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Quasicrystals are unique structures with long-range order but no
periodicity. Their properties have intrigued scientists ever since
their discovery1 and initial theoretical analysis2,3. The lack of
periodicity excludes the possibility of describing quasicrystal
structures with well-established analytical tools, including com-
mon notions like Brillouin zones and Bloch’s theorem. New and
unique features such as fractal-like band structures4–7 and ‘phason’
degrees of freedom8 are introduced. In general, it is very difficult
to directly observe the evolution of electronic waves in solid-state
atomic quasicrystals, or the dynamics of the structure itself. Here
we use optical induction9–11 to create two-dimensional photonic
quasicrystals, whose macroscopic nature allows us to explore wave
transport phenomena. We demonstrate that light launched at
different quasicrystal sites travels through the lattice in a way
equivalent to quantum tunnelling of electrons in a quasiperiodic
potential. At high intensity, lattice solitons are formed. Finally, we
directly observe dislocation dynamics when crystal sites are
allowed to interact with each other. Our experimental results
apply not only to photonics, but also to other quasiperiodic
systems such as matter waves in quasiperiodic traps12, generic
pattern-forming systems as in parametrically excited surface
waves13, liquid quasicrystals14, and the more familiar atomic
quasicrystals.
We produce two-dimensional photonic quasicrystals by using the

optical induction technique9,10 that has recently become a useful tool
in studying solitons in two-dimensional nonlinear optical lattices11.
A similar technique was used in the past to trap cold atoms in
quasiperiodic potentials12. Other theoretical15 and experimental
techniques, based on direct fabrication at the level of individual
structural elements, have been used for creating photonic quasicrys-
tals for the general study of their optical properties16, nonlinear
frequency conversion applications17,18, or the generation of complete
photonic bandgapmaterials19. The recent discovery of self-assembled
dendrimer liquid quasicrystals14 may lead to another interesting
method, but optical induction is currently the only approach that
allows for full structural control and real-time manipulation of the
generated photonic quasicrystals.
The optical induction technique relies on the interference of

several monochromatic light beams, whereby the resulting intensity
pattern is translated into a (periodic or quasiperiodic) change in the
refractive index of a photosensitive nonlinear material, in our case
photorefractive SBN:75 (Sr0.75Ba0.25Nb2O6, see refs 9, 11). For
photonic quasiperiodic structures, we overlap five coherent mono-
chromatic laser beams withwave vectors k1;…k5 separated by angles
of 2p=5. The experimental image of the field-intensity pattern is
shown in Fig. 1a. It consists of a d.c. k¼ 0 component and exactly 20
harmonic components with wave vectors of the form ki 2 kj

(i; j¼ 1…5), as indicated by the appearance of 20 Bragg peaks in
the calculated diffraction image (Fig. 1c). We emphasize that the
induced refractive index change in our material is of a saturable
nature.We intentionally work in the saturated regime, so the induced
photonic quasicrystal contains additional higher-harmonic Bragg
peaks, as clearly visible in the experimental diffraction diagram
(Fig. 1b). Evidently, the refractive index structure impressed into
the volume of the nonlinear material is a fully-fledged photonic
quasicrystal. From the relative phases of these Fourier components,
we infer that the induced quasicrystal has decagonal (ten-fold, as
opposed to only pentagonal) symmetry. Furthermore, one can tile the
induced decagonal pattern using rhombic Penrose tiles, producing a
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Figure 1 | Photonic quasicrystal and its extended Brillouin zone map.
a, Experimental image of the decagonal field-intensity pattern generated by
five writing beams with wave vectors k1,…k5 separated by angles of 2p=5.
(Yellow arrows mark the probe beam excitation sites for Fig. 2.)
b, Experimental diffraction pattern showing additional higher-harmonic
Bragg peaks, confirming the creation of a fully-fledged photonic
quasicrystal. c, d, Theory (c) and experiment (d) showing the effective
Brillouin zones of the optically induced decagonal quasicrystal. Panel c
shows the 20 Bragg peaks (after subtraction of the k¼ 0 component)
corresponding to all wave vectors of the form k i 2 k j (i; j¼ 1…5) that make
the real space intensity patterns. Arrows at right of d indicate lines appearing
‘weak’ in the experiment. Bright colours indicate higher intensity.

1Physics Department and Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel. 2School of Physics & Astronomy, Tel Aviv University, Tel Aviv 69978,
Israel. 3College of Optics and Photonics, University of Central Florida, Florida 32816-2700, USA. 4Electrical Engineering Department, 5Princeton Institute for the Science and
Technology of Materials, Princeton University, New Jersey 08544, USA.

Vol 440|27 April 2006|doi:10.1038/nature04722

1166



© 2006 Nature Publishing Group 

 

decagonal tiling that contains ten-fold star configurations, some-
times referred to as the ‘anti-Penrose’ tiling.
There are two fundamentally different types of lattices that can be

created using the optical induction method: fixed and deformable. In
the first case, the induced array is essentially rigid, while in the second
case the individual sites can move and interact with each other.
Technically, these two cases differ in the way the writing beams are
polarized, but the end result is far more important. The photo-
refractive crystal has the property that arbitrarily polarized light
induces changes in its refractive index according to the field intensity.
On the other hand, only light that is polarized in a certain direction
(extraordinary polarization in our SBN:75 crystal) experiences a
spatially-varying index of refraction. Light that is polarized in the
orthogonal direction (ordinary polarization in SBN:75) propagates
through themedium as if its refractive index were homogeneous. The
first optical induction scheme involves ordinarily polarized writing
beams that induce the quasicrystal but do not interact with each
other, and an additional extraordinarily polarized probe beam9–11.
The quasicrystal produced in this way is ideally suited to studying the
linear and nonlinear tunnelling transport of a wavepacket in a fixed
quasiperiodic lattice (Fig. 2), in a way similar to previous studies in
square and hexagonal lattices11. The second scheme of optical
induction uses extraordinarily polarized writing beams, which are
affected by the induced changes in the refractive index and therefore

interact with each other as the crystal is induced, giving rise to
complex nonlinear dynamics20. That is, the sites interact with one
another through the optical nonlinearity, in a way similar to the
interactions between an array of solitons in homogeneous media.
This kind of induced crystal can be used for the study of dynamical
processes such as defect healing, dislocation motion, and phason
strain relaxation (Figs 3 and 4). (An explanation of the term ‘phason’
appears below.)
We start our experiments by mapping the extended effective

Brillouin zones (Jones zones) of the induced photonic structure
(Fig. 1c, d). This is done by employing the recently developed
Brillouin zone spectroscopy method21, which relies on visualizing
the power spectra of the optical Bloch modes22 propagating through
the photonic crystal. Similar results, showing the effective Brillouin
zones of an icosahedral photonic quasicrystal, yet via very many
point-by-point measurements, have been reported recently16. The
excellent agreement between the experimental momentum-space
picture (Fig. 1d) andBraggdiffractionpeaks (Fig. 1b), and the expected
effective Brillouin zones predicted by the positions of the Bragg peaks
(Fig. 1c), proves not only that what we have induced is a photonic
quasicrystal, but also that this quasicrystal is capable of carrying optical
Bloch modes, extended along its axis of ten-fold symmetry.
The standard benchmark experiment to study wave dynamics in

lattices is ‘discrete diffraction’, which is the optical equivalent of
quantum tunnelling in a periodic potential23,24. A focused probe
beam is launched into a single site and experiences lateral transport
within the lattice as it propagates along its axis, resulting in a
diffraction pattern characteristic of the local structure that is
probed11,25. In a simple periodic crystal, with a single ‘atom’ per
unit cell, each site looks like any other and discrete diffraction looks
the same irrespective of the initial site of excitation. In quasicrystals,
however, there are always a number of different local environments,
so that transport behaviour is expected to vary significantly from site
to site. We observe this behaviour in the decagonal photonic quasi-
crystal numerically (Fig. 2a, c) and experimentally (Fig. 2b, d), by
comparing the discrete diffraction from two different sites (marked
in Fig. 1a). The two points chosen differ from one another by their
local environments, one having a higher local symmetry than the
other, as clearly observed in the numerical and experimental linear
propagation (discrete diffraction) images.
Unlike this linear phenomenon of discrete diffraction, in many

physical systems (such as photonic quasicrystals and matter waves in
a quasiperiodic potential) the underlying quasiperiodic structure
behaves nonlinearly to waves of large-enough amplitude, and can
support lattice solitons (discrete solitons)9–11,23–25. We therefore
conducted a series of experiments (Fig. 2e, f), and observed nonlinear
localization of the discrete diffraction pattern. In this set of experi-
ments, we used a positive bias field, hence the nonlinearity is of the
self-focusing type11. At sufficiently high intensity of the probe beam
(while keeping the photonic quasicrystal unchanged), we obtained
the first observation of lattice solitons in a quasiperiodic waveguide
structure (Fig. 2f). To verify the robustness of the lattice soliton, we
conducted several more nonlinear localization experiments, by
changing the intensity of the probe beam while keeping all other
parameters fixed; that is, by varying the intensity ratio of the soliton/
lattice from 1:3 to 1:4. Throughout this range, the output intensity
distribution of the soliton remains unchanged (Fig. 2f). We have also
tested the robustness of the soliton to the lattice depth, by varying the
bias field. The soliton is robust to such variations within ,5%.
Altogether, soliton formation and propagation is a robust phenom-
enon in the quasicrystal, with an experimentally large basin of
attraction.
Wenowmoveon to study the dynamics of thephotonicquasicrystal,

using interacting extraordinarily polarized beams, so it is essential to
maintain a stable ground-state structure of the interacting sites of
the crystal. Such behaviour, of a stable interacting square lattice of the
self-focusing type (where all the lattice sites are the same), was recently

Figure 2 | Discrete diffraction and lattice solitons in a photonic
quasicrystal. a–d, Linear tunnelling (‘discrete diffraction’) in a decagonal
photonic quasicrystal: a, c, simulation results of the probe beam exiting the
photonic quasicrystal for an input beam launched at the two different sites
marked by yellow arrows in Fig. 1a; b, d, the corresponding experimental
results (note the nicely resolved ring of 10 spots in d). e, f, Formation of a
soliton in a quasicrystal when the intensity of the probe beam (that linearly
diffracted in d) is sufficiently increased (with the lattice conditions
unchanged). e, Input face and f, output face of the soliton beam.
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observed20. However, we find, numerically and experimentally, that an
interacting decagonal photonic quasicrystal of the self-focusing type
disintegrates rapidly when the waves inducing it are extraordinarily
polarized. On the other hand, when the nonlinearity is of the self-
defocusing type (when a negative field is applied to the photorefractive
SBN:75 crystal), the interacting quasicrystal is much more stable, and
the structure does not disintegrate. We pursue this avenue and, for the
interacting lattice experiments, we induce a photonic quasicrystal
exhibiting the photorefractive self-defocusing nonlinearity26–28.
Repeating the Brillouin zone spectroscopy and Bragg diffraction
experiments reveals pictures very similar to Fig. 1b andd, thus ensuring
that we still have a fully-fledged photonic quasicrystal when the lattice
is dynamically interacting.
Having created a stable interacting photonic quasicrystal, we can

use it to study the dynamics of defects29 by observing the motion of
dislocations and the relaxation of phason strain, as these propagate in
the quasicrystal. We induce defects in the photonic quasicrystal by
changing one of the plane-wavewriting beams into a 2p vortex beam.
This new combination of writing beams results in an intensity

pattern, and therefore a photonic quasicrystal, with a dislocation
with Burgers vector (1,0,0,0). When the quasicrystal is formed by
non-interacting ordinarily polarized waves, the dislocation is visible
even when the vortex beam is very weak and even after a considerable
propagation distance (5mm in our experiment; Fig. 3a). This is due
to the fact that, without nonlinear interaction, there is no dynamics
and the photonic crystal remains fixed and cannot ‘heal’ itself.
However, when the crystal is induced by interacting extraordinarily
polarized waves, ‘atoms’ (crystal sites) can change their positions and
even merge or split, so the quasicrystal can rearrange itself—through
‘atomic’ diffusion and local configurational rearrangements—back
into the lower-energy structure of a perfect defect-free quasicrystal
(Fig. 3b). Finally, when the vortex beam inducing the dislocation is of
high intensity, the nonlinear interaction between the sites of the
quasicrystal can no longer heal the dislocation within the propa-
gation distance in the crystal, and the dislocation remains all the way
to the output (Fig. 3c).
At this point, it is essential to identify whether or not the defect

indeed completely disappears, and to find its exact location. In a

Figure 3 | Creation and healing of a dislocation in a
decagonal quasicrystal. a, Non-interacting
quasicrystal with a (1,0,0,0) dislocation.
b, With nonlinear interaction in the same crystal
the dislocation disappears. The resulting ‘healed’
quasicrystal is again a ground state of the system,
but is in general a ground state that differs from the
original one (in Fig. 1b) by phason rearrangements
throughout the whole plane (long-range effect).
c, With increased power to the vortex beam the
nonlinearity can no longer overcome the defect
within the propagation distance, and the
dislocation is again visible. The top panels show the
actual quasicrystal. The middle panels are a
magnification of the middle section of the top
panels. The bottom panels show one of the filtered
harmonic components clearly visualizing the
dislocation.

Figure 4 | Creation and healing of a dislocation in
a periodic hexagonal crystal. Panels a–c are as for
Fig. 3. a, The non-interacting periodic crystal with
a (1,0) dislocation. b, Note that as in the
quasiperiodic case (Fig. 3), the resulting ‘healed’
crystal is in a different ground state, but here
ground states can differ only by a simple shift of
the pattern. c, As for Fig. 3c.
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periodic crystal, it is rather easy to identify a dislocation, but in a
quasicrystal it is not as apparent. We therefore identify the dislo-
cations by filtering pairs of Bragg peaks in the Fourier transform
image of the quasicrystal, one at a time, and then perform an inverse
Fourier transform to visualize the dislocations present in each
individual wave29. The results, depicted in the bottom panels of
Fig. 3, show clearly the defect and its location in Fig. 3a and c, and
confirm that the dislocation has fully disappeared in Fig. 3b. Finally,
for illustrating the difference from periodic crystals, we use three
writing beams to create a hexagonal crystal with an embedded
dislocation with Burgers vector (1,0), and repeat the defect dynamics
experiments under similar nonlinear conditions (Fig. 4).
We recall that far away from a dislocation, both in the periodic

crystal (Fig. 4a) and in the quasicrystal (Fig. 3a), the pattern is in a
minimum-energy ground state, but it is in a different ground state in
every direction away from the dislocation. In a periodic crystal,
ground states can differ only by a shift of the crystal (a non-lattice
translation). When going around the dislocation, the crystal is
gradually shifted, and upon completion of a full circle and a return
to the starting point, one finds that the crystal has shifted by an integer
number of lattice translations (a Burgers vector). In a quasicrystal,
there is greater freedom. Ground states can differ by more than simple
shifts; they can also differ by rearrangements of the relative positions of
the atoms (or ‘tile flips’ had the crystal beendecoratedwith tiles). These
are the so-called phason flips (‘phasons’)—a terminology that reflects
the fact they arise from changing the relative phases, under certain
constraints, of the different waves making up the crystal. In Fig. 3b, we
clearly observe the long range consequence of phason flips that are
induced in different directions around the dislocation. Particularly
interesting is the predicted fact that, when a dislocation glides or climbs
away, the quasicrystal cannot be as easily patched up as the periodic
crystal, and a phason trail of local atomic rearrangements is left behind,
which must then ‘heal’ through a sequence of phason flips until all
‘atoms’ are back in their proper positions.
The resulting ‘healed’ quasicrystal is again a decagonal ground

state of the system, as can readily be observed in Fig. 3b, but is in
general a ground state that differs from the original one by phason
rearrangements throughout the whole plane (a ‘long-range’ effect).
The comparison with the periodic hexagonal lattice of Fig. 4 is
remarkable: in the periodic case, half a line of ‘atoms’ can simply be
shifted to replace the line next to it; thus, as the defect in the
hexagonal lattice of Fig. 4 moves, the crystal rearranges locally
(through the so-called Peierlsmechanism) and no long-rangememory
of the defect is left behind. Our results, depicted in Fig. 3, clearly
demonstrate experimentally the creation and healing of a dislocation
in a quasicrystal, and the consequence of phason flips, under
controlled and engineered conditions—a 20-year-old theoretical
prediction2,3.
This work paves the way for a variety of experiments on linear and

nonlinear wave dynamics in quasicrystals: these include direct
imaging of the fractal band structure of quasicrystals, linear and
nonlinear localization experiments, experiments with gap solitons,
vortex dynamics in quasicrystals, modulation instability, and wave
collapse in a quasiperiodic crystal. Especially interesting is the possi-
bility of studying the dynamics of multiple defect states in interacting
nonlinear optical quasicrystals and the relaxation of phason strain by
observing individual phason flips. Finally, as in three-dimensional
photonic crystals30, we envision a three-dimensional realization of our
current experiments as a means to study the details of wave dynamics
in photonic structures that are quasiperiodic in all three dimensions.
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