
of different thickness landscapes, each having different correlation 

https://doi.org/10.1038/s41586-020-2376-8

Received: 26 September 2019

Accepted: 16 March 2020

Published online: 1 July 2020

 Check for updates

1Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa, Israel. 2Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 
Haifa, Israel. 3CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA. 4These authors contributed equally: Anatoly Patsyk, Miguel A. Bandres. 
✉e-mail: msegev@technion.ac.il; bandres@creol.ucf.edu

https://doi.org/10.1038/s41586-020-2376-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2376-8&domain=pdf
mailto:msegev@technion.ac.il
mailto:bandres@creol.ucf.edu


Nature | Vol 583 | 2 July 2020 | 61

length and a different range of thickness variations. By manipulating 
the soap films—mixing or changing the surfactant/water concentra-
tion—it is possible to produce a wide range of thickness landscapes. 
Every membrane has a unique two-dimensional thickness landscape 
(a two-dimensional map). When the film is exposed to air flow in its 
vicinity, the thickness landscape varies over time. A membrane isolated 
from air movements remains stable for several minutes. The thickness 
landscape maps to a smooth correlated disordered effective refractive 
index for the light propagating within the film, through the relation in 
Fig. 1c. For these reasons, thin liquid films provide a perfect platform 
with which to observe and study the branched flow of light.

In our experimental setup, we launch a laser beam into the slab 
waveguide formed by a thin liquid soap film, and observe its evolution 
(Fig. 1a). The laser beam is coupled into the film through a single-mode 
fibre inserted into the film (Supplementary Fig. 2), or by coupling a 
broad elliptic beam (a ‘plane wave’ generated by a cylindrical lens) into 
the film. The fibre coupling is implemented by injecting the fibre into 

the membrane, with the fibre core aligned with the plane of the mem-
brane slab. The fibre slightly enlarges the thickness of the membrane, 
but only by several micrometres in its vicinity, not affecting the rest of 
the membrane. The mode emitted from the fibre is much wider than the 
film, and hence only the first mode of the film is excited. During propa-
gation, the beam is partially scattered from the film, which allows us to 
project an optical image of the light evolving in the membrane onto the 
camera (Fig. 1a), enabling the observation of the propagation dynamics 
directly in real time. As shown in Fig. 2, the beam is deflected by local 
random variations in the film thickness, forming focused branches that 
keep dividing to form a pattern that resembles the branches of a tree. 
The branches are created by caustics20, which are generated when the 
optical wave experiences the effective refractive index landscape in 
the thin film. Perturbing the membrane by weak air flow in its vicinity 
changes the potential landscape and gives rise to different realizations 
of branched flow in real time, leading to the dynamic patterns shown 
in Supplementary Videos 1 and 2 (recorded under no illumination and 
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Fig. 1 | Thin liquid membranes as a platform for observing branched flow of 
light. a, Experimental microscope set up for observing the light propagating 
within a thin soap film, and the true-colour interference pattern reflected by 
the thin film under RGB illumination. The laser beam is coupled to the 
membrane by an optical fibre touching the membrane or by directly sending a 
collimated elliptical beam from the side of the membrane. The BS and the CCD 
shown in the figure refer to a beamsplitter and a charged-coupled device 
camera. b, Schematic of a thin soap film. Liquid molecules (water and/or 
glycerin) are held between two layers of surfactant molecules, creating a thin 
soap film. The film acts as a two-dimensional (slab) waveguide for the light.  
c, Effective refractive index n of the light propagating inside the film as a 
function of the film thickness. The red dashed lines indicate the range of 
thickness variation in our experiments. The colour scale shows the actual 

colour of the reflected RGB light at each thickness. The thickness of the 
membranes in the experiment is less than a micrometre. d–f, Experimental 
microscope images of the true-colour interference patterns created by the 
light reflected from the thin soap film under RGB illumination. g–i, Numerically 
reconstructed thickness landscape of the thin soap film from the interference 
colour patterns in d–f. In these three examples, the thickness variations are all 
in the range 50–550 nm. These thickness variations translate (through the 
relationship in c) into an effective refractive index (‘potential’) landscape,  
for the light propagating inside the thin soap film. The inset shows the 
autocorrelation, correlation length lc, and strength v0 of the effective potential. 
Manipulating the soap films makes it possible to produce a wide range of 
potential landscapes with a different lc and v0. The range of these parameters in 
our system is v0 ≈ 1–5% and lc ≈ 90–350 µm.
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under white light illumination using RGB sensors, respectively) for a 
variety of potential landscapes. By controlling the illumination inten-
sity, we are able to observe the phenomenon of branched flow simulta-
neously with the underlying disordered potential landscape (Fig. 2c).

We further explore the branched flow of light under a different input 
beam, by launching a broad beam (approximating a plane wave) into 
the film and measuring its branching during propagation, as shown 
in Fig. 3d–f. From this figure, it is clear how the plane wave focuses at 
a particular distance, and how this distance varies between different 
landscapes of the disordered potential (Fig. 3a–c). The branched flow 

for a plane wave input (Fig. 3d–f) displays the expected branching of 
a plane wave, which was previously observed only in simulations23–26.

Originally, branched flow was discovered in experiments with 
electrons travelling through a weak, smoothly varying potential in 
a semiconductor heterostructure, where dynamics of the electronic 
wavefunction was described by the time-independent Schrödinger 
equation

ħ
m

ψ Uψ Eψ−
2

∇ + = , (1)
2

2

a b c

1 mm1 mm 1 mm

Fig. 2 | Observation of branched flow of light for an input beam generated 
by a single mode fibre. a, b, Top-view microscope images showing the 
evolution of a 532-nm laser beam emitted from a single mode fibre into a soap 
membrane. The light propagating in the film forms branched flow channelling. 

c, Branched flow pattern shown on top of the interference colour pattern 
generated by weak white light, making it possible to observe the potential 
landscape together with the branched flow.
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Fig. 3 | Observation of the branched flow of light for a plane wave input 
beam. a–c, Experimental microscope images of true-colour inference patterns 
created by the light reflected from the thin soap film under white light. The 
extracted values for the correlation length, lc, and the potential strength, v0, are 
given on the right. d–f, Top-view microscope images showing the amplitude 
(saturated at 80% of the maximum; see Supplementary Fig. 13) of the branching 
of a broad 532-nm laser beam as it propagates in the potential landscapes 
shown in a–c. g–i, Respective scintillation index, as a function of the 

propagation distance z, extracted from the experimental data (averaging over 
the transverse plane for about 10–20 realizations. The red lines in d–i mark the 
extracted value of l vc 0

−2/3, which is proportional to the distance to the first 
branching, d0. As shown here, we have experimentally observed that this 
distance, d0, decreases as the correlation length decreases (when the potential 
strength is roughly the same; compare g and i). Also, d0 decreases as the 
potential strength increases, (when the correlation length is roughly the same; 
compare h and i).
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where m is the electron mass, E is the electron energy and U is the ran-
dom potential in the semiconductor. In our experiments, we study the 
branched flow of optical waves in a slab waveguide created by a thin 
liquid film of thickness on the order of a single wavelength. The evolu-
tion of time-harmonic waves inside the thin film follows the Helmholtz 
equation

Ψ k n n Ψ k n Ψ−∇ + ( − ) = (2)2
0
2 2

eff
2

0
2 2

where Ψ x z( , ) is the electric field component parallel to the plane of 
the thin film, k λ= 2π/0  is the wavenumber in vacuum, n x z( , )eff  is the 
effective refractive index for a given guided mode in the waveguide 
and n n= ⟨ ⟩2

eff
2  is obtained by aver  aging over the whole sample; see 

the Supplementary Information. Equations (1) and (2) are mathemat-
ically equivalent, where for the optical wave the role of energy is played 
by k n0

2 2, with an effective potential V x z k n n( , ) = ( − )0
2 2

eff
2   that has a zero 

mean V⟨ ⟩ = 0. As shown in the Supplementary Information, neff is a 
function of the local thickness of the slab, the optical wavelength and 
the refractive index of the film. In this way, local thickness variations 
in the film are manifested in a smoothly varying disordered potential 
landscape experienced by the optical wave propagating within  
the film.

Branched flow is universally characterized by two global parameters 
of the disordered correlated potential: the potential strength, which 
is the ratio between the standard deviation of the potential and  
the energy, v V E n n= ⟨ ⟩ /2 = 0.5 ⟨ ⟩/ − 10

2
eff
4 4 , and the correlation  

length, lc, defined by the autocorrelation function. For our 
two-dimensional random potential, the autocorrelation function  
is c V V V f l( ) = ⟨ ( ) (0)⟩ = ( / )0

2
cr r r , with f(0) = 1 and V V c= ⟨ ⟩ = (0)0

2 . 
Being a universal phenomenon, branched flow is independent of the 
exact spatial structure of the potential and does not depend even on 
the form of the correlation function f, which may be any smooth func-
tion20. Our experimental platform of soap films allows us to generate 
a wide range of potential landscapes, with strengths and correlation 
lengths varying between v0 ≈ 1–5% and lc ≈ 90–350 µm, respectively. 
Typically, these statistical parameters vary only by 5% across different 
sections of every film (see Supplementary Fig. 6). Examples of different 
thickness landscapes are shown in Fig. 1g–i, which are generated in the 
same system under slightly different conditions (see Supplementary 
Information). The statistical features of branched flow are manifested 
in the distance from the 'source' (input beam) to the first branching 
point, d0. This distance was found8,14,20 to satisfy d l v∝0 c 0

−2/3. Since our 
system provides for easy generation of many realizations of the random 
potential, we are able to study the relation between d0 and the  
parameters v0 and lc using large statistical ensembles, varying the  
correlation length, and so on. To extract d0, we measure the scintillation 
index—the normalized variance of the branched flow intensity, 
S z I z I z( ) = ⟨ ( )⟩/⟨ ( )⟩ − 12 2 , as the branches evolve along z. Here, I is the 
(local) intensity and the average is taken over different realizations of 
random potentials with the same v0 and lc (ref. 8). The scintillation index 
is a convenient notion, because it peaks when fluctuations are maximal, 
marking the onset of branching and therefore obeying the same scal-
ing law as the distance to the first caustic8,20.

The measured scintillation index is shown in Fig. 3g–i, for a plane 
wave launched into the film. To extract the scintillation index, we aver-
age the intensity in each individual realization over the transverse 
coordinate, which allows convergence of S(z) in just a few realizations 
(see Supplementary Information). As shown by Fig. 3g–i, the observed 
scintillation index grows sharply at a distance proportional to l vc 0

−2/3, 
reaches a maximum, and then declines slowly to a constant value with 
a long tail. As Fig. 3 shows, the position of the peak of the scintillation 
index is in close proximity to the calculated value of l vc 0

−2/3 (red line in 
Fig. 3d–i), thus experimentally revealing the scaling law for a variety 
of potential landscapes. To corroborate our experiments, we also carry 
out simulations, shown in the Supplementary Information, of a plane 

wave launched into the two-dimensional refractive index landscapes 
of Fig. 1g–i, constructed from the actual experimental interference 
colour patterns of Fig. 1d–f. The correspondence between the branched 
flow observed directly in the experiments (Fig. 3) and the simulated 
branched flow using the actual measured potential landscape  
(Supplementary Figs. 4, 5, 8–12) is clearly visible.

Our experiments allow the extraction of additional statistical fea-
tures of branched flow, such as the statistics of the caustic intensities. 
The probability density of the branched flow intensity, shown in Fig. 4a, 
is calculated from the imaged branched flow patterns. In this process, 
we measure the peak intensities, Ipeak, along the red line in Fig. 4c, which 
marks a set distance from the launch point where multiple branches 
have already formed. We repeat this process for 100 experiments 
using slightly different launch positions with the same potential land-
scape, giving rise to 100 different branched flow patterns. We find 
all the intensity peaks Ipeak at a given distance from the launch point 
(for example, the peaks at the plane marked by the red dashed line in 
Fig. 4c), identify all Ipeak in each realization, and calculate the prob-
ability distribution (from all 100 different realizations of branched 
flow in the same stable membrane) shown in Fig. 4a (see details in 
the Supplementary Information). For a correlated potential, this sta-
tistics was predicted to display a heavy-tail distribution9,12, whereas 
for a completely random potential the tail of the distribution should 
display exponential decay10,14 (blue line in Fig. 4b). As exemplified by 
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Fig. 4 | Statistical properties of experimentally observed optical branched 
flow for a narrow input beam. a, b, Probability distribution and cumulative 
distribution of the branches’ intensities, for 100 experimental observations of 
branched flow, in the same film. The statistics is over the peak intensities of the 
branches at a fixed distance for each realization, chosen to be far enough from 
the input such that the branching is fully developed, as depicted in the specific 
realization shown in c, with the dashed line marking the distance from the 
source. As shown in b, the cumulative probability displays a heavy tail, as 
compared to that in an uncorrelated random potential (the Rayleigh fit).  
This implies an increased probability of finding intense waves due to the 
correlations in the potential landscape, as compared to an uncorrelated 
potential, which exhibits an exponential decay of the probability to find 
intense peaks. c, Typical experimental image of branched flow, revealing  
many channels where diffraction is arrested. d, Experimentally observed 
evolution of a Gaussian beam (for the same initial width as the input beam in c) 
in a flat membrane, exhibiting diffraction broadening characteristic of a 
homogeneous medium. e, Comparison between the width of the collimated 
branch marked by red arrow in c and the width of the freely diffracting Gaussian 
beam of d for a propagation interval of 4 mm.
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Fig. 4b and Supplementary Fig. 7, the potential in our experiments is 
always correlated, and we therefore expect a considerable increase 
in the probability of the occurrence of localized high intensity waves. 
Indeed, the measured probability distribution functions displayed in 
Fig. 4a and b show that for low in tensities, the cumulative probability 
follows the expected exponential decay, but that at sufficiently high 
intensities (above the mean intensity) the probability begins to deviate 
substantially from exponential decay—as the occurrence of extreme 
waves is increased owing to the formation of branches of high intensity 
by the correlated potential.

Another property of branched flow that has thus far not attracted 
attention is the arrest of diffraction broadening in the branches, which 
may be viewed as quenching of transverse diffusion. We find that the 
branches exhibit much less diffraction broadening than do ordinary 
wavepackets (beams), despite the fact that the branches are formed 
by scattering from random fluctuations. The branches behave as col-
limated narrow channels, even though the beam propagates in a ran-
dom potential—in which one may expect that the beam will scatter 
randomly. Experimentally, it is instructive to compare the width of 
propagating branches from Fig. 4c to the width of the corresponding 
Gaussian beams propagating in a homogeneous film (Fig. 4d). Figure 4e 
compares the width of a characteristic branch from Fig. 4c (marked by 
red arrow) to the diffraction of a Gaussian beam in a film with a uniform 
thickness. The branched channel maintains the same width for at least 
ten diffraction lengths (Rayleigh lengths) before splitting again or 
experiencing diffraction broadening. This arrested diffraction broad-
ening of the branches seems to be a universal feature of branched flow. 
Usually, nondiffracting beams are generated by nonlinear processes 
such as self-focusing driven by Kerr or saturable nonlinearities. Here 
the broadening of these wavepackets is arrested owing to scattering 
from the correlated random potential without nonlinear effects. Inter-
estingly, the evolution of branched flow is fundamentally different from 
another phenomenon associated with random potentials: Anderson 
localization27, which in the scheme of transverse localization requires 
the potential to be invariant in the propagation direction. Here, of 
course, the random variations in the potential occur anywhere in the 
plane, and vary in both the transverse direction and in the propagation 
direction. Thus, the arrest of diffraction broadening of the branches 
is not related to Anderson localization, despite both being generated 
by a random potential.

Before closing, it is important to emphasize that our experimen-
tal platform—of thin liquid films of soap—is fluidic, and so the soap 
film, together with the laser beam, constitutes an optofluidic system. 
Optofluidics, the science of light interacting with fluids, presents a 
host of linear and nonlinear phenomena, where light–fluid interac-
tions give rise to effects that are fundamentally different from those 
encountered in light–solid interactions. The mobility of the fluid, the 
possibility of optically inducing deformations in the flow field, the role 
of diffusion and convection in transporting heat and substance, and 
the large-scale inhomogeneities emerging when a fluid interacts with 
light—all of these contribute to a variety of nonlinear phenomena that 
are not encountered when light interacts with solids. Examples range 
from nonlinearities induced by optical forces on microparticles28, opti-
cal control of thermocapillary effects in complex nanofluids29, particle 
manipulation30 and more. In this context, using liquid soap films as a 
platform for experimenting with the branched flow of light has major 
implications for future research, such as investigating the effects of 
optical forces (the gradient force and radiation pressure) on branched 
flow. Our fluidic system may be ideal for such avenues of research, 
because at high enough intensities the optical forces (or heat absorp-
tion) will affect the thickness variations and perhaps create stochastic 
solitons. The effects of optical forces on branched flow in our thin fluidic 
films could offer control of flow by light and give rise to new phenomena 
driven by the symbiotic dynamics of the branched flow of light affect-
ing the flow of the liquid, suggesting the occurrence of turbulence at 

low Reynolds numbers. Also, making the soap films slightly thicker to 
allow variations in the refractive index in the narrow dimension of the 
film, and in addition to support multiple guided modes inside the film, 
could give rise to branched flow in three dimensions, a phenomenon 
that has been proposed31 but has thus far never been observed. In such 
scenarios, the full three-dimensional variation of refractive index would 
be required, rather than an effective refractive index.

The demonstration of the branched flow of light in our optofluidic 
platform of thin soap films enables access to other experimental 
regimes; for example, the thin soap films could be shaped into a vari-
ety of curved surfaces to study the branched flow in curved space. 
Supplementary Video 3 shows such an example from our experiments 
using a spherical shell and thus demonstrating branched flow in curved 
space. Such curved space experiments are intimately related to gen-
eral relativity32,33. Moreover, when the soap film is made to be slightly 
absorptive, the thermal effects modify the surface tension and affect 
the branched flow. Likewise, if the medium displays thermal optical 
nonlinearity, such experiments could relate to branched flow in the 
Newton–Schrödinger framework of general relativity34 in which scat-
tering of the wavefunction has not yet been explored. Similarly, pho-
tonics offers the ability to manipulate gain and loss, and also to design 
parity–time-symmetric systems35, in which branched flow has never 
been envisioned. Undoubtedly, the phenomenon of branched flow of 
light in thin liquid films suggests a plethora of ideas, and we foresee 
many surprising results.
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