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Abstract:  We propose diffractive optical elements with a spatially-varying 
nonlinear refractive index. Such a component acts as a diffractive optical 
element whose properties depend on the intensity of the incoming beam. We 
present a method for designing such elements, and as specific examples we 
study three types of nonlinear diffractive optical elements: Nonlinear 
Fresnel Zone Plates, Two-foci Nonlinear Fresnel Zone Plates, and Fresnel 
Zone Plate to Grating interpolator.  
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1. Introduction  

Diffractive optical elements (DOEs) are optical components that rely on diffraction, that is, on 
the wave nature of light, unlike standard lens and mirrors, which rely on refraction and 
reflection. This reliance on diffraction can be accomplished by spatially varying the thickness 
of a plate or the plate’s refractive index, thus changing the optical path length the wavefront 
experience at each point. In addition, the opacity of the element may also be spatially-varied. 
The simplest examples of a DOE are gratings and Fresnel Zone Plates (FZP). 

Diffractive optical elements play an important role in various applications, such as laser 
beam shaping (e.g., generation of a flat-top intensity profile from Gaussian beams [1]), 
intensity-profile sampling, beam splitting, optical photolithography [2], trapping of nano-scale 
objects (optical tweezers), and manipulation of high-power laser beams (e.g., for materials 
processing applications). For high-power-laser applications, one of the advantages of DOEs 
over ordinary lenses is their ability to reduce nonlinear phase-retardation. 

In contrast, in this paper we propose to utilize the nonlinear-phase in order to engineer 
DOEs that change their properties as a function of intensity: Nonlinear Diffractive Optical 
Elements (NDOE). The basic idea is simple: a NDOE is a diffractive optical element with 
spatially-varying nonlinear properties. Such an element will act as a DOE whose properties 
depend on the intensity profile and the power of the incoming beam. 
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This idea may be implemented in several ways; possibly, the simplest one, at least in 
terms of design, is to use a flat plate whose both linear and nonlinear properties change 
spatially. Here, by “nonlinear properties” we refer to phenomena in which the refractive index 
changes as a function of the light intensity, such as the optical Kerr effect or saturable 
nonlinearity [3]. Another approach is to implement the NDOE with two layers: the first deals 
with the nonlinear properties and the other handles the linear optical path length variations, 
through modulation of the refractive index or of the surface relief (Fig. 1). 

 

 
Fig. 1. NDOE implemented with the two-layer approach: One layer deals 
with the nonlinear properties and the other handles the linear properties, by 
spatially varying the linear refractive index (left), or the surface relief (right).  

2. Design method 

We start by presenting a method for the design of a NDOE. The challenge is to design such an 
element in a way that it will fulfill some prescribed properties. The design of a NDOE starts 
with defining the requirements from the NDOE. These requirements are defined by 
prescribing how the NDOE should behave at two different intensity-profiles. That is, one 
needs to define what the output field should look like for some incoming beam of field ψ1(x,y) 
and  intensity I1(x,y)= |ψ1|

2, and how it should look like for some other incoming beam of field 
ψ2(x,y)  and intensity I2(x,y)= |ψ2|

2. (Here, x and y are the transverse coordinates, and z is the 
propagation direction). For example, one may require that a plane wave of some low intensity 
will experience focusing, while a plane wave of some high intensity will go through the 
NDOE unaffected. Assuming that the optical element is thin, we may represent its influence 
on the beam by an amplitude transmission function (TF) [4]: t(x,y)=exp(iφ(x,y)). Here, we 
concentrate on phase elements, so the element can also be described by its real phase function 
φ(x,y). From the two incoming fields and the two outgoing fields one can calculate two TFs 
for the element: t1(x,y)=exp(iφ1(x,y)) at the intensity I1, and t2(x,y)=exp(iφ2(x,y)) at the 
intensity I2. This may be done using known DOE-design methods [5]. Alternatively, instead 
of prescribing the output field one may prescribe directly the two phase functions φ1 and φ2. 
We emphasize that in contrast to linear-DOEs design, where only the incoming field profile is 
important and not the actual amplitude, here the two particular intensities are important, since 
the problem is nonlinear. 

Now, we need to determine the optical properties of the NDOE that will fulfill our 
requirements. Consider a plate with spatially-varying linear refractive index ΔnL(x,y) and 
nonlinear refractive index coefficient n2(x,y). The objective is to find the spatial variations of 
ΔnL(x,y) and n2(x,y) that generate the required TFs, for a given wavelength λ and a given 
nonlinearity type: ΔnNL=n2(x,y)g(I(x,y)). (For simplicity, we ignore here the possibility to 
spatially vary also the thickness of the plate L). At each point (x,y) the relation between the 
refractive indices and the phase accumulated by the field can be written as a simple system of 
two linear equations in two variables - ΔnL(x,y) and n2(x,y): 

 

( ) ( )( )[ ]yxIgyxnyxnLkyx L ,),(),(, 121 +Δ=φ ,                      (1a) 

( ) ( )( )[ ]yxIgyxnyxnLkyx L ,),(),(, 222 +Δ=φ .                      (1b) 

Linear properties 

Nonlinear properties 
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 These systems of equations can be easily solved analytically: 
  

 
gkL

yxn
Δ
Δ= φ1

),(2 ,                                                     (2a) 

 

g

gg

kL
yxnL Δ

−=Δ 12211
),(

φφ
,                                         (2b) 

where Δφ=φ1(x,y)-φ2(x,y), g1=g(I1(x,y)), g2=g(I2(x,y)), and Δg=g1-g2. The thickness L can 
be chosen to get a reasonable value for the maximal required ΔnNL(x,y).  

Certainly, the main obstacle for the implementation of these ideas is the ability to create 
plates with high nonlinear refractive indices that vary appreciably on short length-scales 
(desirably of several wavelengths). This implies that a possible way to realize NDOEs would 
be to construct them as a micro-designed composition of two materials, with nearly identical 
linear refractive indices, but with their nonlinear properties widely differing (say, by an order 
of magnitude). These requirements are currently possibly with today’s technology in organic 
nonlinear materials, such as polymers [6]. Another approach would be to construct a liquid-
crystal (LC) device (e.g., like the type reported in [7]), where a liquid-crystal layer is 
sandwiched between two transparent cover glasses together with a poly(methyl methacrylate) 
(PMMA) layer. The surface relief of the PMMA can be shaped using direct electron-beam 
lithography, or using nano-imprinting [8]. Patterned transparent electrodes may be used to 
spatially vary the LC properties. Thus, the strength of the nonlinearity may be controlled at 
each point by two means: the voltage across the LC and the PMMA surface relief (at a point 
where the PMMA would be made thinner, the LC would be made thicker, so effectively the 
accumulated nonlinear phase is larger). These two degrees of control enable setting at each 
point both the effective linear and nonlinear refractive indices experienced by the beam. 
Moreover, this approach will enable to electrically tune the NDOE properties. For example, at 
633-nm wavelength, the refractive index of the LC for extraordinarily-polarized light is ne~1.7 
and for ordinarily-polarized light is no~1.5, which is approximately equal to the refractive 
index of the PMMA. Thus, variations of the effective linear refractive index up to ne-no~0.2 
can be achieved. (Using a substrate other than PMMA, with a refractive index smaller than no 
or much larger than ne, will enable larger variations of the linear refractive index). To estimate 
the expected thickness, we assume that typically the maximal required phase shift is about π-
radians, so assuming ΔnNL=5⋅10-3 for intensities on the order of 1 to 10 mW/cm2, a 50-μm 
(≈λ/2/ΔnNL) thick LC is required. The response time of such a device would be on the scale of 
milliseconds. 

3. Examples of NDOEs 

Below we provide several examples of NDOEs. The simplest type of a NDOE is as follows: 
Given some linear DOE with TF t(x,y)=exp(iφ(x,y)), make a plate with a constant linear 
refractive index, and vary the nonlinear refractive index in proportion to the function φ(x,y). 
As a result, a low-intensity beam experiences propagation through a simple plate with a 
uniform refractive index, and thus it is unaffected by the plate, apart from a phase shift. 
However, when a high-intensity beam goes through the nonlinear medium, it experiences 
propagation through a DOE. In the same vein, a complementary NDOE would be one in 
which the linear properties are identical to those of the given linear DOE, and the nonlinear 
refractive index acts to eliminate the spatial variations of the linear refractive index for 
sufficiently high intensities. Possible DOEs that can be considered as a basis for designing 
NDOEs of this type are Fresnel zone plates (FZP), prisms, gratings, arrays of lens, etc. 

We simulate the NDOE using two alternative methods: the more accurate one uses a 
beam propagation method to propagate the beam through the NDOE and then in free space. A 
second, approximated method, is to multiply the field incident on the NDOE by the NDOE's 

#84420 - $15.00 USD Received 21 Jun 2007; revised 3 Aug 2007; accepted 3 Aug 2007; published 14 Aug 2007

(C) 2007 OSA 20 August 2007 / Vol. 15,  No. 17 / OPTICS EXPRESS  10865



transmission function (thin element approximation), which depends on the intensity of the 
incoming beam. For circularly symmetric NDOE we calculate the on-axis field using the 
Rayleigh-Sommerfeld scalar diffraction formula. This integral formula gives the on-axis field 
from a ring of inner radius rm and outer radius rm+1 to be: z⋅[exp(iρm)/ρm - exp(iρm+1)/ ρm+1], 
where z is the distance from the plate to the on-axis point and  22 zrmm +=ρ . Using this 

expression for each ring, and taking into account the proper phase for each ring, we get a fast 
approximation to the on-axis field. 

 3.1   Nonlinear Fresnel Zone Plate 

A specific example of a NDOE of the type described above is the Nonlinear Fresnel Zone 
Plate. A Nonlinear phase Fresnel Zone Plate is an element designed to interpolate between a 
simple transparent plate for incoming plane waves of low intensity and a FZP for high 
intensities. Consider a plate with a constant linear refractive index and a radially-symmetric 
distribution of the nonlinear refractive index, i.e., the spatial variation of the nonlinear 
refractive index consists of concentric rings of radii rm. The nonlinear refractive index is Δn0 
for r2n<r<r2n+1 n=0,1,2,3…, and zero everywhere else. The radii rm are given by 
rm=[mλf+(mλ)2/4]1/2, where f is the focal length, and m=0,1,2,3,… (See Fig. 2(a) where the 
black rings represent non-zero nonlinear refractive index). This formula for rm is exactly the 
radius formula for a linear FZP. The thickness of the plate is chosen so that the maximal 
refractive index achievable will give a π phase-shift relative to the phase of a low intensity 
beam, i.e. ΔnNLL⋅2π/λ=π. Now, as it was described above, a low-intensity beam propagating 
through this element experiences propagation through a simple plate with a uniform refractive 
index, whereas a high-intensity beam experiences focusing to the focal point at a distance f 
away from the plate. The location of the focus does not vary with intensity (Fig. 2(b)); 
however, as the intensity I0 of the incoming plane wave increases, the NDOE focuses the 
beam more and more efficiently, and as a result the intensity at the focus increases as a power 
function of I0 (I0

2.72 for the specific example given in Fig. 2(c)). We emphasize that the 
intensity in Fig. 2(b) is normalized to the intensity of the incoming beam, hence, had the 
system been linear, all the graphs would overlap. In the examples presented in Fig. 2, the 
thickness of the plate is 85μm, the focal length is 3mm, and the NDOE has 80 rings up to a 
radius of ~350μm, with the smallest feature size ~2.2μm. The maximal index change is 0.003 
and λ=0.51μm. 

Figure 2(d) shows the peak intensity at the focus for the complementary nonlinear FZP – 
a NDOE whose linear refractive index is of a linear phase FZP, and its nonlinear response acts 
to eliminate the linear refractive index variations. As a result, for a large range of incoming 
intensities (I0=0.25 - 0.6), the intensity at the focus changes by no more than ±15%. 

3.2 Two-foci Nonlinear Fresnel Zone Plate 

In the following example, we use the nonlinearity to interpolate between a FZP with a focal 
length f=3mm for very-low-intensity incoming beams, and a FZP with f=5mm for high 
intensity (I0=1) incoming beams. We apply the method described in section 2 above, using the 
phase functions of a 3mm-FZP and a 5mm-FZP (whose radial cross-sections are plotted in 
Fig. 3(a,b)) to solve Eqs. (2) for the linear (Fig. 3(c)) and nonlinear (Fig, 3(d)) refractive 
indices. Here, ΔnL(x,y) varies in proportion to the TF of a 3mm FZP, and n2(x,y) is 
proportional to the difference between the two TFs (Fig. 3(c,d)). For the above-mentioned 
focal lengths and for an element of overall radius of ~310μm, 64 rings are required for the 
3mm FZP and 38 for the 5mm FPZ, resulting in 102 rings with the smallest feature size 
~1μm. As before, the thickness of the plate is 85μm, the maximal index change is 0.003 and 
λ=0.51μm. This example actually requires feature sizes which are sometimes much smaller 
than 1μm (Fig. 3(d)); however, we may just ignore these narrow rings without loosing much 
of the functionality of the NDOE. For low intensities, the Two-foci NFZP focuses the beam to 
the 1st focus at 3mm (Fig. 3(e), red line). At the prescribed high-intensity (I0=1) the beam is 
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focused to the 5mm-focus, and for moderate intensities the power is divided between the 1st, 
the 2nd, and an (undesired) focus at 7.58mm. As the incident intensity is increased, the fraction 
of the intensity going to the 1st focus gradually decreases, and the fraction going to the 2nd 
focus increases smoothly (Fig. 3(f)). 

 

 
Fig. 2. Nonlinear Fresnel Zone Plate: (a) NFZP pattern: the nonlinear refractive index is 
different from zero only at the dark rings. (b) The on-axis intensity normalized to the intensity 
of the incoming plane wave, plotted for low intensity (red line), moderate intensity (blue line), 
and high intensity (green line). (c) Calculated intensity at the focus as a function of the 
intensity of the incoming beam (blue line) and power-law fit (red line). (d) Intensity at the 
focus as a function of the intensity of the incoming beam for a complementary NFZP. 

3.3 FZP to Grating Interpolator 

The last example is of a plate that interpolates between a FZP for low-intensity beams and a 
modulated-index grating for high-intensity beams. The purpose of this element is to focus a 
low-intensity incoming beam to some focal-point, and to deflect a high-intensity beam. In 
order to design this element we used Eqs. (2), with the phase function of a 3mm-FZP as φ1, 
and a sinusoidal function for φ2. The resulting linear (Fig. 4(a)) and nonlinear (Fig. 4(b)) 
refractive indices constitute rather complicated patterns. A low-intensity plane wave incoming 
at the Bragg angle is focused to the off-axis focal point (Fig. 4(c)), whereas a high-intensity 
plane wave incoming at the same angle is diffracted to multiple angles. A moderate-intensity 
plane-wave experience a combination of the two phenomena, as it is both partially focused 
and diffracted to multiple angles (Fig. 4(d,e)). 

4. Summary 

In addition to the self-phase-modulation effect, which a strong beam exerts on itself, one may 
use a strong beam to control a weaker beam through cross-phase-modulation, thus enabling an 
all-optical-controlled DOE. In a similar vein, one can use a strong beam at one wavelength to 
control another beam at another wavelength, at which the nonlinearity is weaker (as was done, 
for example, with soliton-induced waveguiding in photorefractives [9]). 

In summary, we have shown that employing thin plates with a spatially-varying nonlinear 
refractive index, one can create new diffractive optical elements, whose properties vary with 
the intensity of the optical beam incident upon them. We have presented a method for 
designing such elements, gave concrete examples, and studied their properties. Such nonlinear 
diffractive optical elements can be used as optical limiters, all-optical beam steering, control 
of a weak beam by a stronger beam, etc. 
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Fig. 3. Two-foci Nonlinear Fresnel Zone Plate: Radial cross-sections of the required phase 
functions for (a) a 3mm FZP and (b) a 5mm FZP, and the resulting (c) linear and (d) nonlinear 
refractive indices. (e) Normalized on-axis intensity for low-intensity (red line), moderate-
intensity (black line), and high- intensity (blue line) incoming beam. (f) Normalized intensity at 
the two foci - 3mm (red line) and 5mm (blue line), as a function of the intensity of the incident 
beam. 

 

 

 

 
Fig. 4. FZP to Grating Interpolator: Computed linear (a) and nonlinear (b) refractive indices. 
(c) 2D cross section of the intensity at the focal-plane and 1D cross section of the intensity 
(blue line) through the focal point. (d) Intensity cross section after short propagation of a 
moderate-intensity beam, and (e) after longer propagation, showing the combination of 
diffraction to multiple angles and partial focusing. 
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