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Nondiffracting beams in periodic media
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We identify nondiffracting beams in two-dimensional periodic systems, exhibiting symmetry properties and
phase structure characteristic of the band(s) they are associated with. © 2005 Optical Society of America
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Diffraction, the spatial broadening of wave packets,
is a fundamental feature of wave dynamics, occurring
universally in any branch of physics that involves
waves: optics, acoustics, quantum mechanics, etc.
However, there are well-known examples of localized
wave packets that can propagate without diffraction
even in linear systems. Such wave packets are com-
monly referred to as “nondiffracting beams” (NDBs).
In optics, the most widely known NDBs are the
Bessel beams,1,2 which were first demonstrated ex-
perimentally by Durnin et al.3 Another renowned
family of NDBs is that of X-waves.4 In the spatio-
temporal domain, X-waves are localized in both space
and time, and are free of spatial and temporal broad-
ening. NDBs, apart from being theoretically interest-
ing, can also be useful in various settings, such as
second-harmonic generation,5 creation of X-shaped
light bullets,6 and Bessel lattice solitons.7 We note
that so far NDBs have been investigated primarily in
homogeneous media. Nevertheless, NDBs can also
exist in media displaying anisotropic diffraction. For
example, acoustic NDBs and X-waves can exist in an-
isotropic elastic materials.8 Even more interestingly,
X-waves were predicted in periodic structures,9–11

which in recent years have witnessed rapid advances
in the exploration of phenomena related to light
propagation in photonic crystals and to Bose–
Einstein condensates in optical lattices.

Here, we demonstrate NDBs in 2D linear photonic
lattices. We show that the symmetry properties and
the phase structure of such a NDB are related to the
band the beam is associated with, to the symmetry
point of the Brillouin zone (BZ) it encircles in
k-space, and to the beam’s vorticity.

First, let us recall the reason why Bessel beams do
not diffract. The spatial (plane-wave) spectrum of a
Bessel beam (in homogeneous media) lies on a ring in
k-space. That is, a Bessel beam is a coherent super-
position of plane waves, all of which having trans-
verse wave vectors of the same magnitude.2 The
propagation constant � is related to the wavenumber
k and to the transverse wave vector k�= �kx ,ky�
through the relation �=kz=�k2− �k��2. Thus, the
propagation constants of all the plane waves that
make up a Bessel beam are identical, i.e., the rate at
which phase is accumulated by each plane wave is
the same.12 As a result, the interference pattern of all

the plane waves that make up the beam does not
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change during propagation, and the beam as a whole
does not diffract.

The above notion can be generalized to any linear
system or medium that is translation invariant in the
propagation direction. Wave propagation in such a
structure may be described in terms of the system’s
eigenmodes—the analogs of plane waves in free
space. These modes are waves that propagate with-
out changing their transverse structure, merely accu-
mulating a ��z phase, while propagating a distance
of �z. Any linear combination of modes that share the
same propagation constant is also a mode with the
same propagation constant. Mathematically, this no-
tion can be stated as follows: Let us assume that the
equation describing wave propagation in the system
is of the form i����x ,y ,z� /�z�=L��x ,y ,z�, where � is
the wave amplitude; L is a linear, Hermitian,
z-independent operator with eigenmodes ��,� and
their eigenvalues �, i.e., L��,�=���,�, ������. The
set of indices ���� reflects the degeneracy of the ei-
genvalue �. For example, the set ���� may be a finite
discrete set, as for propagation in �1+1�D free space
or in a �1+1�D periodic structure. In both cases ����
consists of two points: �kx , −kx�. Another example, in
which ���� is a continuous set, is �2+1�D propagation
in free space. In this case, under the paraxial ap-
proximation, �=−�kx

2+ky
2� / �2k�, so the surface formed

by � as a function of kx and ky is a paraboloid with
circular cross sections forming the sets ����.

As noted above, any linear combination of the
eigenmodes ��,�, ��x ,y�=�������A���,��x ,y�, where A�

is the complex amplitude of the mode ��,�, is also an
eigenmode of L with the same eigenvalue �. [The
sum could be a finite sum, an infinite sum, an inte-
gral, or a combination of them, depending on the set
����.] Any such linear combination, as any other
mode, propagates without any change in its inten-
sity: I�x ,y ,z�0�= ��������A���,��x ,y��2=I�x ,y ,0�. As
an example, in free space, by superimposing a finite
number of modes (plane waves), one obtains an ex-
tended, periodic or quasi-periodic nondiffracting
beam. Taking A� as a continuous function one can ob-
tain the known Bessel beams or other families of
NDBs in free space, such as the Mathieu beams.13

Consider now the case of a 2D periodic medium,

where the propagation constant as a function of kx
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and ky displays a band structure [Fig. 1(a)], i.e., a col-
lection of surfaces that may be separated by gaps
with normal eigenmodes being the Floquet–Bloch
(FB) modes.14 Fixing some propagation constant �0,
the set of eigenmodes with propagation constant �0
defines a curve in the �kx ,ky� plane on which
��kx ,ky�=�0 (assuming that �0 is not in a gap or an
extremum of a band). If there is an overlap between
bands for this �0, there will be one such curve for
each overlapping band. The curve(s) defined by the
relation ��kx ,ky�=�0 form the sets ����.

A new feature of 2D periodic systems is the exis-
tence of “accidental” degeneracies that cannot be at-
tributed to the system’s symmetries. In contrast, in
free space (1D or 2D) and in 1D periodic systems all
degeneracies are solely due to the symmetries of the
system. For instance, in 2D free space all degenera-
cies are due to symmetries under rotations around
the propagation axis, hence ���� is always a circle en-
compassing the k�=0 point. This basic fact makes all
the Bessel beams “look alike.” In contrast, in 2D pe-
riodic systems, in addition to degeneracies related to
the symmetry under 90° rotations and under reflec-
tions, there are also continuous sets of accidental de-
generacies defining curves in k-space. As a result, for
every �0, the curve has a different shape [see, e.g.,
Figs. 1(b) and 1(c)], and thus every NDB in a lattice
looks different. Moreover, due to the band structure
one can construct families of NDBs, relating them to
the properties of the FB modes from which they are
composed: NDBs from different bands, with ���� en-
circling the �-, X-, or M-point in the k-space [inset in
Fig. 1(a)]. As in the case of free space, one can add the
FB modes with phase differences between them. This
can lead to a vortex NDB, i.e., a NDB with a phase
singularity.

For concreteness, we construct some examples of
NDBs in 2D periodic systems. Consider the paraxial
propagation of linearly polarized light modeled by the
following dimensionless equation:

i
�A

�z
+ ��

2 A + V�r�A = 0, �1�

where ��
2 =�x

2+�y
2, A�r ,z� is the slowly varying ampli-

tude of the field, r=xx̂+yŷ is the vector of the trans-
verse coordinates, and V= 	cos���x+y� /D�+cos���x
−y� /D�
2 is a square periodic potential. We calculate
the band structure ��k�� using the Bloch theorem:
A=exp�i��z+k� ·r��u�r�, where u�r� is periodic with
the same period as the potential. Then, we choose a
value for �0 and find the section of the calculated
band structure with this particular �0. That is, we
find a large set of pairs �kx ,ky� evenly spaced on the
���0� curve for which ��kx ,ky�=�0. To get the wave
function of the NDB, we add up all the FB modes of
these pairs with the appropriate amplitudes A�. Fi-
nally, we verify that these beams indeed do not dif-
fract by numerically propagating them for tens of dif-
fraction lengths using a fast Fourier transform beam

propagation method.
Let us describe some specific examples of NDBs in
a square lattice with D=5.5, whose band structure is
depicted in Fig. 1(a). To isolate the most symmetric
cases, we assign the same amplitude to all the modes,
e.g., �A��=1. A first-band NDB encircling the �-point
looks like a Bessel beam, showing almost circular
symmetry with a � phase shift between adjacent
rings and some lattice modulation [Figs. 2(a) and
2(b)]. As the propagation constant �0 decreases, the
���0� curve approaches the X-points and the beam
acquires squarish symmetry both in real space and in
k-space [Figs. 2(c) and 2(d)]. Decreasing �0 further,
below the propagation constant at the X-point, the
���0� curve encircles the M-point and the phase of
the beam attains a hyperbolic shape [Figs. 2(e) and
2(f)]. [Recalling that the propagation constant is pe-
riodic in �kx ,ky�, with the BZ being topologically
equivalent to a 2-torus, the curves of the shape in the
inset of Fig. 2(f) are actually encircling the M symme-
try point.] Hence, the symmetry of a NDB is related
to the locus of its FB components in k-space. Second-

Fig. 1. (a) First two bands in the band structure of a 2D
square lattice with D=5.5. Inset, high symmetry points of
the reciprocal lattice. (b), (c) Curves of equal propagation
constant of the first band (b) and the second band (c).

Fig. 2. Absolute value (a), (c), (e) and phase (b), (d), (f) of
first-band NDBs, with the wavenumber (a), (b) encircling
the � point, (c), (d) passing through the X points, (e), (f) en-
circling the M points. The insets show the loci of the FB
modes in the first BZ from which the NDBs were con-
structed. The gray circles in (b) indicate the boundaries of
the waveguides.
band NDBs show different structures. A second-band
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NDB encircling the �-point has squarish symmetry
[Figs. 3(a) and 3(b)], which turns concave and is even
disconnected in k-space as �0 is decreased, encircling
both the �- and the M-points [Figs. 3(c) and 3(d)] or
the two X-points [Figs. 3(e) and 3(f)]. The specific lat-
tice considered here has an overlap between its sec-
ond and third bands, thus one can construct two dif-
ferent beams, one from the second band and the
other from the third band, with different symmetries,
while both share the same propagation constant. In
addition, any linear combination of these two beams
is a multiple-band NDB. The example given in Figs.
4(a) and 4(b) is a combination of a second-band
�-point NDB and a third-band M-point NDB phase
retarded by � rad. This example exhibits complex
phase structure but actually possesses vanishing an-

Fig. 3. Absolute value (a), (c), (e) and phase (b), (d), (f) of
the second-band NDB, with the wavenumber (a), (b) encir-
cling the � point, (c), (d) encircling the � point with greater
distance, (e), (f) encircling the X points. The insets show the
loci of the FB modes in the second BZ from which the NDBs
were constructed. The gray circles in (b) indicate the
boundaries of the waveguides.

Fig. 4. Absolute value (a), (c), (e) and phase (b), (d), (f) of
NDBs. (a), (b) Combination of second-band �-point NDB
and third-band M-point NDB phase retarded by � rad,
with both NDBs sharing the same �; (c), (d) first-band vor-
tex NDB encircling the � point, (e), (f) second-band vortex
NDB encircling the X points. The insets show the loci of the
FB modes in the corresponding BZs from which the NDBs
were constructed. The gray circles in (b) indicate the
boundaries of the waveguides.
gular orbital momentum.
The examples in Figs. 4(c)–4(f) exemplify vortex
NDBs that carry angular momentum. The first-band
vortex NDB shown in Figs. 4(c) and 4(d) is composed
of the same FB modes as the NDB shown in Figs. 2(a)
and 2(b), but to make it a vortex NDB we take the
amplitudes to be A�=exp�i2�t� where t is a param-
eter varying linearly from zero to one along the
curve. The symmetry of this beam does not change;
however, a phase singularity with zero intensity ap-
pears at the center of the beam. The second-band vor-
tex NDB shown in Figs. 4(e) and 4(f) is composed of
the same FB modes as in Figs. 3(e) and 3(f). The
phase of this example has the structure of a counter-
rotating vortex array, similar to the phase structure
of the 2D second-band vortex lattice soliton.15,16

In conclusion, we have presented nondiffracting
beams in 2D linear periodic systems, explaining why
these beams do not diffract, showing how to construct
them, giving some concrete examples, and discussing
their symmetries. We have shown that these beams
can exhibit various forms, including Bessel-like,
X-like, and square-like structures, depending on the
pathway the ���0� curve takes with the Brillouin
zone. Experimental realization of NDBs can be
achieved by modulating a plane wave with an
amplitude–phase mask. Such masks can be imple-
mented using either computer-generated holograms
or spatial light modulators. The ideas presented here
can be further generalized to 3D systems or inter-
preted in other contexts, such as electrons in a lattice
or Bose–Einstein condensates in optical lattices.

This work was supported by the Israel–USA Bina-
tional Science Foundation.
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