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Solitons in Nonlinear Media with an Infinite Range of Nonlocality: First Observation
of Coherent Elliptic Solitons and of Vortex-Ring Solitons
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We present an experimental study on wave propagation in highly nonlocal optically nonlinear media,
for which far-away boundary conditions significantly affect the evolution of localized beams. As an
example, we set the boundary conditions to be anisotropic and demonstrate the first experimental
observation of coherent elliptic solitons. Furthermore, exploiting the natural ability of such nonlinearities
to eliminate azimuthal instabilities, we perform the first observation of stable vortex-ring solitons. These
features of highly nonlocal nonlinearities affected by far-away boundary conditions open new directions
in nonlinear science by facilitating remote control over soliton propagation.
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Nonlocality plays an important role in many areas of
nonlinear physics. Nonlocality typically arises from an
underlying transport mechanism (heat [1], atoms in a gas
[2], charge carriers [3,4], etc.) or from long-range forces
(e.g., electrostatic interactions in liquid crystals [5]) and
many-body interactions as with matter waves in Bose-
Einstein condensates [6] or plasma waves [7]. In nonlinear
optics specifically, nonlocality was found in photorefrac-
tives [3,8–10], in thermal nonlinear media [11–14], in
atomic vapors [2], and in liquid crystals [5,15]. In princi-
ple, nonlocality acts to spread out the effects of localized
excitations, and as such it can suppress modulation insta-
bilities of homogeneous states [16]. However, in spite of
the natural ‘‘averaging’’ tendency inherent to nonlocality,
even highly nonlocal nonlinear media can support solitons
[2,5,17–20]. Moreover, it was suggested that nonlocality
can prevent the catastrophic collapse of self-focused
beams, allowing �2� 1�D solitons in Kerr-type media
[2,17,21]. In a similar vein, it was proposed that nonlocal-
ity can suppress azimuthal instabilities of vortex-ring
beams [22,23], but such an experiment has thus far never
been reported. Finally, nonlocality can considerably alter
soliton interactions, e.g., giving rise to attraction between
out of phase solitons [19,20,24] and between dark solitons
[25], which without nonlocality always repel, and causing
attraction between well separated solitons [26].

Here we present an experimental study on solitons in a
nonlinear medium with an extremely large range of non-
locality, such that far-away boundary conditions directly
affect the soliton beam. We use the thermal optical non-
linearity in lead glass, which is of the self-focusing type.
The nonlocal nature of this thermal nonlinearity is man-
ifested in the heat-transfer (Poisson-type) equation, for
which boundary conditions greatly influence the tempera-
ture distribution. The nonlinear index change is propor-
tional to the temperature change; hence, the boundary
conditions, even from afar, significantly affect the refrac-
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tive index structure supporting solitons. We show that
setting transversely anisotropic boundary conditions (e.g.,
rectangular boundaries in the transverse plane) facilitates
coherent elliptic solitons. We emphasize that coherent
elliptic solitons cannot exist in local, spatially isotropic,
nonlinear media, because such a nonlinearity cannot coun-
teract the anisotropic diffraction of an elliptic beam [27].
Thus, our observation constitutes the first experimental ob-
servation of coherent elliptic solitons [28]. Subsequently,
we exploit the natural tendency of long-range nonlocal
nonlinearities to eliminate azimuthal instabilities and dem-
onstrate the first experimental observation of stable vortex-
ring solitons. This is in sharp contrast to the propagation of
such beams in local nonlinear media [29], where azimuthal
instabilities rapidly break up the ring beam [30]. Our
observations demonstrate that extremely long-range non-
local nonlinear response and support new kinds of solitons
that have never been observed before, offering remote
control over the propagation of solitons through boundary
conditions.

Our experiments are carried out in lead glass exhibiting
a self-focusing thermal nonlinearity: An increase in the
optical intensity results in a nonlocal temperature increase
and, consequently, to an increase in refractive index. Self-
trapping of bell-shaped (circular) beams in such materials
has been demonstrated decades ago [12]; nevertheless, the
huge range of nonlocality has never been utilized to ob-
serve new kinds of solitons in this medium. In such media,
the refractive index change increases linearly with tem-
perature change [14] �n � ��T, � � dn=dT is the ther-
mal coefficient of the refractive index, and �n and �T are
the index and temperature changes, respectively. The light
beam gets slightly absorbed and heats the glass, serving as
a heat source. The heat diffuses with a thermal conductiv-
ity, subject to the boundary conditions and the light beam
that has induced it. The steady state temperature distribu-
tion �T establishes an index change �n, which, under
4-1 © 2005 The American Physical Society
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appropriate conditions, can support a spatial soliton. The
formation of �n is a fully reversible process that does
not involve any permanent material changes. In our
lead glass samples, the refractive index is n0 � 1:8, � �
14� 10�6 �K�1�, the absorption coefficient is � 	
0:01 �cm�1�, and � � 0:7 �W=�m K��. Even though such
an absorption coefficient is very small (absorption can be
neglected for distances up to 20 cm), it is sufficient to
support 50 �m wide solitons, which, with a total power of

1 W, give rise to �n
 5� 10�5. For our experiments
with elliptic soliton, we use a series of samples of different
lengths (in the propagation direction) of 17, 33, and
50 mm, each cut to a rectangular cross section of 1�
2:4 mm (aspect ratio of 2.4), with the rectangular bounda-
ries connected thermally to a heat sink at a fixed tempera-
ture. We use a 488 nm laser beam passed through two
cylindrical lenses, perpendicular to one another, forming
an elliptic beam at the input face of the sample (Fig. 1). We
monitor the intensity distribution at the input and output
faces by imaging the input and output beams onto a CCD
camera. Figure 2 shows experimental results demonstrat-
ing elliptic solitons at different propagation distances:
50 mm [Figs. 2(a)–2(c)], 33 mm [Figs. 2(d)–2(f)], and
17 mm [Figs. 2(g)–2(i)]. The 50� 80 �m FWHM input
beams shown in the left column [Figs. 2(a), 2(d), and 2(g)]
diffract at low power to the output shown in the center
column [Figs. 2(b), 2(e), and 2(h)]. Note the transversely
anisotropic diffraction of the elliptic beams; for example,
after 50 mm propagation, the 50 �m width diffracts to
130 �m, whereas the 80 �m width broadens to 110 �m
[Fig. 2(b)]. Finally, the high power (1 Watt) output soliton
beams are depicted in the right column [Figs. 2(c), 2(f),
and 2(i)]. The top row presents the first experimental
demonstration of the coherent elliptic soliton in isotropic
nonlinear media [31]. As proven by Fig. 2, the self-trapped
beam maintains its narrow elliptic profile at all propagation
distances.

We emphasize that the thermal nonlinearity in lead glass
does not have any intrinsic anisotropy, and the transverse
symmetry is broken solely by the anisotropic boundary
conditions. To prove this issue, we carry out experiments
with a sample of a square cross section and confirm that
symmetric boundary conditions support circular solitons
but not elliptic solitons. Evidently, the formation of the
elliptic solitons in Fig. 2 is enabled by the rectangular
boundaries. To further confirm that indeed the symmetry
FIG. 1. Setup for the elliptic soliton experiments.
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of the soliton is determined solely by the (far-away) bound-
ary conditions, we launch a circular beam into samples of
rectangular cross sections at two orthogonal settings
[Figs. 3(a) and 3(c)]. At low intensity, the beams diffract
and the output beams are circular as expected (not shown
here). But at high intensity, the initially circular beams
reshape, self-focus, and become elliptic [Figs. 3(b) and
3(d)], with their major and minor axes corresponding to
the longer and shorter distances from the boundaries, re-
spectively. The nonlinear response follows the direction-
ality of the far-away boundaries: The nearer transverse
boundary enforced a larger temperature gradient, and
thus a larger gradient of �n, than the farther away bound-
ary does. In this way, the elliptic beam is able to induce a
stationary elliptic index change supporting an elliptic soli-
ton. To complete our test-case studies, we launch a high
intensity elliptic beam with the ‘‘wrong’’ orientation: the
major axis of the ellipse parallel to the narrower direction
of the sample [Fig. 3(e)]. The input elliptic beam reshapes
and rotates its directionality to conform the elongated
geometry of the sample [Fig. 3(f)], emerging as a self-
trapped elliptic beam with its major axis in the direction of
the farther away boundary. Thus, we have shown conclu-
sively that the elliptic solitons in Fig. 2 are a direct con-
sequence of transversely anisotropic boundary conditions,
which determine the ellipticity of the solitons from far
away. The elliptic solitons experiments demonstrate:
(i) The nonlinear index change extends over a very large
region beyond the extent of the optical beam. (ii) Far-away
boundary conditions significantly affect the self-trapping,
controlling a soliton beam ‘‘by remote.’’

As discussed above, it has been proposed [22,23] that
nonlocal nonlinearities suppress azimuthal instabilities of
vortex-ring beams, but experimental observation of stable
vortex-ring solitons has thus far not been reported.
Exploiting this stabilizing feature, we demonstrate the first
stable vortex-ring solitons. In this experiment we use a
square sample with a fixed temperature at its boundaries
[32]. The dimensions of our sample are 2� 2� 28 mm
(the latter being the propagation distance). As an input
beam, we use the reflection from a unity-charge vortex
FIG. 2. Experimental results demonstrating elliptic solitons at
different propagation distances: 50 mm (a)–(c), 33 mm (d)–(f),
and 17 mm (g)–(i), showing the input beam (left column), the
diffracted output beam at low (center column), and the output
soliton beam at high power (right column).
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FIG. 3. Experiments demonstrating the evolution of a high
intensity circular input beam (a),(c) into an elliptic beam
(b),(d) under different boundary conditions (right column), and
the evolution of a high intensity elliptic beam launched in the
wrong direction (e),(f).
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phase mask. Figure 4 shows a 50 �m diameter (peak to
peak) vortex-ring soliton. The input beam of Fig. 4(a)
diffracts at low power (10 mWatt) to the 120 �m output
beam of Fig. 4(b) after 28 mm propagation. At high power
(1 Watt), the beam self-traps, forming a 56 �m diameter
vortex-ring soliton [Fig. 4(c)]. We verify that the soliton
possesses a vortex phase structure by interfering the output
beam with a spherical wave [Fig. 4(d)].

We now study theoretically the vortex-ring and the
elliptic solitons within the model for thermal self-focusing
nonlinearity [14]. The slightly absorbed light acts as a heat
source, and the induced temperature change �T satisfies
the heat equation in temporal steady state [1,14]

�r2T�x; y; z� � ��I�x; y; z�; (1)

where I is the beam intensity distribution, and �n�x; y; z� is
proportional to the local change in temperature �n �
��T, with a coefficient �. The boundary conditions of
Eq. (1) directly affect the temperature distribution and,
hence, affect �n induced by I. Denoting the optical field
as E � A�x; y; z�ei�!t�kz� � c:c:, A being the slowly vary-
ing amplitude of the beam, k � !n0=c, ! the frequency,
n0 the unperturbed refractive index (j�nj � n0), c the
vacuum light speed, and I � jAj2. The paraxial nonlinear
wave equation is

r2
?A� 2ik

@A
@z
� 2k2 �n

n0
A � 0: (2)

We seek solutions of the form A�x; y; z� � u�x; y�ei�z, for
FIG. 4. Experimental results showing (a) input vortex beam,
(b) diffracted output beam at low power after 28 mm propaga-
tion, (c) output soliton beam at high power, and (d) the vortex
phase structure of the output soliton.
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which I and �T are z-independent; hence, so is �n�x; y�.
We find solitons by solving Eqs. (1) and (2) self-
consistently, with boundary conditions such that I vanishes
at the boundaries and �T depending on the specific con-
figuration. After finding the solitons, we test their stability
in the presence of noise with a beam propagation code. We
find both the elliptic and the vortex-ring solitons to be
stable for more than ten diffraction lengths (limited by
computation time only) against random noise (at z � 0)
in excess of 5% of the soliton wave function.

We first discuss bright vortex-ring soliton solutions
under our experimental parameters. Figures 5(a)–5(c)
show the calculated results depicting a 70 �m diameter
vortex-ring soliton. The input vortex-ring beam shown in
Fig. 5(a) diffracts linearly at low power (10 mWatt) to the
118 �m output beam depicted in Fig. 5(b) after 28 mm
propagation. At high power (1 Watt), the beam self-
traps and forms a 70 �m diameter vortex-ring soliton
[Fig. 5(c)]. Figure 5(d) shows the transverse cross sections
of the calculated vortex beam intensity and of �n�x; y�,
taken through the dark vortex center. The structure of
�n�x; y� has a single peak: a global maximum at the vortex
center, where the light is zero. This feature exemplifies the
highly nonlocal nature of the nonlinearity: �n is maximal
where the intensity is zero. This stands in sharp contrast to
�n�x; y� induced by a ring beam in any local self-focusing
media, where the beam forms a ring shape �n�x; y� with a
minimum at the center, a structure which is azimuthally
unstable. Comparing our experimental and calculated re-
sults, we find that the calculated soliton is 
30% wider
(under the same experimental parameters). Likewise, the
experimental value at the center is
5� 10�5, whereas the
calculated value is 2� 10�5.

Consider now the calculated elliptic solitons, which we
find by solving Eqs. (1) and (2) self-consistently, with fixed
temperature and vanishing intensity at the rectangular
boundaries. We find that, indeed, when the shape of the
bulk lead glass is rectangular, the temperature distribution
is elliptic and supports elliptic solitons. However, accord-
ing to the model, an elliptic soliton similar to the one we
demonstrated experimentally (FWHM � 50� 80 �m,
P � 1 W) requires a sample with much smaller cross
sections. In addition, the calculated value of �n at the
center of the ellipse is again smaller than the measured
value. To verify that the nonlinearity in our experiment is
indeed higher and more anisotropic than the calculated
FIG. 5. Calculated results showing (a) input vortex beam,
(b) diffracted output beam at low power after 28 mm propaga-
tion, (c) output soliton at high power, and (d) cross sections of
�n and the intensity inducing it.
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thermal response, we repeat the elliptic soliton experiment
and launch an additional (very weak) wave of a different
wavelength, illuminating the sample uniformly and cop-
ropagating with the soliton, serving as a probe for the index
structure induced by the soliton. We interfere the output
wave with a plane wave and decipher �n�x; y�. The mea-
sured value of �n at the center of the ellipse is
5� 10�5,
whereas the calculated value is smaller, 
2� 10�5. The
measured eccentricity at the FWHM of the index change is
1:2, which occurs
140 �m away from the soliton center.
Closer to the boundaries (more than 300 �m from the
soliton center), the eccentricity exceeds 1:2:2, becoming
more similar to the 1:2:4 ratio between the transverse cross
sections of the sample. Evidently, our experimental results,
which are fully reproducible with numerous samples and
many experiments, cannot be explained quantitatively
through the model represented by Eqs. (1) and (2). Thus,
although qualitatively theory and experiments agree, our
experiments suggest that there is another mechanism in our
lead glass samples, which is not included in the model.
That mechanism gives rise to an increased �n and is also
significantly affected by the boundary conditions. A pos-
sible mechanism could be thermal stress, which typically
involves birefringence. We test this issue experimentally
and do not find evidence for any dependence of the soliton
on the polarization of the light.

To conclude, we introduced a new feature of optically
nonlinear response: a highly nonlocal nonlinearity that is
significantly affected by far-away boundary conditions. In
that sense, the geometry of the nonlinear medium, as well
as the conditions at the boundaries (or elsewhere away
from the beam), considerably affect the propagation of
solitons and of other beams. We employed these features
for the first observations of coherent elliptic solitons and
vortex-ring solitons. These ideas of controlling highly
localized beams from afar open new possibilities in soliton
science, by offering remote control over soliton propaga-
tion. Similar behavior could be found in other systems,
where the nonlinearity is highly nonlocal and the overall
behavior is subject to boundary conditions. For example,
such effects should exist with charge-density waves in
relativistic plasma [33], as well as with gravitational self-
trapping of photon beams [34]. In principle, such effects
should exist whenever the nonlinearity is supported by a
long-range transport or forces, subject, for example, to the
Poisson equation. The challenge is to harness the long-
range nonlocality to steer highly localized wave packets
from far away, causing them to collide time and again in
presubscribed fashion, forming networks of solitons.
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